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MUHAMMAD NORHAFFIS BIN MUSTAFA 

August 2020 

Chairman : Associate Professor Yusran Sulaiman, PhD 
Faculty  : Science 

Dye-sensitized solar cells (DSSCs) are the third-generation solar cell that 
capable of converting solar energy into electrical energy. Titanium dioxide (TiO2) 
as a photoanode has faced a lot of drawbacks such as low dye loading capacity, 
a small range of light scattering, high recombination effect and low charge 
transport ability that subsequently reduces its power conversion efficiency 
(PCE). In this work, the enhancement of DSSC performance was studied by the 
modification of photoanode, specifically on the fabrication of a new compact layer 
(CL) and light scattering layers (LSLs). A dense, compact and homogenous TiO2 
CL was optimized and prepared using response surface methodology by central 
composite design (RSM/CCD) and heat treatment assisted electrospinning, 
respectively. The TiO2 CL was successfully optimized with less than 5% residual 
standard error (RSE) and capable of enhancing the PCE up to 76.88% compared 
with the bare photoanode (1.73%). This is due to an improved electron lifetime 
(τn) and charge collection efficiency (ηc), resulting in a low recombination effect 
that leads to a higher PCE. Two LSLs were prepared in this study, namely 
polyvinyl alcohol (PVA/TiO2) nanofibers and TiO2 decorated by graphene 
quantum dot (TiO2-GQD). The PVA/TiO2 was prepared using electrospinning 
while TiO2-GQD was prepared via electrodeposition and drop-casting technique. 
Both PVA/TiO2 nanofibers and TiO2-GQD LSLs were successfully optimized 
using RSM/CCD with less than 5% RSE. Upon the addition of TiO2-GQD LSL 
onto the photoanode, the PCE increased up to 5.01% compared to the 
photoanode with PVA/TiO2 nanofibers LSL (4.06%) and bare photoanode 
(3.06%). This increment is due to the longer τn, higher ηc, higher dye loading 
capacity and higher light reflectance, demonstrating a good light scattering 
material. Furthermore, a fully flexible photoanode with TiO2-GQD LSL has 
successfully fabricated on indium doped tin oxide/polyethylene naphthalate 
(ITO/PEN) flexible substrate via electrodeposition and drop-casting technique. 
The fully flexible DSSC device consisting of photoanode with TiO2-GQD LSL 
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showed an enhanced PCE of 5.18% compared to the bare photoanode (2.65%). 
The vast enhancement of PCE was due to the increase in the dye loading 
capacity (more dye can be adsorbed) and light scattering ability (more light can 
be scattered) upon the addition of TiO2-GQD LSL. In a nutshell, the introduction 
of CL and LSLs has successfully increased the DSSC performance.   
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

