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The success of Glass Ionomer Cement (GIC) innovations in dentistry has 
attracted interest among researchers over the last 40 years. However, there is 
limited research regarding the usage of Alumino-Silicate-Fluoride (ASF) based 
glass ceramics derived from waste resources in the fabrication of GIC. This 
research's main focus is to fabricate GIC using ASF-based glass ceramics 
derived from waste resources of clam shell (CS) and soda lime silica (SLS) 
glass. Two batches of ASF glass ceramics sample labeled as Batch 1 (B1) and 
Batch 2 (B2) were prepared following the empirical formula of [(x)CS∙(45-x) 
SLS∙15CaF2∙20P2O5∙20Al2O3] where x = 5 and 20 (wt.%). Both batches have a 
different composition in SLS and CS which will be studied in this work. The 
ASF based glass ceramics were synthesized by using conventional melt 
quenching techniques. Then, GIC was fabricated using three main components 
of ASF based glass ceramics, polyacrylic acid (PAA) and water. The thermal, 
physical, structural, chemical and mechanical properties of ASF glass ceramics 
and GIC had been determined by using X-ray fluorescence (XRF), differential 
scanning calorimetry (DSC), density measurement, X-ray diffraction (XRD), 
fourier transform infrared spectroscopy (FTIR), field emission scanning electron 
microscopy (FESEM), energy dispersive X-ray (EDX) and compressive 
strength test (CST). The XRF showed the largest percentage of SLS glass 
elements is silicon dioxide (SiO2) around 79 % while CS has 99.52 % of 
calcium oxide (CaO), which makes them suitable as a source for ASF glass 
composition. The DSC showed glass transition temperature, Tg around 764-
785 C and crystallization temperature, Tc around 918 - 986 C. The density 
measurement of GIC showed an increasing pattern from 600 - 800 C. Then, 
the density decreased at a high sintering temperature of 1000 - 1200 C. This 
is due to the formation of anorthite (Ca(Al2Si2O8) and mullite (Al5SiO9.5) at high 
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sintering temperatures. The XRD analysis revealed fluorapatite (Ca5(PO4)3F) 
as a major phase in GIC samples which decomposed into anorthite and mullite 
at 1000 - 1200 C. Next, FTIR revealed the presence of CO3 group, SiOSi, 
PO, crystalline phosphate, CH3 and OH band which indicates the structure of 
the glass matrix and the crystallization of the GIC sample. The uniform 
spherical microstructure was observed, which converted to a coarse structure 
at high sintering temperatures in FESEM due to devitrification. The EDX 
analysis revealed a Ca/P ratio obtained around 1.17 - 3.49 is suitable for body 
implantation. CST has the same pattern as the density measurement of GIC. 
The decline of the pattern was attributed to the decomposition of fluorapatite 
into mullite and anorthite. A selected sample of B1 GIC at 800 C and 28 days 
was discovered as an optimum result due to the highest CST value achieved, 
82.03 MPa. In conclusion, GIC shows a potential candidate for clinical 
applications in dentistry as their mechanical properties completed the 
requirement for dental application (70 MPa) following the International standard 
organization (ISO) 9917. 
