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GERMANENE SUBSTRATE SYSTEM 

 

By 

 

MOHAMAD AMIN BIN HAMID 

 

July, 2020 

 

Chair  : Chan Kar Tim, PhD  
 
Faculty  : Faculty of Science 
 

Although graphene, silicene and germanene are an interesting thin nanomaterial 
with various applications in novel electronic and spintronic devices, the zero-
bandgap band structure limits the integration. By stacking different monolayer 
together, bandgap in graphene, silicene and germanene can be modulated by 
controlling the stacking configuration and interlayer distance. In this thesis, the 
structural, stabilities, electronic band, and electronic transport properties of 
graphene/silicene and graphene/germanene have been studied in three different 
stacking configurations, which is top, hollow, and bridge configurations using 
density functional theory and Boltzmann transport equation from first principle 
calculation. The computation for structural, stabilities and electronic band is 
performed by using Quantum ESPRESSO. Then, the output is utilized by 
BoltzTraP package to compute the electronic parts of transport properties for 
both graphene/silicene and graphene/germanene. This first principle study is 
motivated to contribute and further enriched the understanding of stacking 
effects in building two-dimensional superlattice materials. The results in this 
thesis can be divided into three part which are the structural, electronic and 
electronic transport properties per unit cell of graphene/silicene and 
graphene/germanene.  
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The first part is the structural properties where graphene/silicene and 
graphene/germanene superlattice are modelled in top, hollow and bridge 
stacking configurations. Then, the initial structure of graphene/silicene and 
graphene/germanene is optimized. From the structural optimization, the 
structural changes experienced by graphene/silicene and graphene/germanene 
is tabulated in comparisons to pristine graphene, silicene and germanene. The 
interlayer binding energy and formation energy is computed to find the most 
stable stacking configurations. For both graphene/silicene and 
graphene/germanene, it is found that the most stable is top stacking 
configurations, followed by hollow and bridge stacking. The second part is the 
electronic properties of graphene/silicene and graphene/germanene. Here, the 
effect of stacking of the superlattices on the electronic band structure is studied. 
For both graphene/silicene and graphene/germanene, there is a bandgap 
opening at -point with graphene/germanene displaying the self-hole doping 
characteristics. This study further delved into the effects of stacking configuration 
on the effective mass of graphene/silicene and graphene/germanene at -point. 
Here, the effective mass of electrons is found to increased due to the bandgap 
opening at -point. The effects of modulating the interlayer distance of 
graphene/silicene and graphene/germanene on the bandgap and the effective 
mass of electrons is also studied and found that decreasing the interlayer 
distance increased the bandgap and in returns increase the effective mass of 
electrons for both graphene/silicene and graphene/germanene. The electronic 
transport properties consist of electrical conductivity, electronic thermal 
conductivity and Seebeck coefficient of graphene/silicene and 
graphene/germanene. From the Seebeck coefficient, the majority charge carrier 
in both graphene/silicene and graphene/germanene is electrons making both of 
it n-type semiconductors. Generally, electrical conductivity, electronic thermal 
conductivity and Seebeck coefficient for both graphene/silicene and 
graphene/germanene is better in n-type doping region. However, an increase in 
n-type doping concentration induced bipolar transport properties in 
graphene/germanene which switch the polarity from n-type to p-type 
semiconductors. 
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Julai, 2020 
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Walaupun grafeen, silisin dan germanin adalah nanobahan yang menarik untuk 
digunakan dalam peralatan elektonik dan spintronik, penggunaanya tidak 