PEMBANGUNAN LAPISAN KOMPAK DAN LAPISAN PENYERAKKAN 
CAHAYA BERDASARKAN TITANIUM DIOKSIDA UNTUK SEL SOLAR 

BERKEPEKAAN PEWARNA YANG DITINGKATKAN 

Oleh 

MUHAMMAD NORHAFFIS BIN MUSTAFA 

Ogos 2020 

Pengerusi : Profesor Madya Yusran Sulaiman, PhD 
Fakulti : Sains 

Sel solar berkepekaan pewarna (DSSCs) ialah generasi ketiga sel solar yang 
mampu menukarkan tenaga solar kepada tenaga elektrik. Titanium dioksida 
(TiO2) sebagai fotoanod telah mengalami banyak masalah seperti kapasiti 
pemuatan pewarna yang rendah, julat penyerakkan cahaya yang kecil, kesan 
penggabungan yang tinggi dan keupayaan pengangkutan caj yang rendah dan 
seterusnya mengurangkan kecekapan penukaran kuasanya (PCE). Dalam 
kajian ini, peningkatan prestasi DSSC dikaji dengan pengubahsuaian fotoanod, 
khususnya pada penghasilan baru lapisan padat (CL) dan lapisan penyerakkan 
cahaya (LSLs). CL TiO2 yang padat dan homogen dioptimumkan dan disediakan 
masing-masing dengan menggunakan metodologi permukaan tindak balas 
dengan reka bentuk komposit pusat (RSM/CCD) dan elektroputaran dibantu 
rawatan haba. CL TiO2 berjaya dioptimumkan dengan baki ralat standard (RSE) 
kurang dari 5% dan mampu meningkatkan PCE sehingga 76.88% berbanding 
dengan fotoanod pengosong (1.73%). Hal ini disebabkan oleh peningkatan 
jangka hayat elektron (τn) dan kecekapan pengumpulan caj (ηc), menghasilkan 
kesan penggabungan yang rendah yang membawa kepada PCE yang lebih 
tinggi. Dua LSL disediakan di dalam kajian ini iaitu nanofiber poli(vinil 
alkohol)/titanium dioksida (PVA/TiO2) dan TiO2 dihiasi dengan titik kuantum 
grafin (TiO2-GQD). Nanofiber PVA/TiO2  telah dihasilkan melalui elektroputaran 
manakala TiO2-GQD telah dihasilkan melalui elektroenapan dan kaedah 
penyalutan titis. Kedua-dua LSL nanofiber PVA/TiO2 dan TiO2-GQD telah 
berjaya dioptimumkan menggunakan RSM/CCD dengan RSE kurang dari 5%. 
Setelah penambahan TiO2-GQD LSL ke atas fotoanod, PCE telah meningkat 
sehingga 5.01% berbanding fotoanod dengan PVA/TiO2 nanofibers LSL (4.06%) 
dan fotoanod pengosong (3.06%). Peningkatan ini disebabkan oleh τn yang lebih 
lama, ηc yang lebih tinggi, kapasiti pemuatan pewarna yang lebih tinggi dan 
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pantulan cahaya yang lebih tinggi, menunjukkan ciri-ciri bahan penyerakan 
cahaya yang baik. Selanjutnya, fotoanod fleksibel sepenuhnya dengan TiO2-
GQD LSL telah berjaya disediakan pada substrat fleksibel indium timah 
oksida/polietilena naftalat (ITO/PEN) melalui elektroenapan dan kaedah 
penyalutan titis. Peranti DSSC yang fleksibel sepenuhnya terdiri daripada 
fotoanod dengan LSL TiO2-GQD menunjukkan peningkatan PCE sebanyak 
5.18% berbanding dengan fotoanod pengosong (2.65%). Peningkatan PCE 
yang sangat besar adalah disebabkan oleh peningkatan kapasiti pemuatan 
pewarna (lebih banyak pewarna boleh dijerap) dan kemampuan penyerakan 
cahaya (lebih banyak cahaya boleh diserakkan) setelah penambahan LSL TiO2-
GQD. Kesimpulannya, penambahan CL dan LSL telah berjaya meningkatkan 
prestasi DSSC. 

. 
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CHAPTER 1 

INTRODUCTION 

1.1  Background of study 

In the last few decades, the demand for energy supply increases rapidly as the 
population around the world keep increasing. According to the International 
Energy Agency (IEA), the demand for energy is expected to increase by 27% or 
3743 million tons of oil equivalent, globally from 2017 to 2040. The problem 
arises because the mainstream energy supply still depends on non-renewable 
energy such as petroleum, natural gas and charcoal. This type of energy is 
limited and causes pollution. One of the main concerns regarding the pollution 
caused by the use of non-renewable energy is global warming, where carbon 
dioxide (CO2) emission is the main cause of this problem. The global CO2 
emission has increased significantly from 2 billion tons per year in 1900 to over 
36 billion tons per year in 2015, increasing the average global temperature (Le 
Quéré et al., 2018). According to National Oceanic and Atmospheric 
Administration (NOAA), the earth experienced its second warmest year on the 
record in 2019 (0.95 °C) which is only 0.04 °C less than the earth's highest 
temperature rise in 2016. According to the World Wide Fund (WWF), global 
warming will cause the species extinction, coastal erosion, coral bleaching, 
oceans acidifying and extreme weather event. Besides, global warming will lead 
to the rise in sea level due to the melting of glaciers and ice caps that increase 
the volume of water in the ocean. As a result, low-lying island and coastal cities 
will be drowned and disappeared. 

