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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment
of the requirement for the degree of Doctor of Philosophy

GENERALIZATION OF HERMITE-HADAMARD TYPE INEQUALITIES
AND THEIR APPLICATIONS

By

ALMUTAIRI, OHUD BULAYHAN

December 2020

Chairman: Prof. Adem Kiliçman, PhD
Faculty: Science

This thesis is concerned with the study of generalization, refinement, improvement
and extension of Hermite-Hadamard (H-H) type inequalities. These are achieved by
using various classes of convex functions and different fractional integrals. We es-
tablished new integral inequalities of H-H type via s-convex functions in the second
sense, as well as the new classes of convexities: h-Godunova-Levin and h-Godunova-
Levin preinvex functions. We also generalized the inequalities of the H-H type in-
volving Riemann-Liouville via generalized s-convex functions in the second sense
on fractal sets. We further generalized the H-H type inequalities involving Katugam-
pola fractional integrals via different types of convexities. We also improved several
inequalities of H-H type through various classes of convexities by using the con-
ditions |G ′|q and |G ′′|q for q ≥ 1. Using the obtained new results, we presented
some applications to special means and applications to numerical integration. By
comparing the error bounds estimation of numerical integrations, report shows that
the present results obtained using generalization of mid-point and trapezoid type in-
equalities are more efficient. Several quadrature rules were reported to be examined
through this approach. The findings of this study are new, more general and to some
extend better than many other research results.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

GENERALISASI KETIDAKSAMAAN JENIS HERMITE-HADAMARD
DAN APLIKASINYA

Oleh

ALMUTAIRI, OHUD BULAYHAN

December 2020

Pengerusi: Prof. Adem Kiliçcman, PhD
Fakulti: Sains

Tesis ini berkaitan kajian generalisasi, pembaikan, peningkatan dan pengembangan
ketaksamaan jenis Hermite-Hadamard (H-H). Ini dicapai dengan menggunakan pel-
bagai kelas fungsi cembung dan kamiran pecahan yang berbeza. Kami membentuk
ketaksamaan kamiran baharu jenis H-H melalui fungsi s-cembung dalam pengertian
kedua, serta kelas cembung baharu: h-Godunova-Levin dan fungsi h-Godunova-
Levin preinveks. Kami juga mengeneralisasi ketaksamaan jenis H-H yang meli-
batkan Riemann-Liouville melalui generalisasi fungsi s-cembung dalam pengertian
kedua pada set fraktal. Kami seterusnya mengeneralisasikan ketaksamaan jenis H-H
yang melibatkan kamiran pecahan Katugampola melalui pelbagai jenis kecembun-
gan. Kami juga memperbaiki beberapa ketaksamaan jenis H-H melalui pelbagai
kelas kecembungan menggunakan syarat |G ′|q dan |G ′′|q untuk q ≥ 1. Menggu-
nakan dapatan kajian yang baharu, kami mengemukakan beberapa aplikasi dengan
cara khusus dan aplikasi untuk pengamiran berangka. Dengan membandingkan
anggaran batas ralat terhadap pengamiran berangka, kami laporan menunjukkan
bahawa keputusan yang peroleh menggunakan generalisasi titik tengah dan ketak-
samaan jenis trapezoid adalah lebih efisyen. Beberapa peraturan kuadratur dila-
porkan untuk diperiksa melalui pendekatan ini. Hasil dapatan kajian ini adalah ba-
haru, lebih umum dan dari sudut tertentu lebih baik daripada dapatan kajian yang
lain.
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CHAPTER 1

INTRODUCTION

1.1 Background

Inequalities are simply referred to as the disparity between two quantities. They are
generally considered among the powerful tools in mathematical analysis, as well
as other branches of mathematics, including approximation theory and numerical
analysis. One example of these is the arithmetic- geometric mean inequality used
by Erdos and Grunwald (1939) when estimating integrals through triangles (Aigner
et al., 2010). The development of theory of inequalities begins dating back to the
time of P.L. Chebyshev, A.L. Cauchy and C.V. Gauss, whose contributions include
the discovery of theoretical foundations that approximate iterative methods. Others
are Hardy et al. (1952) whose classical work was the transformation of inequalities
from a collection of individual formulas to a systematic discipline. This development
was widely celebrated by researchers as since then different types of inequalities
have been reported in the literature due to their broad areas of applications. The
utility of mathematical inequalities is developing along with other branches of
mathematics. This development is not only for theoretical mathematicians, but also
for those working in applied areas, such as mathematical modelling. In the previous
millennium, researchers have witnessed the strength of inequalities through which
enormous new results were obtained.

The emergence of Hermite-Hadamard (H-H) inequality is considered as the most im-
portant discovery in the study of inequalities since they attract the interests of many
scientists. As mentioned by Mitrinović and Lacković (1985), this inequality was first
appeared in the literature through the effort of Hadamard (1893); however, the result
was first discovered by Hermite (1883). Following this fact, many researchers re-
ferred the result as the H-H inequality. This inequality was stated in the monograph
of Dragomir and Pearce (2004) as the first fundamental result for convex functions
defined in the interval of real numbers with a natural geometrical interpretation that
can be applied to investigate a variety of problems. Inequalities play important roles
in understanding many mathematical concepts, such as probability theory, numeri-
cal integration and integral operator theory. Throughout the last century, the H-H
type inequalities have been considered among the fast growing fields in mathemat-
ical analysis, through which vast problems in engineering, economics and physics
have been studied (Dragomir and Pearce, 2004; Bainov and Simeonov, 2013; Wang
and Feckan, 2018). Due to the enormous importance of these inequalities, many ex-
tensions, refinements and generalizations of their related types have been equally in-
vestigated (Ion, 2007; Özdemir et al., 2011; Latif et al., 2012; Zabandan et al., 2012;
Ali et al., 2017; Hwang and Dragomir, 2017; Prabseang et al., 2019; Bin-Mohsin
et al., 2019; Kunt et al., 2019; Duc et al., 2020).© C
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Therefore, the H-H type inequalities, by which many results are studied, play impor-
tant roles in the theory of convex functions. The convexities, along with many types
of their generalizations, can be applied in different fields of sciences (Demuynck,
2009; Pennanen, 2012; Liu et al., 2020), through which many generalizations of
H-H inequality for a variant types of convexities have been studied. Other extensions
of H-H inequality include the formulation of problems related to fractional calculus,
a branch of calculus dealing with derivatives and integrals of non-integer order (see
Gorenflo and Mainardi, 1997; Dragomir, 2019; Dahmani and Belhamiti, 2020).

