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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Master of Science

SOLVING DIRECTLY SPECIAL THIRD AND FOURTH ORDER
ORDINARY DIFFERENTIAL EQUATIONS USING LINEAR

MULTISTEP AND EXPLICIT OBRECHKOFF METHODS

By

MARZIEH RAJABI

November 2018

Chairman:Fudziah binti Ismail, PhD
Faculty: Science

This study focuses mainly on developing linear multistep methods which can di-
rectly solve special third and fourth order ordinary differential equations (ODEs).
We constructed and derived the new explicit and implicit linear multistep methods
for different stepnumbers based on Taylor’s series expansion. The study in the thesis
consists of three parts. The first part of the thesis described the derivation of explicit
and implicit multistep methods with step number k equals to three, five and six for
directly solving special third order ODEs. The stability of the methods is also in-
vestigated. The numerical results revealed that the new methods are more efficient
as compared to the existing methods. The second part of the thesis focused on the
derivation of explicit and implicit multistep methods with step number k equals to
four and five for directly solving special fourth order ODEs. The zero-stability and
absolute stability of the new methods are also given. Numerical results clearly show
that the new proposed methods are more efficient in terms of accuracy and compu-
tational time when compared with well-known existing methods. Finally, the last
part of the thesis concerned with the construction of explicit multistep method with
extra derivative known as Obrechkoff methods for directly solving special third or-
der ODEs. Stability properties of the methods are also presented. Numerical results
show that new methods are more efficient than the existing methods. As a whole, the
new proposed methods for directly solving special third and fourth order ordinary
differential equations have been presented. The illustrative examples demonstrate
the superiority of the new linear multistep and Obrechkoff methods over existing
numerical methods in the scientific literature.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Master Sains

MENYELESAIKAN SECARA LANGSUNG PERSAMAAN PEMBEZAAN
BIASA KHAS PERINGKAT KETIGA DAN KEEMPAT MENGGUNAKAN

KAEDAH MULTILANGKAH LINEAR DAN KAEDAH OBRECHKOFF
TAK TERSIRAT

Oleh

MARZIEH RAJABI

November 2018

Pengerusi: Fudziah binti Ismail, PhD
Fakulti: Sains

Kajian di dalam tesis ini fokus kepada membangunkan kaedah multilangkah yang
boleh menyelesaikan persamaan pembezaan biasa (PBB) khas peringkat ketiga dan
keempat secara terus. Kaedah tak tersirat dan tersirat multilangkah yang baharu
ini dengan bilangan langkah yang berbeza dibangunkan berdasarkan kembangan
siri Taylor. Kajian dalam tesis ini merangkumi tiga bahagian. Bahagian pertama
tesis menerangkan pembinaan kaedah multilangkah tak tersirat dan tersirat dengan
bilangan langkah k sama dengan tiga, lima dan enam untuk menyelesaikan PPB
khas peringkat ketiga secara terus. Kestabilan kaedah juga dikaji. Hasil berangka
mendedahkan bahawa kaedah yang baharu adalah lebih cekap berbanding kaedah
sedia ada. Bahagian kedua tesis ini memberi tumpuan kepada pembinaan kaedah
multilangkah tak tersirat dan tersirat dengan bilangan langkah k sama dengan empat
dan lima yang secara langsung dapat menyelesaikan PPB khas peringkat keempat
secara langsung. Kestabilan sifar dan kestabilan mutlak kaedah yang baharu juga
turut diberikan. Keputusan berangka menunjukkan dengan jelas bahawa kaedah
yang baharu dicadangkan lebih cekap dari segi ketepatan dan masa pengiraan apa-
bila dibandingkan dengan kaedah sedia ada yang terkenal. Akhirnya, bahagian akhir
tesis berkisar kepada pembinaan kaedah multilangkah tak tersirat dengan pembezaan
tambahan yang dikenali sebagai kaedah Obrechkoff untuk menyelesaikan secara
langsung PPB khas peringkat ketiga. Ciri-ciri kestabilan kaedah juga dibentangkan.
Keputusan berangka menunjukkan bahawa kaedah baharu lebih berkesan daripada
kaedah sedia ada. Secara keseluruhannya kaedah baharu yang dicadangkan untuk
menyelesaikan secara langsung persamaan pembezaan biasa khas peringkat ketiga
dan keempat telah dipersembahkan. Contoh ilustrasi yang diberikan menunjukkan
keunggulan kaedah multilangkah dan kaedah Obrechkoff yang baharu berbanding
kaedah berangka sedia ada dalam kesusasteraan saintifik.
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CHAPTER 1