meluas kerana ketiadaan jurang jalur di dalam struktur jalur. Dengan menyusun 
dan mencantumkan lapisan dua dimensi yang berbeza, jurang jalur di dalam 
struktur jalur boleh dikawal dengan mengawal corak susunan dan jarak antara 
lapisan. Dalam tesis ini, sifat struktur, elektronik, dan angkutan elektronik dari 
grafeen / silisin dan grafeen / germanin telah dikaji dalam tiga konfigurasi 
susunan yang berbeza, iaitu konfigurasi atas, berongga, dan jambatan 
menggunakan teori fungsi ketumpatan (DFT) dan persamaan angkutan 
Boltzmann dari pengiraan prinsip pertama. Pengiraan untuk struktur, kestabilan 
dan jalur elektronik dilakukan dengan menggunakan Quantum ESPRESSO. 
Kemudian, hasil pengiraan digunakan oleh pakej BoltzTraP untuk mengira 
bahagian angkutan elektronik bagi kedua-dua grafeen/silisin dan 
grafeen/germanin. Kajian prinsip pertama ini bermotivasi untuk menyumbang 
dan memperkaya pemahaman tentang kesan susunan konfigurasi yang berbeza 
dalam membina bahan superkekisi dua dimensi. Hasil dalam tesis ini dapat 
dibahagikan kepada tiga bahagian yang merupakan sifat struktur, elektronik dan 
angkutan elektronik untuk grafeen/silisin dan grafeen/germanin. 
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Bahagian pertama adalah sifat-sifat struktur di mana struktur grafeen/silisin dan 
grafeen/germanin superkekisi di konfigurasi atas, berongga dan jambatan dibina. 
Kemudian, struktur awal grafeen/silisin dan grafeen/germanin dioptimumkan. 
Dari pengoptimuman struktur, perubahan struktur yang dialami oleh 
grafeen/silisin dan grafeen/germanin dapat digambarkan dalam perbandingan 
dengan satu lapisan grafeen, silisin dan germanin. Tenaga mengikat jarak 
antara lapisan dan tenaga pembentukan dikira untuk mencari konfigurasi 
susunan yang paling stabil. Didapati untuk kedua-dua grafeen/silisin dan 
grafeen/germanin, yang paling stabil adalah konfigurasi susunan atas, diikuti 
oleh konfigurasi berongga dan jambatan. Bahagian kedua adalah sifat elektronik 
grafeen/silisin dan grafeen/germanin. Di sini, kesan penyusunan superkekisi 
pada  jalur elektronik dikaji. Didapati bahawa bagi kedua-dua grafeen/silisin dan 
grafeen/germanin, terdapat pembukaan jalur di titik- , dan grafeen/germanin 
mempamerkan ciri-ciri doping diri lubang. Seterusnya, kesan kesan susunan 
konfigurasi pada jisim yang berkesan elektron untuk grafeen/silisin dan 
grafeen/germanin di titik-  dikaji. Di sini, didapati bahawa jisim yang berkesan 
elektron meningkat kerana pembukaan jalur di titik- . Kesan pengubahsuaian 
jarak antara grafeen/silisin dan grafeen/germanin pada pembukaan jalur dan 
jisim yang berkesan elektron juga dikaji. Didapati bahawa penurunan jarak 
antara lapisan meningkatkan pembukaan jalur sekaligus meningkatkan jisim 
yang berkesan elektron untuk kedua-dua grafeen/silisin dan grafeen/germanin. 
Ciri-ciri angkutan elektronik terdiri daripada kekonduksian elektrik, kekonduksian 
terma elektronik dan pekali Seebeck untuk grafeen/silisin dan grafeen/germanin. 
Dari pekali Seebeck, pembawa cas majoriti dalam kedua-dua graphene/silicene 
dan graphene/germanene adalah elektron. Ini menjadikan kedua-duanya 
semikonduktor jenis-n. Secara umumnya, kekonduksian elektrik, kekonduksian 
terma elektronik dan pekali Seebeck bagi kedua-dua grafeen/silisin dan 
grafeen/germanin adalah lebih baik dalam rantau pendopan jenis-n. Walau 
bagaimanapun, peningkatan dalam kepekatan doping jenis-n mendorong sifat 
pengangkutan dwikutub menyebabkan  grafeen/germanin menukar polariti dari 
semikonduktor jenis-n ke semikonduktor jenis-p. 
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CHAPTER 1 

INTRODUCTION 
 

1.1   Graphene 

The physics of graphene has captured the interest of many researchers ever 
since its discovery in 2004 (Novoselov et al., 2004). Structurally, graphene is a 
single layer graphitic carbon in honeycomb lattice structure. The in-plane carbon-
carbon bond in graphene is composed of  hybridization. This produces one 

-bond and two -bond, where the single  electrons act as the free electrons 
in graphene as shown in Figure 1.1. This leads to graphene having semi-metallic 
properties, where conduction band minima (CBM) and valence band maxima 
(VBM) at K-point touching each other. The semi-metallic properties are depicted 
in Figure 1.2.  