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Kejayaan inovasi simen ionomer kaca (GIC) dalam bidang pergigian telah 
menarik minat para penyelidik sejak 40 tahun yang lalu. Walau bagaimanapun, 
terdapat kajian yang terhad mengenai penggunaan kaca seramik berasakan 
Alumino-Silikat-Florida (ASF) yang berasal dari sumber buangan dalam 
pembuatan GIC. Fokus utama penyelidikan ini adalah untuk membuat GIC 
menggunakan kaca seramik berasaskan ASF yang berasal daripada sumber 
buangan seperti kulit kerang (CS) dan sisa kaca silika (SLS). Dua kumpulan 
sampel kaca seramik ASF yang dilabelkan sebagai Kumpulan 1 (B1) dan 
Kumpulan 2 (B2) telah disediakan mengikut formula empirik [(x) CS (45-x) SLS 
15CaF2 20P2O5 20Al2O3] di mana x = 5 dan 20 (% berat). Kedua-dua kumpulan 
mempunyai komposisi yang berbeza dari segi CS dan SLS yang akan dikaji 
dalam kajian ini. Kaca seramik berasaskan ASF disintesis menggunakan teknik 
lebur konvensional. Kemudian, GIC dibentuk menggunakan tiga komponen 
utama iaitu kaca seramik berasaskan ASF, asid poliakrilik (PAA) dan air. Sifat 
terma, fizikal, struktur, kimia dan mekanikal kaca seramik ASF dan GIC 
ditentukan menggunakan pendarfluor sinar-X (XRF), kalorimetri pembezaan 
imbasan (DSC), pengukuran ketumpatan, pembelauan sinar-X (XRD), 
spektroskopi transformasi fourier inframerah (FTIR), mikroskop pengimbas 
pelepasan medan elektron (FESEM), tenaga penyebaran sinar-X (EDX) dan 
ujian kekuatan mampatan (CST). XRF menunjukkan peratusan unsur terbesar 
dalam kaca SLS adalah silikon dioksida (SiO2) iaitu sekitar 79 % sementara CS 
mempunyai 99.52 % kalsium oksida (CaO) yang menjadikannya sesuai 
sebagai sumber komposisi kaca ASF. DSC menunjukkan suhu peralihan kaca, 
Tg sekitar 764 - 785 C dan suhu penghabluran, Tc sekitar 918 - 986 C. 
Pengukuran ketumpatan GIC menunjukkan peningkatan corak dari 600 – 
800 C. Kemudian, ketumpatannya menurun pada suhu pensinteran tinggi 
1000 - 1200 C. Ini disebabkan oleh pembentukan anorthite (Ca(Al2Si2O8) dan 
mullite (Al5SiO9.5) pada suhu pensinteran yang tinggi. Analisis XRD 
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mendedahkan fluorapatite (Ca5(PO4)3F) menjadi fasa utama dalam sampel 
GIC telah terurai menbentuk anorthite dan mullite pada suhu 1000 - 1200 C. 
Seterusnya, FTIR mendedahkan kehadiran kumpulan CO3, SiOSi, PO, 
fosfat kristal, CH3 dan OH yang merujuk kepada struktur matriks kaca dan 
pengkristalan sampel GIC. Struktur mikrosfera diperhatikan berubah menjadi 
struktur kasar pada suhu pensinteran tinggi dalam FESEM disebabkan proses 
divitrifiksi. Analisis EDX mendedahkan nisbah Ca/P yang diperoleh adalah 
sekitar 1.17 - 3.49 sesuai untuk implantasi badan. CST mempunyai corak yang 
sama dengan pengukuran ketumpatan GIC. Pola menurun diperolehi kerana 
penguraian fluorapatite menjadi mullite dan anorthite. Sampel terpilih B1 GIC 
pada suhu 800 C dan 28 hari menjadi hasil optimum kerana nilai tertinggi CST 
telah diperolehi, 82.03 MPa. Kesimpulannya, GIC merupakan calon yang 
berpotensi untuk aplikasi klinikal dalam pergigian kerana sifat mekanikalnya 
memenuhi syarat untuk aplikasi pergigian (70 MPa) mengikut organisasi 
standard antarabangsa (ISO) 9917. 
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CHAPTER 1 
 