INTRODUCTION TO NUMERICAL ORDINARY DIFFERENTIAL
EQUATIONS

Differential equations basically fall into two classes, ordinary and partial, depending
on the number of independent variables present in the differential equations. Nu-
merical solution for differential equation has always been an important problem for
scientists. One type of the differential equation is Ordinary Differential Equations
(ODEs) which involve an unknown function with independent variable and one or
more of its derivatives. The study of differential equations is a wide field in pure and
applied mathematics, physics and engineering (Radzi et al., 2011).

ODEs have always played an important role in modeling virtually every algebraic,
geometric, physical, technical, or biological process from celestial motion to bridge
design, to interaction between neurons (Majid et al., 2003). Many contexts of engi-
neering and science such as fluid dynamics, radioactive decay and population growth
have been widely used ODEs. The numerical method for ODEs is very important
compare to the analytical way of solving because, the anti-derivatives for most real-
istic systems of ODEs are difficult or impossible to find.

1.1 Introduction to Ordinary Differential Equations

In the following discussion, we consider the initial value problems classified into two
categories as follows. First order ODEs and higher order ODEs.

The first order ordinary differential equations are defined by

y′ = f (x,y),y(a) = η , (1.1)

for x ∈ [a,b] and η is any given number.

And the higher order ODEs

y(v) = f (x,y, . . . ,y(v−1)), (1.2)

where v = 2,3,4, . . . ,n with initial conditions

y(a) = y(0) and yi(a) = ηi, 0 < i < v−1, x ∈ [a,b].

In equation (1.1) , the quantity being differentiated, y is named as the dependent
variable, while the quantity with respect to which y is differentiated, x is named as
independent variable.

1
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Theorem 1.1 (Existence and Uniqueness )(Lambert, 1991)
Let f(x,y) be defined and continuous for all points (x,y) in the region D defined by
a≤ x≤ b, −∞ < y < ∞, a and b finite, and let there exist a constant L such that, for
every x, y, y* such that (x,y) and (x,y*) are both in D,

| f (x,y)− f (x,y∗)| ≤ L|y− y∗|

Then, there exists a unique solution y(x) of the initial value problem (1), where y(x)
is continuous and differentiable for all (x,y) in D.
The condition is known as Lipschitz condition.Then there exists exactly one function
y(x) with the following three properties: i. y(x) is continuous and differentiable for

x ∈ [a,b],
ii.y′ = f (x,y(x)), x ∈ [a,b],
iii.y(a) = η

the proof is given by Henrici (1962).

Basically, the numerical methods for ODEs are classified as one-step method and
multistep method. One-step method requires the information form only one previous
point, xn to find the approximation at the mesh point, xn+1. In the other point of view,
multistep method requires the usage of information from more than one previous
point to find the next approximation. In general, the linear multistep method or the
linear k-step method for (1.1) can be written as:

k

∑
j=0

α jyn+ j = h
k

∑
j=0

β j f
(
xn+ j,yn+ j

)
(1.3)

where α j and β j are constants with the conditions αk 6= 0, moreover, α0 and α j are
not both zero. Since (1.3) can be multiplied by the same constant without altering
the relationship, the coefficient α j and β j, are arbitrary constant. This arbitrariness
has been removed by assuming that αk = 1. Method (1.3) is explicit if βk = 0 and
implicit if βk 6= 0.