Therefore, a lot of efforts have been given to counter the energy and pollution 
crisis that occurs throughout the world by shifting the source of energy supply 
from non-renewable towards green renewable energy sources. The International 
Renewable Energy Agency (IRENA) reported that global renewable energy 
continues to undergo a positive growth by additions of 171 gigawatts (GW) power 
in 2018. The increase in the production of power is mainly boosted by solar and 
wind energy. Other renewable energies such as bioenergy, geothermal, 
hydropower and ocean also contribute to the positive growth in the development 
of renewable energy worldwide. Among renewable energies, solar energy is the 
most promising renewable energy resource due to the unlimited supply of 
sunlight, facile fabrication process and high power generation efficiency (Shaikh 
et al., 2017). Solar cells or photovoltaic (PV) cells produce electricity by 
harnessing the energy from the photon of sunlight. The produced energy is called 
solar energy and the discovery of the PV effect has begun as early in 1839 by 
Alexandre Becquerel. Solar energy is classified into four different generations. 
The first generation of solar cells is the most common solar cell available in the 
industry which is made of single and multi-crystalline silicon. However, due to 
high fabrication costs, the second generation of solar cells was introduced which 
is made of thin-film solar cells. The thickness of the solar cells of this generation 
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was reduced to nanometers in order to reduce the fabrication cost. In the 
meantime, the third generation such as dye-sensitized solar cells (DSSCs), 
quantum dots solar cells, organic solar cells and perovskite solar cells have 
gathered numerous attention due to the simple fabrication process and high 
power conversion efficiency (PCE). The emerging solar cells or fourth-generation 
solar cells consist of a combination of inorganic and organic materials to boost 
the PCE and lower the cost of the solar cells (Jayawardena et al., 2013). 

 

1.2       Problem statements 
 
 
DSSCs are the third-generation solar cell that capable of converting sunlight into 
electrical energy where the source of electrons comes from the dye compared 
with the conventional solar cell where the main source of the electrons comes 
from the semiconductor (Chander et al., 2015). Compared to other types of solar 
cells, DSSCs have attracted numerous attention due to their low fabrication cost, 
simple experimental design and moderate PCE. A complete DSSC consists of 
four main components which are photoanode, counter electrode, dye and 
electrolyte. Among them, photoanode plays a crucial role in the production of 
high PCE. Titanium dioxide (TiO2) is the most common material used as a 
photoanode in DSSCs due to its high surface area and high porosity which is 
effective for the dye adsorption process (Kim et al., 2012b). However, TiO2 as 
the photoanodes in DSSC has faced a lot of drawbacks such as a small range 
of light scattering, high recombination effect and low charge transport ability that 
reduces its PCE.  
 
 
The recombination effect is the process where the amount of photocurrent and 
voltage produced is reduced due to the unnecessary recombination. There are 
three possible routes of recombination in DSSC which are (i) the recombination 
between electrons of excited dyes and hole of dyes, (ii) the recombination 
between electrons of TiO2 with the oxidized redox species and (iii) the 
recombination between the electrons of transparent conductive oxides (TCO) 
substrate and the redox electrolyte (Gregg et al., 2001). The first and second 
recombination routes can be prevented using suitable types of dyes and suitable 
types of electrolytes, respectively while the third route of recombination can be 
overcome by introducing a compact layer in between the porous TiO2 
nanoparticles and TCO substrates. The compact layer must be thin, compact 
and conductive to reduce the recombination effect and facilitates the electron-
hole regeneration process. The compact layer is mostly made of metal oxides or 
carbon-based materials because both materials are conductive and capable to 
form a thin and compact film. However, metal oxides are more preferable 
compared to carbon-based materials because the former can sustain high heat 
treatment during the preparation of photoanode. In this study, TiO2 compact layer 
was successfully prepared and optimized using a heat treatment assisted 
electrospinning and response surface methodology with central composite 
design (RSM/CCD), respectively. 
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Furthermore, TiO2 as the photoanode also suffers from a small range of light 
scattering and low charge transport and this problem can be overcome by 
introducing a light scattering layer (LSL) on top of the photoanodes. The LSL 
helps to traps more sunlight, resulting in more excitation of electrons and 
producing more photocurrent and voltage that leads to a higher PCE. The LSL 
must be conductive and larger (>250 nm) compared to the porous TiO2 
nanoparticles (10-30 nm) to enhance the light scattering effect. The large LSL is 
important to reflect the incident sunlight back to the sensitized TiO2 film, resulting 
to increase in the excitation of electrons and produce more photocurrent. In this 
study, two types of LSL were introduced i.e. polyvinyl alcohol/titanium dioxide 
(PVA/TiO2) nanofibers and titanium dioxide decorated by graphene quantum dot 
(TiO2-GQD) LSL. 