Nowadays, the real-life applications of fractional calculus exist in most areas of stud-
ies (Baleanu et al., 2010; de Oliveira et al., 2019). To make the application of frac-
tional calculus easier, mathematicians have defined its derivatives and integrals in
many different ways. In this thesis, we are interested in formulating fractional in-
tegrals, along with their generalizations, to obtain some new fractional H-H type
inequalities involving different types of convexities.

1.2 Convex functions

The concept of a convex function was first introduced to elementary calculus when
discussing necessary conditions for a minimum or maximum value of a differentiable
function. The convex function was later recognized as an active area of study by
Jensen (1905). In modern studies, a convex function is considered as a link between
analysis and geometry, which makes it a powerful tool for solving many practical
problems.

Definition 1.1 (Niculescu and Persson, 2006) Let V be an interval in R. A function
G : V → R is said to be convex if

G (ζ m1 +(1−ζ )m2)≤ ζG (m1)+(1−ζ )G (m2) (1.2.1)

holds for all m1,m2 ∈V and ζ ∈ [0,1].

If inequality (1.2.1) strictly holds for any distinct points m1 and m2, where ζ ∈ (0,1),
then the function is said to be a strictly convex. Meanwhile, a function−G is convex
(strictly convex), then G is concave (strictly concave).

Since results in convex functions can be reproduced in terms of their concave
analogues, this study, therefore, concentrates on convexity.

Geometrically, a function G is convex given that the line segment joining any two
points on the graph lies above (or on) the graph (see Figure 1.1). Meanwhile, if the
line segment connecting the two points is below (or on) the graph, the function is
concave.

2
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Figure 1.1: The geometrical representation of inequality (1.2.1)

Example 1.1 Given a function G : V ⊆ R→ R for any m ∈ R, we have the following
examples.

i. G (m) = c1m+ c2, where c1,c2 ∈ R. The function G (m) is both concave and
convex on (−∞,∞). Thus, it is referred to as an affine.

ii. The functions G (m) = m2 and G (m) = em are both convex functions on R.

iii. G (m) = lnm is a concave function on R+ = [0,∞).

In order to clearly describe a convex function, different definitions are given as fol-
lows.

Definition 1.2 (Peajcariaac and Tong, 1992) Let c1,c2,c3 ∈ V such that c1 < c2 <
c3, the function G is convex if and only if (iff)

G (c1)−G (c2)

c1− c2
≤ G (c2)−G (c3)

c2− c3
. (1.2.2)

Inequality (1.2.2) can be interpreted geometrically as follows. The slope of the line
segment joining (c1,G (c1)) and (c2,G (c2)) is less than that of line segment joining
(c2,G (c2)) and (c3,G (c3)).

Definition 1.3 (Niculescu and Persson, 2006) A function G : V ⊆ R→ R is called
J-convex or convex in Jensen sense if

3
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G

(
m1 +m2

2

)
≤ G (m1)+G (m2)

2
(1.2.3)

holds for all m1,m2 ∈V .

Considering the importance of inequality (1.3), Jansen was the first to relate it with
a convex function. If J-convex is continuous, the inequality (1.3) is equivalent to
(1.2.1), a convexity.

Theorem 1.1 (Niculescu and Persson, 2006) Suppose that G : V ⊆ R→ R is a con-
tinuous function. Then G is convex iff G is J-convex, that is,

G

(
m1 +m2

2

)
≤ G (m1)+G (m2)

2
,

for all m1,m2 ∈V .

For other results of convex function, we refer the reader to Phelps (2009), Borwein
et al. (2010), Udriste (2013) and Ullah et al. (2019).

Convex functions can be generalized in different ways. Thus, in the following sub-
heading, we present the definition of generalized convex function on fractal sets,
along with their examples and a related theorem.

1.2.1 Generalized convex functions on fractal sets

The definition of generalized convex functions on fractal sets Rα(0<α ≤ 1) is given
by Mo et al. (2014) as follows.

Definition 1.4 Let G : V ⊆ R→ Rα . For any m1,m2 ∈ V and ζ ∈ [0,1], if the fol-
lowing inequality

G (ζ m1 +(1−ζ )m2)≤ ζ
αG (m1)+(1−ζ )αG (m2)

holds, then G is called a generalized convex function on V .

A linear function G (m) = cα
1 mα + cα

2 ,c1,c2,m ∈ R is both generalized convex and
concave. Meanwhile, the following functions serve as examples of strictly convex.

i. G (m) = mα p, p > 1.

ii. G (m) = Eα (mα) ,m ∈ R, where Eα (mα) =
∞

∑
k=0

mαk

Γ (1+ kα)
is the Mittag-

Leffer function (Gorenflo et al., 2014).