Definition 1.1 (Lambert, 1991)
The linear difference operator ` associated with the linear multistep methods (1.3)
is defined by

` [y(x) ;h] =
k

∑
j=0

α jy(x+ jh)−h
k

∑
j=0

β j f (x+ jh) (1.4)

where y(x) is an arbitrary function that is sufficiency differentiable on [a,b]. Expand-
ing the test function and its first derivative as Taylor series about x and collecting
the terms to obtain
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` [y(x) ;h] =C0y(x)+C1hy(x)+C2h2y2(x)+ · · ·+Cqhqyq(x)+ · · · , (1.5)

where the coefficients Cq are constants independent of y(x). In particular,

C0 =
k

∑
j=0

α j,

C1 =
k

∑
j=0

jα j−
k

∑
j=0

β j,

C2 =
k

∑
j=0

1
2!

j2α j−
k

∑
j=0

jβ j,

C3 =
k

∑
j=0

1
3!

j3α j−
k

∑
j=0

1
2!

j2β j,

·
·
·

Cq =
k

∑
j=0

jq

q!
α j−

j(q−1)

(q−1)!
β j

for q = 2,3,4, · · ·

Definition 1.2 (Lambert, 1991)
The linear multisptep method (1.11) and the associated linear difference operator
defined by (1.4) are said to be of order p if
C0 = C1 = C2 = · · · = C(p) = 0 and Cp+1 6= 0 The first non-vanishing coefficient,
Cp+1, is called the error constant.

Definition 1.3 (Lambert, 1991)
The linear multistep method (1.11) is said to be consistent if it has order at least one.
It follows that the method (1.4) is consistent if and only if

k

∑
j=0

α j = 0

and

k

∑
j=0

jα j =
k

∑
j=0

β j
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first and second characteristic polynomials of the linear multistep method (1.4) can
be defined as ρ (ζ ) and σ (ζ ) respectively where

ρ (ζ ) =
k

∑
j=0

α jζ
j (1.6)

σ (ζ ) =
k

∑
j=0

β jζ
j (1.7)

The linear k-step method (1.4) will be consistent if it has order p > 1 or it satisfies
the following conditions

ρ(1) = 0, ρ
′(1) = σ(1).

In addition, the following definition gives the condition for zero stability of a method.

Definition 1.4 (Lambert, 1991) The linear multistep is said to be zero-stable if no
root of the first characteristic polynomial ρ (ζ ) has modulus greater than one, and if
every root with modulus one is simple.

Theorem 1.2 (Lambert, 1991) The necessary and sufficient conditions for a linear
multistep method to be convergent are that it be consistent and zero-atable.

π (ζ , h̄) = ρ (ζ )− h̄σ (ζ ) (1.8)

where
h̄ = hλ .

The polynomial π (ζ , h̄) is frequently referred to as characteristic polynomial of the
method.

Definition 1.5 (Lambert, 1991)
The linear multistep method is said to be absolutely stable for a given h̄ if, for that
h̄, all the roots ζs of stability polynomial,

π (ζ , h̄) = ρ(ζ )− h̄σ(ζ ) = 0,

where h̄ = hλ satisfy |ζs|< 1, s = 1,2,3, · · · ,k, and to be absolutely unstable for that
h̄ otherwise. The region of absolute stability consists of all h̄ in the complex plane
for which the method is absolutely stable.
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Introduction to Obrechkoff Methods

Explicit differentiation for many problems can be intolerably complicated, but when
it is feasible to evaluate the first few total derivatives of y, then generalizations of
linear multistep methods which employ such derivatives can be very efficient (Shokri
et al, 2011). Such methods are called Obrechkoff methods, although the original
work of Obrechkoff in 1940 was concerned only with numerical quadrature, and it
would appear that Milne in 1949 was the first to advocate the use of Obrechkoff
formulae for the numerical solution of differential equations (Shokri and Shmatikov,
2015).