 
 
In addition, typical glass substrate based DSSC devices are rigid and inflexible, 
therefore the application is limited to flat surfaces such as rooftop and window. 
In order to overcome this problem, a fully flexible DSSC device made of TiO2 
nanoparticles with TiO2-GQD LSL on flexible plastic substrate indium doped tin 
oxide/polyethylene naphthalate (ITO/PEN) were introduced. 

 

1.3       Objectives of research 

The objectives of this research are: 

1. To prepare and optimize the TiO2 compact layer using heat treatment 
assisted electrospinning and response surface methodology. 

2. To evaluate the effect of concentration of PVA and volume of titanium 
tetraisopropoxide on the DSSC performance of TiO2-PVA nanofibers as 
a light scatterer.  

3. To optimize and evaluate the DSSC performance of TiO2 decorated by 
GQD as a light scattering layer. 

4. To develop and assess a fully flexible DSSC made of TiO2-GQD as a 
light scatterer.  

 
 

1.4       Scope of study 

 
 
This study focused on the preparation and optimization of the compact layer and 
LSL to enhance DSSC performance. The TiO2 compact layer was prepared by 
heat treatment assisted electrospinning to overcome the recombination effect. 
The preparation of the TiO2 compact layer was optimized using response surface 
methodology with central composite design (RSM/CCD). The first LSL was made 
of PVA/TiO2 nanofibers that were successfully prepared via electrospinning and 
optimized using RSM/CCD, respectively. The second LSL i.e. TiO2-GQD was 
prepared via electrodeposition of TiO2 and drop-casted of GQD. The preparation 
of TiO2-GQD LSL was optimized using RSM/CCD. The GQD was introduced as 
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an LSL due to unique photoluminescence properties that can broaden the light-
harvesting range from the ultraviolet range to near infra-red range. A fully flexible 
DSSC device also was introduced as to widen the application of DSSCs due to 
its attractive traits such as flexible, lightweight, thin and capable to generate 
moderate PCE. 

 
 
1.5       Organization of chapter 
 
 
This thesis consists of 9 chapters and constructed as follows. Chapter 1 
describes the background of the study, problem statements, objectives of 
research and scope of the study. Chapter 2 contains a comprehensive review of 
photoanodes for DSSCs where a detailed explanation of the compact layer and 
LSL is discussed. Chapter 3 discusses the optimization of the PVA/TiO2 compact 
layer using RSM/CCD while, Chapter 4 elaborates on the characterization and 
DSSC performances of the PVA/TiO2 compact layer. Chapters 5 elaborates the 
preparation and optimization of PVA/TiO2 nanofibers as an LSL using 
electrospinning and RSM/CCD, respectively. The DSSC performances of 
PVA/TiO2 nanofibers are discussed in Chapter 6. The optimization (RSM/CCD) 
and DSSC performance of TiO2 decorated by GQD as a light scatterer are 
studied in Chapters 7 and 8 respectively. Chapter 9 reports the preparation and 
characterization of fully flexible DSSC consisting of TiO2 decorated by GQD as 
an LSL. The last chapter describes the conclusions and recommendations to 
improve the DSSC performances. 
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