4
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Now, the following theorem gives an important characteristic of generalized convex
function.

Theorem 1.2 (Mo et al., 2014) Let G : V ⊆ R→ Rα , then G is a generalized convex
function iff the inequality

G (c1)−G (c2)

(c1− c2)
α ≤ G (c2)−G (c3)

(c2− c3)
α

holds, for any c1,c2,c3 ∈V with c1 < c2 < c3.

For further results of generalized convex function on fractal sets, we refer the reader
to Set and Tomar (2016), Sun (2017) and Sarıkaya et al. (2019).

In the following subheading, we discuss the relation between monotonicity and dif-
ferentiability of a convex function.

1.2.2 Monotonicity and differentiability of convex functions

An important property of a function, through which its graph either increases or
decreases, is called monotonicity. A function G , preserving the order, can be
monotonically increasing (decreasing) if for any two points m1,m2 ∈ V such that
m1 ≤ m2, and V ⊆ R then G (m1)≤ (≥)G (m2).

The following theorems describe the relation between the monotonicity and the
derivatives of convex functions.

Theorem 1.3 (Peajcariaac and Tong, 1992) Suppose that G : V ⊆ R→ R is a con-
vex (strictly convex) function. Then G ′−(m) and G ′+(m) exist, which are increasing
(strictly increasing) on V ◦ (the interior of V ).

Theorem 1.4 (Peajcariaac and Tong, 1992) Let G be a differentiable function on
(m1,m2). Therefore, G is convex (strictly convex) iff G ′ is increasing (strictly in-
creasing).

The second derivative is important since it can be used to determine the convexity of
a twice differentiable function.

Theorem 1.5 (Robert and Varberg, 1973) Let G : V ⊆ R→ R be a differentiable
function. If G ′′ exists on V ◦, then G is convex (strictly convex) on V iff G ′′(m)≥ (>)
0 for every m ∈V.

5
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1.3 Different types of convex functions

The theory of convexity deals with large classes, such as Godunova-Levin, s-convex
and preinvex functions. These, termed as the generalization of convexity, play im-
portant roles in optimization theory and mathematical programming. In this sub-
heading, therefore, we give basic definitions of different classes of convex functions.
Important properties and examples are also discussed herein.

1.3.1 Godunova-Levin and P-functions

The space Godunova-Levin function, denoted by Q(V ), was introduced by Go-
dunova and Levin (1985). They noted that both the positive monotone and positive
convex functions are belonged to Q(V ). Due to the importance of this function, we
present it as follows.

Definition 1.5 (Mitrinović et al., 2013) A non-negative function G : V ⊆ R→ R is
called Godunova-Levin function (denoted by G ∈ Q(V )) if

G (ζ m1 +(1−ζ )m2)≤
1
ζ

G (m1)+
1

1−ζ
G (m2) (1.3.1)

holds, for all m1,m2 ∈V and ζ ∈ (0,1).

Example 1.2 (Dragomir et al., 1995) For x ∈ [m1,m2], the function

G (x) =


1, m1 ≤ x < m1+m2

2
4, x = m1+m2

2
1, m1+m2

2 < x≤ m2

is in the class Q(V ).

Godunova-Levin function was restricted to a space called P(V ) contained in Q(V ).
This class is defined by Dragomir et al. (1995) as follows.

Definition 1.6 A non-negative function G : V ⊆R→R is called P-function (denoted
by G ∈ P(V )) if

G (ζ m1 +(1−ζ )m2)≤ G (m1)+G (m2)

holds, for all m1,m2 ∈V and ζ ∈ [0,1].

Therefore, all non-negative monotone and convex functions are contained in P(V ).

6
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For other results of Godunova-Levin and P-functions, see Radulescu et al. (2009),
Fujii et al. (2011), Fang and Shi (2014), Kadakal et al. (2017) and Bekar (2019).

1.3.2 s-convex function in the second sense

The definition of s-convex function in the second sense or s-Breckner convex is given
as follows.

Definition 1.7 (Breckner, 1978) A function G : [0,∞)→ R is said to be s-convex in
second sense (denoted by G ∈ K2

s ), if

G (ζ1m1 +ζ2m2)≤ ζ
s
1G (m1)+ζ

s
2G (m2) (1.3.2)

holds, for all m1,m2 ∈ [0,∞), ζ1,ζ2 ≥ 0, ζ1 +ζ2 = 1 and 0 < s≤ 1.

Choosing s = 1 reduces s-convexity in second sense to the classical convex function
on [0,∞).

The following property that is connected to s-convex function in the second sense is
given bellow.

Theorem 1.6 (Hudzik and Maligranda, 1994) If G ∈ K2
s , then G is non-negative on

[0,∞).

For some properties of s-convexity in second sense, see the references (Dragomir
and Fitzpatrick, 1999; Du et al., 2017; Usta et al., 2018; Gozpinar et al., 2019).

Hudzik and Maligranda (1994) present the example of s-convex function in the sec-
ond sense as follows.

Example 1.3 Let 0 < s < 1 and c1,c2,c3 ∈ R. Defining

G (m) =

{
c1, m = 0
c2ms + c3, m > 0

for m ∈ R+, we have

i. If c2 ≥ 0 and 0≤ c3 ≤ c1, then G ∈ K2
s ,

ii. If c2 > 0 and c3 < 0, then G /∈ K2
s .

As Hudzik and Maligranda mentioned that the condition ζ1 + ζ2 = 1 in definition
1.7 can be replaced by ζ1 +ζ2 ≤ 1, equivalently.

7
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Theorem 1.7 (Hudzik and Maligranda, 1994) Suppose that G ∈ K2
s . The inequality

(1.3.2) holds for all c1,c2 ∈ R+ and ζ1,ζ2 ≥ 0 with ζ1 +ζ2 ≤ 1 iff G (0) = 0.