 

 

Figure 1.1: The depiction of  hybridization of carbon in graphene 
monolayer. a) the bonding analysis of one carbon atom with its three 
nearest neighbour carbon atoms and b) the structure of free-standing 
graphene monolayer along (001) (Dimoulas, 2015). 

 

Besides being two-dimensional, graphene has quite interesting mechanical 
properties. Graphene is one of the strongest materials, with the Young modulus 
of 1TPa and tensile strength of 130.5 GPa (Lee et al. , 2008). Further study on 
graphene exhibits unique electronic properties such as high electron mobility 
transport and electrical conductivity at room temperature (Novoselov et al., 2004). 
This is attributed to the formation of Dirac cone in its electronic band structure 
(Novoselov et al., 2005). At these points, electron behaves like Dirac fermions, 
where the electron mobility is around 15 000  compared to 
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semiconductor like silicon, which is only 1400  (Novoselov et al., 
2004).  

 

 

Figure 1.2: The band structure and density of states (DOS) of free-standing 
monolayer graphene along  ( ) (Dimoulas, 2015). 

 

This makes graphene a suitable candidate materials to observe many quantum 
phenomena such as Klein tunnelling effects and Quantum Hall effect. In a non-
relativistic regime, an incident electron propagating towards potential barrier 
always have transmission coefficient and reflection coefficient. However, Klein 
tunnelling effects is a relativistic tunnelling effects, where an electron is always 
transmitted through the step potentials if the potential is of the order of the mass 
of electrons,  (Logemann et al., 2018). This is in contrast to the non-relativistic 
tunnelling of electron, where the transmission coefficient is less than one and 
decays exponentially with increasing height and width of the potential barrier. 
Stander et al. investigated in 2009, the transport properties of graphene through 
a series of step potential induced by metallic gates coupled to graphene layer. 
Stander et al. confirmed the Klein tunnelling effect in graphene with potential 
barrier of different top gate height (60, 100, 220, 540, 860 and 1700 nm) and 
graphene strip width (1.74 –  4.3 nm). Due to the remarkable properties of 
graphene, many researchers are interested in using graphene for supercapacitor 
(Yoo et al., 2011), field-effect transistor (Reddy et al. , 2011), diode (Chen et al. , 
2011), solar cell (Miao et al., 2012) and sensor (Yoon et al., 2011). However, 
due to the Dirac cone formation, graphene is gapless in its electronic band 
structure which is undesirable for application in electronic devices. Few methods 
have been proposed to induce and fine tune the bandgap in graphene electronic 
structure such as surface adsorption (Petrushenko and Petrushenko, 2019), 
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chemical doping (Wang et al., 2009), structural defect (Raji and Lombardi, 2015) 
and applied magnetic field (Sahalianov et al., 2018).  

 

1.2  Silicene and Germanene 

 

Figure 1.3: The side view of the buckling structure adopted by free-
standing silicene and germanene monolayer.  is the buckling parameter, 
Si is the silicon atom and Ge is the germanium atoms (Dimoulas, 2015). 