The k-step Obrechkoff method using the first l derivatives of y may be written as

k

∑
j=0

α jy(n+ j) =
l

∑
i=1

(
hi

k

∑
j=0

βijyn+ j
i

)
(1.9)

while αk = 1. In this method the following derivative equations frequently are used

y(1) = f (x,y) (1.10)

y(2) = fx + f fy

y(3) = fxx +2 f fxy + f 2 f yy+ fy( fx + f fy), · · · .

Order, error constant, and local truncation error are defined exactly as for linear
multistep methods, through the operator ` ,

` [y(x) ;h] =
k

∑
j=0

α jy(n+ j)−
l

∑
i=1

(
hi

k

∑
j=0

βijyn+ j
i

)
(1.11)

the Obrechkoff method called explicit if βik = 0 and is implicit otherwise.

1.2 Problem Statement

Higher order ordinary differential equations are usually solved by reducing the equa-
tions into a system of first order ODEs and solved by numerical methods for first
order ODEs, however this requires a lot of computational time and effort. A lot of
researches have also been done on numerical methods for directly solving general
third order ODEs of the form y′′′ = f (x,y,y′,y′′) and general fourth order ODEs
of the form y(iv) = f (x,y,y′,y′′,y′′′), the method requires the computation of the
derivatives of y , which is redundant if the equations are of the special types that is
y′′′ = f (x,y) and y(iv) = f (x,y). This triggers the quest to come up with numerical
methods which are tailored specifically for directly solving special third and fourth
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order ODEs.

1.3 The Objectives of the Thesis

The objectives of the thesis are as follows:

• To construct the explicit and implicit multistep methods of step number k =
3,5 and 6 for solving special third order ordinary differential equations.

• To derive explicit and implicit multistep method of stepnumber k = 4 and k = 5
for directly solving special fourth order ordinary differential equations.

• To construct Obrechkoff methods of step number k = 3,4 and 5 for directly
solving special third order ordinary differential equations.

• To study the stability of all the methods that have been constructed.

1.4 Outline of the Study

Chapter 1 presents the introduction of ODEs and the intitial value problems. It gives
definitions and basic theory which are related to the proposed method.

Chapter 2 reviews on the numerical solution of ODEs which has been done by other
researchers. Related studies on explicit and implicit linear multistep method are also
provided.

Chapter 3 gives the derivation of linear k = 3,5 and 6 step methods for directly
solving special third order initial value problem. The region of stability of the method
is also investigated.

Chapter 4 focused on the linear multistep method with stepnumber k = 4 and 5, for
directly solving special fourth order ordinary differential equations. The stability of
the these methods is also discussed in this chapter.

Chapter 5 deals with the Obrechkoff methods for directly solving the special third
order ordinary differential equations. The deviation involves the Taylor’s series ex-
pansion. The analysis of the stability properties are also presented.

Chapter 6 summarizes the conclusion of the thesis and future work is also recom-
mended.

6

© C
OPYRIG

HT U
PM



REFERENCES

Abdul Majid, Z., Mokhtar, N. Z., and Suleiman, M. (2012). Direct two-point block
one-step method for solving general second-order ordinary differential equations.
Mathematical Problems in Engineering, 2012.

Adesanya, A. O., Odekunle, M. R., and Alkali, A. A. (2012). Order six block
predictor-corrector method for the solution of.

Adesanya, A. O., Udoh, D. M., and Ajileye, A. (2013). A new hybrid block method
for the solution of general third order initial value problems of ordinary differential
equations. International journal of pure and applied mathematics, 86(2):365–375.

Adeyeye, O. and Kayode, S. (2013). Two-step two-point hybrid methods for general
second order differential equations. African Journal of Mathematics and Com-
puter Science Research, 6(10):191–196.

Adjerid, S. and Temimi, H. (2007). A discontinuous galerkin method for higher-
order ordinary differential equations. Computer Methods in Applied Mechanics
and Engineering, 197(1-4):202–218.