The geometric description of s-convex curve, given in the definition below, was
clearly explained in Pinheiro (2007).

Definition 1.8 A function G : V ⊆ R→ R is called an s-convex in the second sense
for 0 < s < 1, if the graph of the function is below a bent chord L that is between
any two points. This means that, for every compact interval W ⊂ V, the following
inequality

sup
W

(L−G )≥ sup
∂W

(L−G )

holds, with boundary ∂W.

The s-convex function of second sense can be referred as the limiting curve. This
differentiates the curves of s-convex in second sense from others which are not.
Following this, Pinheiro determines the affects of the choice of s on the limiting
curve.

For further results on s-convex function in the second sense, we refer the reader to
Suneja et al. (1993), Dragomir and Fitzpatrick (2000), Alomari and Darus (2008),
Dragomir (2016), Shuang et al. (2013) and Li and Du (2017).

1.3.3 Generalized s-convex in the second sense on fractal sets

The definition of the generalized s-convex function on fractal sets is given as follows.

Definition 1.9 (Mo et al., 2014) A function G : V ⊆ R+ → Rα is a generalized s-
convex in the second sense on fractal sets if

G (ζ1m1 +ζ2m2)≤ ζ
αs
1 G (m1)+ζ

αs
2 G (m2) (1.3.3)

holds, for all m1,m2 ∈V , 0< s≤ 1, ζ1,ζ2≥ 0 and ζ1+ζ2 = 1. This class of function
is denoted by GK2

s .

The generalized s-convex function in the second sense becomes s-convex function
when α = 1.

One should note that the following theorems along with example can be found in Mo
et al. (2014).

Theorem 1.8 Let G ∈ GK2
s . Inequality (1.3.3) holds for all m1,m2 ∈ R+ and

ζ1,ζ2 ≥ 0 with ζ1 +ζ2 < 1 iff G (0) = 0α .
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Theorem 1.9 Let 0 < s < 1. If G ∈ GK2
s , then G is non-negative on [0,+∞).

Theorem 1.10 Let 0 < s1 ≤ s2 ≤ 1. If G ∈ GK2
s2

and G (0) = 0α , then G ∈ GK2
s1

.

Considering the properties of the generalized s-convex in the second sense, we
present the following example.

Example 1.4 Let 0 < s < 1, and aα
1 ,a

α
2 ,a

α
3 ∈ Rα . For m ∈ R+, we define

G (m) =

{
aα

1 , m = 0
aα

2 msα +aα
3 , m > 0.

Thus, we have the following:

i. If aα
2 ≥ 0α and 0α ≤ aα

3 ≤ aα
1 , then G ∈ GK2

s ,

ii. If aα
2 > 0α and aα

3 < 0α , then G /∈ GK2
s .

For more results related to the generalized s-convex in the second sense on fractal
sets , the interested reader is directed to Kılıçman and Saleh (2015a), Budak et al.
(2016) and Partap et al. (2019).

1.3.4 s-Godunova-Levin function

In order to unify the concepts of Godunova-Levin and P-functions, Dragomir (2016)
introduced s-Godunova-Levin as follows.

Definition 1.10 A function G : V ⊆ R→ [0,∞) is said to be s-Godunova-Levin, (de-
noted by G ∈ Qs2(V )), if

G (ζ m1 +(1−ζ )m2)≤
1
ζ s G (m1)+

1
(1−ζ )s G (m2) (1.3.4)

holds, for all m1,m2 ∈V , ζ ∈ (0,1) and 0≤ s≤ 1.

Choosing s = 1 reduces s-Godunova-Levin function to the the class of Godunova-
Levin. Also, taking s = 0 we have the class of P-function. Thus, we have the follow-
ing, P(V ) = Q0(V ) ⊆ Qs2(V ) ⊆ Q1(V ) = Q(V ). For more results on s-Godunova-
Levin of convexity, we refer the reader to Noor et al. (2014), Park (2015) and Kashuri
and Liko (2018).
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1.3.5 Preinvex function

Preinvex functions are among the most important classes of generalized convex func-
tions. This concept, playing important roles in many disciplines, was proposed by
Ben-Israel and Mond (1986). Since then, a preinvex function has become an active
area of study.

Definition 1.11 (Hanson, 1981) A set V ⊆ R is called an invex if there exists a func-
tion η : V ×V → R such that

m1 +ζ η(m2,m1) ∈V

holds, for all m1,m2 ∈V and ζ ∈ [0,1].

The invex set V can also referred to as an η-connected set.

Definition 1.12 (Ben-Israel and Mond, 1986) Suppose that V ⊆ R is an invex set
with respect to η : V ×V → R. A function G : V → R is called preinvex with respect
to η , if

G (m1 +ζ η(m2,m1))≤ (1−ζ )G (m1)+ζG (m2) (1.3.5)

holds, for all m1,m2 ∈V and ζ ∈ [0,1].

Further generalizations can be found in Weir and Mond (1988); Matloka (2014);
Jue-You (2010); Meftah et al. (2017); Meftah and Souahi (2019).

Thus far, this section is concerned with the descriptions of different types of convexi-
ties: Godunova-Levin, P-function, s-convex in the second sense, s-Godunova-Levin,
generalized convex function on fractal sets, generalized s-convex function in the
second sense on fractal sets and preinvex function. In order to observe the relations
between these functions, we combine them in Figure 1.2.
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1.4 Hermite-Hadamard inequality

H-H inequality plays a vital role in the theory of convexity. This inequality estimates
the integral average of any convex functions through the midpoint and trapezoidal
formula of a given domain. While the midpoint formula estimates the integral from
the left, the trapezoidal formula estimates it from the right. More precisely, the
classical H-H inequality is considered as follows.