INTRODUCTION 

 

 1.1 Research Background 
 
 
Biomaterials can be classified into two groups which are natural and 
artificial products. The significant role of biomaterials is to restore the 
biological function of the body acceptably and reliably (Williams, 1987). 
The vital objective of biomaterials is to enhance individual health by 
keeping the function of living tissues and organs in the body (Ramakrishna 
et al., 2001). Furthermore, the important terminologies relating to the study 
of biological functions are biomaterials and biocompatibility. The 
biomaterials must be biocompatible to work well in the biological system. 
Biomaterials also have excellent features such as bioactivity, 
biodegradability, bioinert and biostability behavior to become an ideal 
candidate in the medical field (Hench et al., 1991). Some biomaterial 
categories consist of polymers, metals, composites and ceramics 
(bioglass) are shown in Figure 1.1. 
 
 
The polymers are known for their unique property, which has good 
composition flexibility. However, low mechanical strength causes the 
polymers to not be able to withstand the stress needed in various 
applications. Next, metals have good ductility, high strength and wear 
resistance. Still, they also have low biocompatibility, faster corrosion rate 
and high release of metal ions, leading to allergic issues (Eliaz, 2019). 
Meanwhile, composites become potential candidates in biomaterials as 
they consist of high elastic strength but short-term durability. Generally, 
ceramics is well known as biocompatible material with good corrosion and 
compression resistance, but it has low fracture, brittle, and high density 
(Kang and Fang, 2018). Above all, polymer scaffold uses in bone 
regeneration is challenging and very limited as it consists of low 
mechanical strength (Fu et al., 2011; Basha et al., 2015). However, 
scaffolds made from bioceramics or calcium phosphate such as bioactive 
glass have been shown to provide good mechanical strength (Kaur et al., 
2014). 
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Figure 1.1: The schematic diagram of biomaterials classification 
(Kaur et al., 2014). 
 
 
After the invention of biomaterials, many clinical applications were 
developed with similar functions to biological systems. Glass ceramics and 
bioactive glass have been widely used in medicine and researches in 
tissue engineering on both materials are still in progress. This is due to 
their unique nature, in which their composition can be modified by 
following the specifications required (Ducheyne et al., 1999). The primary 
bioactive glass system, which consists of SiO2-Na2O-CaO-P2O5, was 
created by Hench and a co-worker in 1969. 
 
 
The bioactive glasses, which are also known as bioglass consisting of 
selected glass compositions, provide good biocompatibility and adhesion 
to the human bone (Lin et al., 1991). The first bioglass discovery known as 
45S5 bioglass consists of 45 % SiO2, 24.5 % Na2O, 24.4 % CaO and 6 % 
P2O5 commercialized for an industrial purpose (Fernandes et al., 2018). 
The selection of constituent elements in the bioglass composition is similar 
to natural minerals in the body, such as Si, Na, O, H, Al, Ca and P 
(Wallace et al., 1999). Additionally, the molecule proportion between Ca 
and P mimics the mineral found in the bone, which is Ca5(PO4)3OH or 
hydroxyapatite (Denry and Holloway, 2014; Erasmus et al., 2017). 
 
 
The compositional ranges of bioglass consisting of SiO2, CaO, Na2O and 
P2O5 present in the specific percentage provide bonding properties to the 
tissue system. The implantation of bioglass in the tissue's surface will 
produce silica-Ca/P gel layer, which mineralizes the biological system (Loy 
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et al., 2017). There are three essential components of bioglass 
composition, which are a low percentage of SiO2 around 60 %, high 
content of CaO/Na2O and a high ratio of CaO/P2O5. The presence of 
SiO2/Al2O3, CaO/P2O5 and Na2O as a glass former, glass modifier and 
fluxing agent are included in the glass system, respectively (Bansode and 
Sakharkar, 2015). These components produce high surface reactivity 
when the bioglass has a contact in an aqueous solution. 
 
 
Moreover, various bioglass compositions are developed in addition to new 
elements such as F, Mg, Sr, Fe and Ag (Hoppe et al., 2011). These 
elements are added to enhance the properties of the bioglass which is 
available in the market. The bioglass has been used clinically in dental 
applications such as endodontic and dentistry treatments (El-Meliegy and 
Noort, 2011). In the last decade, many improvements have been made to 
meet market trends and customer needs. 
 