 

Silicene and germanene are the silicon and germanium equivalents of carbon-
based graphene. Silicene and germanene have been predicted to have stable 
free-standing monolayer forms (Takeda and Shiraishi, 1994). A recent study by 
using density functional theory (DFT) predicts that silicene (Houssa et al., 2010a) 
and germanene (Houssa et al., 2010b) to be stable in monolayer forms with 
corrugated or low buckling surfaces. This is different from the surfaces of 
graphene which is flat. There is a difference in height,  between two lattice sites 
in silicene and germanene illustrated in Figure 1.3. This is due to the differences 
in hybridization involved in bonding between silicon-silicon atoms in silicene and 
germanium-germanium atoms in germanene, which is a combination of  
hybridization. The electronic band structure of silicene and germanene are 
similar with graphene, where the Dirac cone formation is located at the K-point 
which can be seen from Figure 1.4. This makes silicene and germanene a zero-
bandgap semimetal like graphene. The buckling structure of silicene and 
germanene however, breaks the inversion symmetry which allows the effects of 
external electric and magnetic field to open the zero-bandgap band structure of 
silicene and germanene (Ni et al., 2012).  

 

Nonetheless, compared to graphene, the free-standing forms of silicene and 
germanene have yet to exists in nature. Most of the time, the silicene and 
germanene are synthesized on a metal substrate using methods such as 
chemical vapour deposition (CVD). Few experimental studies have shown that 
silicene can be grown on the surfaces of silver (Vogt et al., 2012), zirconium 
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diboride (Lee et al. , 2014), zirconium carbide (Aizawa et al., 2014) and iridium 
(Meng et al., 2013). Study on germanene also shows the possibility to fabricate 
germanene on the surfaces of gold (Schr et al., 2017) and platinum (Li et al., 
2014). This is, however, not suitable for application in electronic devices due to 
the strong band hybridization induced by metal substrate on the electronic 
structure of silicene and germanene layers, which often leads to the destruction 
of Dirac cone (Wang et al., 2016).  

 

 

Figure 1.4: The band structure of free-standing monolayer silicene and 
germanene along high-symmetry point:  (Dimoulas, 2015). 

 

1.3   Superlattice 

Superlattice is referring to the structures composed of two-different materials 
stacked together as illustrated in Figure 1.5. Superlattice provides an engineered 
material with highly desirable properties that is not readily available from nature. 
In this thesis, the concept of superlattice has been expanded to include stacking 
monolayer onto monolayer thickness materials in controlled fashion. This is due 
to the advance in technology such as CVD and molecular beam epitaxy (MBE) 
which allows for the atomic layer by layer precision assembly of a periodic 
superlattice structure. The advancement of computing devices and the 
widespread use of quantum chemistry simulation programme among research 
communities such as density functional theory and tight-binding model also allow 
for theoretical prediction on superlattice structure which is still limited for 
fabrication by current technology.  © C
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Figure 1.5: The lateral view of vertical stacking of two different monolayers 
together. The green atom is germanium atom while the grey atom is carbon 
atom.  is the buckling parameter, which is the differences between two 
unequal lattice along the z-axis coordinate.  is the interlayer distance, 
which is the distance between two monolayers in superlattice (Yu et al., 
2014). 

 

The study on the superlattice structure consists of two different two-dimensional 
materials have become popular recently. Multiple studies have shown that hybrid 
materials consist of graphene and other two-dimensional materials produced 
superlattice with different electronics properties than its constituent monolayers. 
Graphene has been stacked together with insulator such as hexagonal boron 
nitrene, hexagonal boron nitride (Liu et al., 2011), semi-metal such as silicene 
(Yu et al., 2014) and germanene (Cai et al. , 2013), semiconductor like two-
dimensional molybdenum disulphide,  (Roy et al., 2013) and tungsten di-
selenide  (Kim et al., 2015),  and metal like niobium di-selenide,  
(Efetov et al., 2016).  

 

In many cases, the stacking of graphene with other two-dimensional materials 
created a superlattice that are held together by weak interaction like van der 
Waal forces (vdW). Hence, the strong band hybridization due to the interlayer 
interaction which is a common occurrence in metal substrate is avoided. Added 
functionality can also be seen in graphene hetero-bilayers, such as bandgap 
opening in graphene/h-BN superlattice which reported to be 53 meV at K-points 
(Giovannetti et al., 2007). Even though the graphene layer interacts weakly with 
monolayer hexagonal boron nitride (h-BN), the inequivalence of the lattice site 
between graphene and h-BN per unit cell induced the bandgap opening. 
Considerable bandgap and improved ON/OFF ratio have also been reported in 
graphene/h-BN/graphene (Meric et al., 2013) which is useful for field effect 
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transistor. The h-BN layer serves as a dielectric gate and in other literature, 
promotes quantum tunnelling between graphene electrodes (Britnell et al., 2012). 
Britnell et al. (2012) reported that graphene/h-BN/graphene field effect transistor 
has improved ON/OFF switching ratio at ambient temperature, up to .  