Theorem 1.11 (Dragomir and Pearce, 2004) Let G : [m1,m2]⊆ R→ R be a convex
function on [m1,m2] with m1 < m2, then

(m2−m1)G

(
m1 +m2

2

)
≤
∫ m2

m1
G (x)dx≤ (m2−m1)

G (m1)+G (m2)

2
(1.4.1)

holds.

The proof of inequality (1.4.1) is provided here for simplicity. Though the proof of
the theorem exists, this is the first time (1.4.1) is proved using a similar technique
reported in Sarikaya et al. (2012).

Proof:
Let G be a convex function on the interval [m1,m2]. Taking ζ = 1

2 in inequality
(1.2.1) for x,y ∈ [m1,m2], we have

G

(
x+ y

2

)
≤ G (x)+G (y)

2
. (1.4.2)

Substituting x = ζ m1 +(1−ζ )m2 and y = (1−ζ )m1 +ζ m2 in (1.4.2), we get

2G

(
m1 +m2

2

)
≤ G (ζ m1 +(1−ζ )m2)+G ((1−ζ )m1 +ζ m2). (1.4.3)

Integrating inequality (1.4.3) with respect to ζ over [0,1], we have

2G

(
m1 +m2

2

)
≤
∫ 1

0
G (ζ m1 +(1−ζ )m2)dζ +

∫ 1

0
G ((1−ζ )m1 +ζ m2)dζ

=
2

m2−m1

∫ m2

m1
G (x)dx.

(1.4.4)

In order to prove the second part of inequality (1.4.1), we used Definition 1.1, for
ζ ∈ [0,1] to arrive at

G (ζ m1 +(1−ζ )m2)≤ ζG (m1)+(1−ζ )G (m2)

12

© C
OPYRIG

HT U
PM



and
G ((1−ζ )m1 +ζ m2)≤ (1−ζ )G (m1)+ζG (m2).

When the above inequalities are added, we obtain the following

G (ζ m1+(1−ζ )m2)+G ((1−ζ )m1 +ζ m2)

≤ ζG (m1)+(1−ζ )G (m2)+(1−ζ )G (m1)+ζG (m2).
(1.4.5)

Integrating inequality (1.4.5) with respect to ζ over [0,1], we have∫ 1

0
G (ζ m1 +(1−ζ )m2)dζ +

∫ 1

0
G ((1−ζ )m1 +ζ m2)dζ

≤ [G (m1)+G (m2)]
∫ 1

0
dζ .

Thus,
2

m2−m1

∫ m2

m1
G (x)dx≤ G (m1)+G (m2)

completes the proof. �

The H-H inequality is geometrically described in Niculescu and Persson (2006), and
we have summarized it as follows:

The area under the graph of G on [m1,m2] is between the areas of two trapezi-
ums. While the area of the first trapezium is formed by the points of coordinates
(m1,G (m1)),(m2,G (m2)) with the x−axis, that of the second trapezium is formed
by the tangent to the graph of G at

(
m1+m2

2 ,G
(

m1+m2
2

))
with the x−axis (see

Figure 1.3).
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Figure 1.3: The geometrical representation of inequality (1.4.1)

The example of H-H inequality is given as follows.

Example 1.5 (Niculescu and Persson, 2004) If we choose G = ex with x ∈ R, the
H-H inequality yields

e(m1+m2)/2 <
em2 − em1

m2−m1
<

em1 + em2

2
,

for m1 < m2 in R.

For more examples of H-H inequality, see Khattri (2010) and Dragomir and Pearce
(2004).

1.5 Characterisations of Convexity via H-H inequality

The importance of the H-H inequality is that each of its two sides is characterized a
convex function. The necessary and sufficient condition for a continuous function G
to be convex on (m1,m2) is given in the following theorem.
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Theorem 1.12 (Hardy et al., 1952) Let G be a continuous function on (m1,m2).
Then G is convex iff

G (x)≤ 1
2z

∫ x+z

x−z
G (ζ )dζ , (1.5.1)

for m1 ≤ x− z≤ x≤ z+ k ≤ m2.

It can be shown that inequality (1.5.1) is equivalent to the first part of (1.4.1) when
G is continuous on [m1,m2] (see Dragomir and Pearce, 2004).

The second part of inequality (1.4.1) can be applied as a convexity criterion in the
following theorem.

Theorem 1.13 (Robert and Varberg, 1973) Let G be continuous function on
[m1,m2]. Then G is convex iff

1
a2−a1

∫ a2

a1
G (x)dx≤ G (a1)+G (a2)

2
,

for all m1 < a1 < a2 < m2.

1.6 Fractional calculus

Recently, integral inequalities have been studied, by many researchers, using
fractional calculus, which is concerned with derivatives and integrals of non-integer
order. The derivatives of fractional calculus are defined via fractional integrals.
Fractional calculus have been receiving more attention due to their applications in
different fields of science and technology (see Cafagna, 2007; Machado et al., 2011;
Yang, 2019; Hilfer, 2019).

In order to understand the fractional calculus, three types of special functions, Eu-
ler Gamma, Beta and generalized Beta functions, are introduced here due to their
importance.

Definition 1.13 The Euler Gamma function, which is a generalization of factorial
function, is defined by

Γ (m) =
∫

∞

0
rm−1e−rdr, for m > 0.

For instance, Γ (1) = 1,Γ (2) = 1 and Γ (3/2) =
√

π

2 .