 
The chemical structure of bioglass shows an amorphous arrangement, 
while glass ceramics exhibit crystallized order of arrangement. The 
formation of glass ceramics results from the sintering of glass at specific 
time duration, heating temperature and under a controlled atmosphere 
(Kaur et al., 2014). The fabrication of glass ceramics is believed to 
produce high flexural strength and excellent mechanical properties relating 
to their hardness, toughness and viscous behaviour. This is due to the 
existence of a crystalline phase inside the amorphous phase of the glass 
structure. The crystallization process also affects the bioactivity of the 
glass, which turns the glass to be more inert (Filho et al., 1996). The 
previous studies of Clupper and co-workers showed that the crystalline 
growth decreases the kinetic reaction of the glass but does not disturb the 
formation of hydroxyapatite, which acts as an indicator of glass bioactivity 
(Clupper et al., 2003). 
 
 
On the other hand, ASF based glass ceramics become an example of the 
next generation of 45S5 bioglass. In this research, the ASF based glass 
ceramics become the basic glass for the preparation of the dental 
application, which is GIC (Rahman et al., 2019). The selection of ASF 
glass in the biomedical application is due to its good bioactivity, high 
biocompatibility and excellent mechanical properties to the biological 
system (Wolfe and Boyde, 1992).  
 
 
Besides, ASF glass will form an apatite layer and excellent chemical 
bonding to the tissues' surface. The apatite layer, which is known as 
(Ca10(PO4)6F2) or fluorapatite has similarities in the crystallographic and 
chemical structure of hydroxyapatite in the human body (Denry and © C
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Holloway, 2014). The sintering process of the ASF glass also produces 
other apatite phases such as anorthite (Ca(Al2Si2O8)) and mullite 
(Al5SiO9.5) (Jusoh et al., 2019). Both phases can enhance the properties of 
the glass ceramics (O‟Donnell et al., 2010). 
 
 
Due to their unique properties in the biological system, ASF based glass 
ceramics have been used as the glass components in the GIC. The GIC 
was produced between ASF glass powder and polyalkenoic acid under an 
acid-base reaction through the polymerization process (Thoo et al., 2013). 
Generally, the GIC is well-known in restorative dentistry as a tooth-colored 
material, which had been discovered by Wilson and Kent in 1969 (Sidhu, 
2011). The usability of GIC in various clinical applications is due to their 
excellent function in modification of the physical properties through the 
alteration of glass powder/liquid ratio and chemical formula (Nicholson, 
1998). Additionally, GIC is more attractive in esthetic terms than other 
restorative materials due to their color, similar to the tooth structure 
(Davidson, 2006). Moreover, fluoride content in their composition has been 
known to exhibit anticarcinogenic properties, high biocompatibility and 
adhesion to the mineral tissues (Pelka et al., 1996; Xie et al., 2000).  
 
 
In this research, the uses of waste were introduced to minimize the usage 
of pure materials such as SiO2 and CaO. Hence, this is to reduce the cost 
of the sample preparation. Additionally, the waste becomes a potential raw 
material for industrial purposes due to beneficial elements such as carbon, 
calcium and oxygen in their composition. Examples of waste materials that 
have been used in this research are SLS glass and CS. The SLS glass 
contains a high percentage of silica, making it suitable as a starting raw 
material in the production of glass ceramics (Zaid et al., 2011). From the 
previous studies, a high percentage of calcium carbonate (CaCO3) had 
been reported in the composition of CS, which is around 99 % of their 
weight percentage (Ruiz et al., 2009). Thus, CS becomes a potential CaO 
source from waste to prepare the glass (Rahman et al., 2019). 
 
 
1.2 Problem Statements 
 
 
The implementation of pure calcium and silica in ASF based glass 
ceramics lead to high fabrication cost due to their expensive price. The CS 
and SLS glass from the waste material are utilized in this study to reduce 
the fabrication cost of GIC. Thus, preserve nature from pollution through 
the recycling of waste. Besides, due to the high percentage of calcium and 
silica content for each CS and SLS, it might contribute to some particular 
phases in the ASF composition (Rahman et al., 2019). Thus, the suitability 
of CS and SLS in the GIC application needs to be studied in this research. © C
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Also, the utilization of waste in the GIC fabrication is limited in research. 
Hence, this study is conducted to analyze the effectiveness of waste to the 
GIC. 
 