 

1.4  Problem Statement 

Graphene, silicene and germanene are two-dimensional materials with desirable 
electronic and transport properties. The formation of Dirac cone in the electronic 
band structure of graphene, silicene and germanene leads to high electron 
mobility transport, which proves useful for fabrication in many future novel 
electronic devices such as FET. The composition of silicene and germanene 
which made up of silicon atoms and germanene atoms, respectively make both 
of them are highly desirable due to the compatibility with widespread of silicon-
based infrastructure in our technology. However, like graphene, silicene and 
germanene have zero-bandgap band structure which made integration hard. 
This is due to the facts that materials used in semiconductor devices utilized 
changes in bandgap to control current flow. Furthermore, the ON/OFF switching 
ratio in graphene, silicene and germanene are intrinsically small due to the 
gapless electronic structure compared to standard ON/OFF ratio for logic 
operation ( ) (Avouris et al., 2007).   

 

Hence, many efforts have been done to introduce substantial bandgap in 
graphene, silicene and germanene. Methods such as chemical doping, surface 
adsorption and applied magnetics and electric field have been proposed and 
studied for the past decades. Recently, the idea of superlattice has becomes 
prominent with the increased of computing powers, availability of open-source 
quantum chemistry simulation software and the advances of new synthesis 
methods such as CVD. Previous study by Yu et al. (2014) also suggests by 
stacking together graphene with other two-dimensional materials, forming new 
superlattice structure shows preservation of Dirac cone at K-points and improved 
bandgap in the band structure due to the weak interlayer band hybridization. 
Thus, a density functional theory study to explore the structural, electronic, and 
electronic transport properties of graphene, silicene and germanene superlattice 
structure is proposed. In this study, the effect of stacking between layers with 
inequivalent lattice site (Graphene/Silicene and Graphene/Germanene) is 
explored. In addition, a thorough study on the bandgap opening of 
graphene/silicene and graphene/germanene superlattice by modulating the 
interlayer distance using perpendicular hydrostatic strain is suggested, which 
methodology is based on previous study by Khan et al. (2017). 
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1.5  Objectives 

The main objectives of this study are: 

i. To determine the structural stability and structural properties of 
graphene/silicene and graphene/germanene substrate systems under 
different stacking configuration. 

ii. To determine the effects of stacking configurations on the electronic 
band structure of graphene/silicene and graphene/germanene 
substrate systems. 

iii. To study the effects of interlayer distance variation on the electronic 
properties and carrier mobility of graphene/silicene and 
graphene/germanene substrate systems. 

iv. To explore the electronic thermoelectric properties and response of 
graphene/silicene and graphene/germanene substrate systems. 

 

1.6   Thesis Organisation 

This thesis is divided into five chapters, where Chapter 1 focussed on the brief 
overviews on the development of two-dimensional materials study (graphene, 
silicene and germanene) and prior works, both experimental and computational. 
Chapter 2 present the in-depth literature reviews on superlattice of two-
dimensional materials and brief history of density functional theory approach. 
Few popular DFT software used widely in the computational condensed matter 
physics are introduced. Chapter 3 follows with the theoretical principle behinds 
DFT approach and the methodology involved in this study. Chapter 4 compiled 
the overall results and analysis of graphene/silicene and graphene/germanene 
substrate systems in terms of structural, electronic band structure and electronic 
transport properties. The bandgap tuning of graphene/silicene and 
graphene/germanene superlattice by modulating the interlayer distance is also 
included. Finally, the results that are obtained from our study and elaborate 
further on the future directions of this research is further summarized in Chapter 
5.  
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