Corollary 1.1 For m ∈ N, we have Γ (m+1) = m!.
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One should note that this is not the only definition of a gamma function. Other
definitions also exist except for a non-negative integer. For example, a gamma
function for a complex number can also be defined (see Andrews et al., 1999; Sebah
and Gourdon, 2002; Thukral, 2014). Therefore, the gamma function, appearing in
most fractional integrals, is studied along with its properties by many researchers.

A basic property of Γ that is frequently used in this study can be easily shown
through the integration by parts,

Γ (m+1) = mΓ (m).

Meanwhile, the Beta function is defined as follows:

Definition 1.14 The Beta function β is given as

β (m1,m2) =
∫ 1

0
rm1−1(1− r)m2−1dr, m1,m2 > 0.

Mostly, the notation β (m1,m2) is conveniently used to replace the combination of
Gamma function. The relation between the two functions is given by Gradshteyn and
Ryzhik (1980). One should note that the property β (m1,m2)= β (m2,m1) guarantees
that the Beta function is symmetric.

The generalization of the Beta function can be written as

βρ(m1,m2) =
∫ 1

0
ρ
(
1− rρ

)m2−1 (rρ
)m1−1 rρ−1dr, m1,m2,ρ > 0.

Note that, as ρ → 1,βρ(m1,m2)→ β (m1,m2).

Now, we recall some basic definitions of fractional integrals that can be further
used when developing some new results in this thesis. Important references include
the monographs of Baleanu et al. (2011), Nigmatullin (1992), Kilbas et al. (2006),
Diethelm (2010), Tarasov (2011), Malinowska et al. (2015), Salati et al. (2019),
Garrappa et al. (2019), Hilfer and Luchko (2019), Das (2020) and Soradi-Zeid et al.
(2020) are available for further reading. Also, the results reported in these references
are considered as important discoveries on fractional calculus.

The next part of this section introduces the Riemann-Liouville fractional integrals,
which can be severally used in other parts of this work.

Definition 1.15 Let G ∈ L1[m1,m2]. The left and right sides Riemann-Liouville in-
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tegrals denoted by Jλ

m+
1

G and Jλ

m−2
G of order λ ∈ R+ are defined by

Jλ

m+
1

G (x) =
1

Γ (λ )

∫ x

m1
(x− γ)λ−1G (γ)dγ, x > m1

and

Jλ

m−2
G (x) =

1
Γ (λ )

∫ m2

x
(γ− x)λ−1G (γ)dγ, x < m2,

respectively.

If λ = 1 in the above equalities, we get the classical integral.

One should note that the Hadamard fractional integrals differ from those of the
Riemann-Liouville since in the former the logarithmic functions of arbitrary expo-
nents are included in the kernels of the integrals. Therefore, the Hadamard fractional
integrals are defined as follows.

Definition 1.16 (Samko et al., 1993) Let λ > 0 with m− 1 < λ ≤ m,m ∈ N, and
m1 < x < m2. The left and right sides Hadamard fractional integrals denoted by
Hλ

m+
1

G (x) and Hλ

m−2
G (x) of order λ of a function G are given as

Hλ

m+
1

G (x) =
1

Γ (λ )

∫ x

m1

(
ln

x
γ

)λ−1 G (γ)

γ
dγ

and

Hλ

m−2
G (x) =

1
Γ (λ )

∫ m2

x

(
ln

γ

x

)λ−1 G (γ)

γ
dγ,

respectively.

Anatoly (2001), Butzer et al. (2002a,b) and Kilbas et al. (2006) provide useful
background and properties of Hadamard fractional integrals.

The following proposition is related to the Hadamard integrals.

Proposition 1.1 (Kilbas et al., 2006) If λ > 0 and 0 < m1 < m2 < ∞, the following
relations hold:(

Hλ

m+
1

(
log

γ

m1

)β−1)
(x) =

Γ (β )

Γ (β +λ )

(
log

x
m1

)β+λ−1

and (
Hλ

m−2

(
log

m2
γ

)β−1)
(x) =

Γ (β )

Γ (β +λ )

(
log

m2
x

)β+λ−1
.
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The Riemann-Liouville fractional integrals, along with the Hadamard’s fractional
integrals, are generalized through the recent work of Katugampola (2015). These
two integrals were combined and given in a single form. The following definition
Katugampola (2015) modifies the old version Katugampola (2011) for Katugampola
fractional integrals.

Definition 1.17 Let [m1,m2] ⊂ R be a finite interval. The left and right-sided
Katugampola fractional integrals of order λ > 0 for G ∈ X p

c (m1,m2) are defined
by

ρ Iλ

m+
1

G (x) =
ρ1−λ

Γ (λ )

∫ x

m1

γρ−1

(xρ − γρ)1−λ
G (γ)dγ

and
ρ Iλ

m−2
G (x) =

ρ1−λ

Γ (λ )

∫ m2

x

γρ−1

(γρ − xρ)1−λ
G (γ)dγ,

with m1 < x < m2 and ρ > 0.

Following this, the space X p
c (m1,m2)(c ∈ R,1≤ p≤ ∞) is introduced as follows.

Definition 1.18 (Anatoly, 2001) Let the space X p
c (m1,m2)(c ∈ R,1 ≤ p ≤ ∞) of

those complex-valued Lebesgue measurable functions G on [m1,m2] for which
|G |X p

c
< ∞, where the norm is defined by

|G |X p
c
=

(∫ m2

m1
|ζ cG (ζ )|p dζ

ζ

)1/p
< ∞ (1≤ p < ∞,c ∈ R)

and for the case p = ∞

|G |X∞c = ess sup
m1≤ζ≤m2

(ζ c|G (ζ )|) (c ∈ R),

where ess sup |G (ζ )| stands for the essential maximum of |G (ζ )|.