 
The utilization of ASF based glass ceramics into the GIC is genuinely 
introduced, and there is limited research regarding the ceramics usage in 
GIC. Sintering of ASF glass had contributed to the growth of various 
microstructure and crystalline phases, which contribute to dental 
application such as mechanical improvement (Jusoh et al., 2019). The 
growth of microstructure in various sintering temperatures is believes have 
an impact on the GIC. Thus, the phase transformation changes during the 
sintering process of ASF based glass ceramics were investigated in this 
study. 
 
 
GIC has excellent chemical and physical properties with unique adhesion 
characteristics into the biological environment (Singh et al., 2011). The 
only major limitations of GIC are low fracture and poor mechanical 
properties, which limits their use in the dentistry application (Yip et al., 
2001; Nagaraja and Kishore, 2005; Khiri et al., 2020). Many researches 
had been made to fabricate an advanced GIC with enhancement in their 
physical, durability, toughness and mechanical properties (Culbertson, 
2001). Several methods have been introduced to improve the strength of 
mechanical properties in GIC, such as the incorporation of ceramics, metal 
particles and glass fibers (Wilson and McLean, 1988). Thus, the 
incorporation of ASF based glass ceramics into the GIC was investigated 
in this study. 
 
 
The study of ASF based glass ceramics sintered under various 
temperatures fabricated from waste is expected to give a better outcome in 
the GIC properties. The presence of ageing time in the GIC initiates the 
chemical reaction in the sample. Besides, different ageing time used in this 
research is believed to enhance the properties of GIC (Khiri et al., 2020). 
This study is conducted to improve the GIC properties in term of physical, 
structural and mechanical to go along with market trends and meet many 
aesthetic and functional requirements. 
 
 
1.3 Research Objectives 
 
 
Based on the problem statements above, the objectives for this study 
were: © C
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1. To prepare GIC using ASF based glass ceramics derived from CS 
and SLS waste materials for calcium and silica sources. 

2. To determine the effect of various sintering temperatures on ASF 
based glass ceramics. 

3. To investigate the influence of ASF based glass ceramics on the 
physical, structural and mechanical properties of GIC. 

4. To analyze the effect of different ageing times on the physical, 
structural and mechanical properties of GIC. 

 
 
 1.4 Scope of Study 
 
 
This research has been focused on the incorporation of ASF based glass 
ceramics into the GIC. This research is conducted to enhance GIC 
samples' properties such as physical, structural, and mechanical 
properties. The ASF based glass ceramics sample is prepared using melt 
quenching technique and controlled sintering process following an 
empirical formula of [(x)CS∙(45-x) SLS∙15CaF2∙20P2O5∙20Al2O3] where x = 
5 and 20 (wt.%). The empirical formula was chosen by considering the 
fluorapatite phase's stability and excellent structural analysis from previous 
references (Rahman et al., 2019). The sintering temperatures for ASF 
based glass ceramics production are 600, 800, 1000 and 1200 C for 4 h. 
The range of sintering temperature from 600 until 1200 C was selected 
due to glass stability in this range following the previous reference (Khiri et 
al., 2020). The GIC is fabricated from three major components of ASF 
based glass ceramics powder, PAA and H2O, using a 3:1:1 ratio through 
an acid-base reaction. Then, the GIC is immersed in deionized water for 
the ageing time from 1, 7, 14, 21 and 28 days. The selection for the 
duration of the ageing times following the previous reference where the 
physical and mechanical properties of GIC show a good result in these 
range of ageing times (Thoo et al., 2013; Khiri et al., 2020). The chemical 
and structural properties of waste and raw glass material will be 
characterized through XRF and XRD. The DSC is a thermal analysis 
technique used in the characterization of raw ASF glass samples. The 
density measurement of GIC samples is calculated according to 
Archimedes principle of distilled water as the immersion liquid. The 
structural properties of GIC samples are analyzed using XRD, FTIR, 
FESEM and EDX. The mechanical properties of the sample are 
determined by using CST for each composition, sintering temperatures 
and ageing time. The main focus on the CST for analysis of the 
mechanical properties is due to the mastication forces in the biological 
system. The mastication process is known as compressive in its nature. 
Hence, the analysis like compressive strength is suitable for this 
phenomenon. Moreover, this analysis can determine the qualities of dental © C
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application and compare the resin composites, dental amalgam, and 
dental cement in terms of their mechanical strength.  
 