If c = 1/p, (X p
c (m1,m2)) reduces to (Lp(m1,m2)), the p-integrable function.

Important references on Katugampola fractional integrals and their applications are
suggested for further reading (Butkovskii et al., 2013; Gaboury et al., 2013; Richard,
2014; Katugampola, 2014).

The relations among Katugampola fractional integrals, Riemann-Liouville integrals
and Hadamard integrals are given in the next theorem. The left-sided version of the
relation is considered here for its simplicity since similar results also exist for the
right-sided operators.
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Theorem 1.14 (Katugampola, 2014) Let λ > 0 and ρ > 0. Then for x > m1, we
have

i. limρ→1
ρ Iλ

m+
1

G (x) = Jλ

m+
1

G (x),

ii. lim
ρ→0+

ρ Iλ

m+
1

G (x) = Hλ

m+
1

G (x).

Remark 1.1 One should note that, while (i) is concerned with the Riemann-
Liouville operators, (ii) is related to the Hadamard operators.

1.7 Hölder integral inequality

The Hölder integral inequality plays an important role in both pure and applied sci-
ences. Other areas of applying this inequality include the theory of convexity, which
can be considered as one of the active and fast growing fields of studies in mathe-
matical sciences. Thus, the Hölder’s integral inequality is described in the following
theorem.

Theorem 1.15 (Mitrinović and Vasic, 1970) Suppose that p > 1 and 1/p+1/q = 1.
If G and K are real functions on [m1,m2] such that |G |p and |K |q are integrable
functions on [m1,m2], then

∫ m2

m1
|G (x)K (x)|dx≤

(∫ m2

m1
|G (x)|pdx

) 1
p
(∫ m2

m1
|K (x)|qdx

)1
q

holds.

The other version of Hölder integral inequality is called the power-mean integral,
which is given in the following theorem.

Theorem 1.16 (Mitrinović et al., 2013) Suppose that q ≥ 1. Let G and K be real
mappings on [m1,m2]. If |G | and |G ||K |q are integrable functions in the given
interval, then

∫ m2

m1
|G (x)K (x)|dx≤

(∫ m2

m1
|G (x)|dx

)1−1
q
(∫ m2

m1
|G (x)||K (x)|qdx

)1
q

holds.
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1.8 Motivation

As mentioned earlier, H-H inequality plays fundamental roles in both pure and ap-
plied sciences. This cannot be overemphasized since the inequality frequently serves
as a basis of many modelling problems. Extensions and generalizations of H-H in-
equality remain an active area of studies since several journal articles, books and
monographs are devoted to reporting new findings connected to such inequalities.
For example, the new fractional inequalities were produced via H-H type involv-
ing Riemann-Liouville fractional integrals (Sarikaya et al., 2012; Dragomir, 2017b).
However, new results of H-H type inequalities involving Katugampola fractional
integrals are lacking (Chen and Katugampola, 2017). Therefore, this study is con-
cerned with the generalization of H-H type inequalities via different fractional inte-
grals including Katugampola type.

1.9 Problem Statement

The problem, in this study, is to formulate generalized H-H inequality for sev-
eral forms of convex functions via different types of fractional integrals, such as
Riemann-Liouville and Katugampola. Other problems include the estimation of
mid-point type and trapezoid type inequalities connected with inequality (1.4.1).
Furthermore, H-H type inequalities play a vital role in estimating error bounds of
quadrature formula for numerical integrations (Dragomir and Agarwal, 1998; Wang
and Feckan, 2018; Mehrez and Agarwal, 2019). Since the error bound estimate
using Taylor’s expansion involves the second derivative, H-H type inequalities can
improve the estimate by considering only the first derivative. This would involve less
partitioning points when compared to Taylor’s methods (Dragomir and Wang, 1998;
Agarwal et al., 2018).

1.10 Objectives

The main objective of this study is to generalize H-H type inequalities including
their applications. These can be achieved through the following objectives.

1. To generalize integral inequalities of H-H type via s-convex function in the
second sense.

2. To establish new integral inequalities of H-H type via new classes of convexi-
ties.

3. To improve the inequalities of H-H type via Riemann-Liouville integrals for
generalized s-convex function on fractal sets.

20

© C
OPYRIG

HT U
PM



4. To generalize H-H type inequalities for classical convex and generalized con-
vex functions on fractal sets involving Katugampola fractional integrals.

5. To extend H-H type inequalities via Katugampola fractional integrals for gen-
eralized s-convex function on fractal sets.

6. To construct inequalities for special means of real numbers and estimate error
bounds of quadrature formula for the numerical integration.

The contributions of this thesis are given in Figures 1.4 and 1.5, respectively.

H-H type inequalities

Convex function

GSX( 1
h ,V)

Qs2 Ks
2 GKs

2

P(V) Q(V)

Generalized
convex

function on
fractal sets

Preinvex
function

α = 1
η(m2,m1) = m2−m1

s = 1
s = 0

α = 1

Figure 1.4: The generalization of H-H type inequalities for different types of
convexities
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H-H type inequalities
via Katugampola

fractional integrals

H-H type inequalities
via Riemann-Liouville

fractional integrals

H-H type inequalities
via classical integral

H-H type inequalities
via Hadamard frac-

tional integrals

ρ = 1

ρ → 0+

λ = 1

Figure 1.5: The generalization of H-H type inequalities via different fractional
integrals
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1.11 Research Methodology

Different types of fractional integrals are used to establish variant inequalities of H-H
type involving different types of convexities. The new H-H type inequalities derived
though different convexities, as well as fractional integrals, can be generalized by
applying Hölder’s and power-mean inequalities to the corresponding powers. Fur-
thermore, some special means of real numbers are derived, and error bounds to some
quadrature rules for numerical integration are also estimated.

1.12 Outline of the thesis

This thesis is devoted to the generalization and improvement of H-H type inequali-
ties for different types of convexities and different fractional integrals, together with
their applications. In order to achieve the goal of this thesis, the following outlines
are given:

In Chapter 1, we present a general introduction of inequalities and theory of convex
functions. This serves as the basis for understanding the subsequent chapters of this
thesis. Basic concepts presented in this chapter include results of generalized convex
function on fractal sets, s-convex in the second sense, generalized s-convex in the
second sense on fractal sets, P-function, Godunova-Levin and preinvex functions
including some of their properties. We equally investigate some properties that deal
with geometrical interpretation of convex and s-convex functions. The developments
of concepts that can lead to the generalization of different type of convex functions
are outlined. We also give some background on fractional calculus. Some known
inequalities of Hölder and power-mean are introduced. This chapter also presents
the motivation and objectives of the whole study.

Chapter 2 focuses on the review of previous studies conducted by other researchers.
Some of these previously published works are extended and generalized by most of
our results. Thus, literature on some H-H type inequalities, along with their related
generalizations and refinements, are rigorously conducted. Works on the special
means of real numbers and the quadrature formula for the numerical integration are
also presented.

In Chapter 3, new integral inequalities for s-convexity linked with H-H inequality are
established. Some of the results we obtained in this chapter are the generalizations
of inequalities in Mehrez and Agarwal (2019). Also, when numerically comparing
the findings of the studies, our results performed better than those reported in
Mehrez and Agarwal (2019). As an application, the inequalities for special means
are derived. Error estimates for the midpoint formula are also studied in this chapter.
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Chapter 4 deals with the study of new classes of convexity called h-Godunova-Levin
and h-Godunova-Levin preinvexity. Using these new classes, a number of new in-
equalities of H-H type are established. This chapter is organized through the follow-
ing steps:

-Firstly, the new classes of h-Godunova-Levin, denoted by SGX
(

1
h ,ζ
)

, are intro-
duced, along with their properties. This class of function unifies different classes of
convexities: s-Godunova-Levin, P-function, s-convexity and Godunova-Levin. We
further prove new H-H type inequalities via h-Godunova-Levin.

-Secondly, we introduce a new definition of h-Godunova-Levin preinvexity, denoted
by SGXP

(
1
h ,ζ
)

, which can be the generalization of preinvexity. Also, we present
new H-H type inequalities for h-Godunova-Levin preinvexity.

Finally, some applications to special means and application to numerical integration
are given.

In Chapter 5, we present new H-H type inequalities via Riemann-Liouville integrals
of a function G taking its value in a fractal subset of R. This function also possesses
an appropriate generalized s-convexity on fractal sets. It is shown that these fractal
inequalities give rise to a generalized s-convexity, a property of G . We also prove
certain inequalities involving Riemann-Liouville integrals of a function G provided
that the absolute value of the first or second order derivative of G possesses an
appropriate fractal s-convexity. We show that the newly established inequalities are
the generalizations of those in Dragomir and Fitzpatrick (1999) and Set et al. (2014).

Chapter 6 defines a new identity for the Katugampola fractional integrals. Using this
identity, we studied a new integral inequality for a function whose first derivative
in absolute value is convex. The new generalized H-H inequality for generalized
convex function on fractal sets involving Katugampola type fractional integral is
established. This can be the generalization of the work of Chen and Katugampola
(2017). The trapezoid and mid-point type inequalities are also proposed for the
generalized convex function involving Katugampola fractional integrals. This, in a
single form, would generalize the Riemann-Liouville and the Hadamard integrals.

Chapter 7 considers some new integral inequalities for generalized s-convexity via
Katugampola fractional integrals on fractal sets linked with the H-H inequality. We
present some inequalities for the type of mappings whose derivatives in absolute
value are the generalized s-convexity. In addition, we obtain some new inequalities
linked with convexity and generalized s-convexity via classical integrals as well as
Riemann-Liouville fractional integrals in form of a corollary. As applications, the
inequalities for special means are derived.
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In Chapter 8, we summarize the entire work by recalling some important results
obtained in this study. We equally recommend further studies for some open-ended
problems.
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Mitrinović, D. S. and Vasic, P. M. (1970). Analytic inequalities, volume 61. Springer.

Mo, H. and Sui, X. (2017). Hermite-hadamard-type inequalities for generalized s-
convex functions on real linear fractal set Rα(0 < α < 1). Mathematical Sciences,
11(3):241–246.

Mo, H., Sui, X., and Yu, D. (2014). Generalized convex functions and some inequal-
ities on fractal sets. arXiv preprint arXiv:1404.3964.

Niculescu, C. and Persson, L.-E. (2006). Convex functions and their applications.
Springer.

Niculescu, C. P. and Persson, L.-E. (2004). Old and new on the hermite-hadamard
inequality. Real Analysis Exchange, 29(2):663–686.

Nigmatullin, R. (1992). Fractional integral and its physical interpretation. Theoreti-
cal and Mathematical Physics, 90(3):242–251.

Noor, M. A. (2007). Hermite-hadamard integral inequalities for log-preinvex func-
tions. J. Math. Anal. Approx. Theory, 2(2):126–131.

Noor, M. A., Noor, K. I., and Awan, M. U. (2014). Fractional ostrowski inequalities
for s-godunova-levin functions. International Journal of Analysis and Applica-
tions, 5(2):167–173.

109

© C
OPYRIG

HT U
PM
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