 
1.5 Significance of Study 
 

 

This study focused on the fabrication of GIC from ASF based glass 
ceramics derived from the waste of CS and SLS glass. The ASF based 
glass ceramics are sintered through a controlled sintering process to 
obtain different phase transformations. The phase transformation of ASF 
based glass ceramics is important in the dentistry field (Jusoh et al., 2019). 
Basically, glass and glass ceramics have different phases: amorphous and 
crystalline structures (Wesolowski et al., 2020). Then, each phase is 
believed to provide a high advantage in the dental application (Bellucci et 
al., 2010). The sintering process conducted in this study can transform the 
ASF glass into glass ceramics through the changes in the glass 
crystallinity. The implementation of ASF based glass ceramics is expected 
to generate better outcomes in the performances and properties of GIC. 
 
 
GIC is made up of the acid-base reaction using glass, deionized water and 
polymeric acid in the polymerization process (Thoo et al., 2013). The GIC 
is a well-known application in dental applications such as for luting cement, 
restorative and sealant (Moheet et al., 2018). This is due to their excellent 
adhesion, high biocompatibility and better aesthetic appearance 
(Lohbauer, 2010). This advantage has made GIC an excellent potential 
candidate in the dental and biomedical fields. However, researchers are 
still working on improving GIC‟s properties as their major limitation is low 
mechanical strength (Nicholson, 2010). The difference in sintering 
temperature and ageing times of GIC was expected to contribute to the 
enhancement of GIC in terms of mechanical properties. Thus, the main 
focus of this research, which is to obtain better mechanical properties for 
the GIC, is expected to be achieved in this study. 
 
 
From the approximation, about 278 to 416 million tonnes of food waste will 
be produced in the next 25 years due to the rapid economy and population 
growth (Kiran et al., 2014). Some innovative methods have been 
introduced to consume and improve waste management, such as the 
utilization of the waste into beneficial resources for the industrial market 
(Hoornweg et al., 2013). Due to its high-value minerals, food waste can be 
implemented as a raw material for the production of glass, glass ceramic 
and ceramic (Cornejo et al., 2014). The examples of food waste that can 
be utilized in the industrial market are CS and SLS waste glass. From the 
previous studies, CS contains more than 90 % of calcium oxide 
composition while SLS waste glass consists of 70 % of silicon dioxide © C
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composition (Awang-Hazmi et al., 2007; Thoo et al., 2013). The ASF 
based glass ceramics for GIC fabrication make waste a source of chemical 
compounds that are silica and calcium sources in the ASF glass 
composition. The waste materials of CS and SLS glass are utilized in ASF 
fabrication to obtain the compositions of CaO and SiO2. Both wastes had 
become an initiation to the fabrication of GIC for dental application. The 
utilization of waste in the GIC fabrication is limited in research. Hence this 
study is conducted to analyze the effectiveness of waste to the GIC. 
 
 
1.6 Outline of the Thesis 
 
 
The thesis is designed and arranged as follows Chapter 1 gives an 
introduction to biomaterials, bioceramics, GIC, problem statements, 
objectives of work, scope of study and significance of study. Reviewing 
previous works related to current research focusing on research conducted 
with different sintering temperatures and ageing time of GIC from waste 
materials is covered in Chapter 2. In Chapter 3, the methodology, including 
preparation, characterization and analysis of the samples, is described. 
The results due to the different sintering temperatures and ageing time on 
physical, structural, and mechanical properties of GIC are analyzed using 
the specific instruments and discussed in Chapter 4. Lastly, the conclusion 
and suggestions for future work are presented in Chapter 5. 
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