Akinfenwa, . (2013). Ninth order block piecewise continuous hybrid integrators
for solving second order ordinary differential equations. International Journal of
Differential Equations and Applications, 12(1).

Alomari, A., Anakira, N. R., Bataineh, A. S., and Hashim, I. (2013). Approximate
solution of nonlinear system of bvp arising in fluid flow problem. Mathematical
Problems in Engineering, 2013.

Areo, E. and Adeniyi, R. (2013). A self-starting linear multistep method for direct
solution of initial value problems of second order ordinary differential equations.
International Journal of Pure and Applied Mathematics, 82(3):345–364.

Awoyemi, D. (2001). A new sixth-order algorithm for general second order or-
dinary differential equations. International Journal of Computer Mathematics,
77(1):117–124.

Awoyemi, D. (2003). A p-stable linear multistep method for solving general third
order ordinary differential equations. International Journal of Computer Mathe-
matics, 80(8):985–991.

Awoyemi, D. and Idowu, O. (2005). A class of hybrid collocation methods for
third-order ordinary differential equations. International Journal of Computer
Mathematics, 82(10):1287–1293.

Bataineh, A. S., Noorani, M. S. M., and Hashim, I. (2008). Approximate solutions of
singular two-point bvps by modified homotopy analysis method. Physics Letters
A, 372(22):4062–4066.

Bhrawy, A. and Abd-Elhameed, W. (2011). New algorithm for the numerical solu-
tions of nonlinear third-order differential equations using jacobi-gauss collocation
method. Mathematical Problems in Engineering, 2011.

115

© C
OPYRIG

HT U
PM



Boutayeb, A. and Chetouani, A. (2007). A numerical comparison of different meth-
ods applied to the solution of problems with non local boundary conditions. Ap-
plied Mathematical Sciences, 1(44):2173–2185.

Cortell, R. (1993). Application of the fourth-order runge-kutta method for the so-
lution of high-order general initial value problems. Computers & structures,
49(5):897–900.

Delfour, M., Payre, G., and Zolésio, J.-P. (1985). An optimal triangulation for
second-order elliptic problems. Computer Methods in Applied Mechanics and
Engineering, 50(3):231–261.

Ehigie, J. O., Okunuga, S. A., and Sofoluwe, A. B. (2011). 3-point block meth-
ods for direct integration of general second-order ordinary differential equations.
Advances in Numerical Analysis, 2011.

Genesio, R. and Tesi, A. (1992). Harmonic balance methods for the analysis of
chaotic dynamics in nonlinear systems. Automatica, 28(3):531–548.

Jacob, K. S. (2008). An order six zero-stable method for direct solution of fourth
order ordinary differential equations. American Journal of Applied Sciences,
5(11):1461–1466.

Jator, S. N. (2008). Numerical integrators for fourth order initial and boundary value
problems. International Journal of Pure and Applied Mathematics, 47(4):563–
576.

Jator, S. N. (2010). Solving second order initial value problems by a hybrid multistep
method without predictors. Applied Mathematics and Computation, 217(8):4036–
4046.

Jator, S. N., Swindell, S., and French, R. (2013). Trigonometrically fitted block
numerov type method for y= f (x, y, y). Numerical Algorithms, 62(1):13–26.

Jikantoro, Y., Ismail, F., Senu, N., and Ibrahim, Z. (2018). Hybrid methods for
direct integration of special third order ordinary differential equations. Applied
Mathematics and Computation, 320:452–463.

Kayode, S. and Obarhua, F. (2013). Continuous y-function hybrid methods for direct
solution of differential equations. International Journal of Differential Equations
and Applications, 12(1).

Kayode, S. J. (2008). An efficient zero-stable numerical method for fourth-order
differential equations. International Journal of Mathematics and Mathematical
Sciences, 2008.

Kelesoglu, O. (2014). The solution of fourth order boundary value problem arising
out of the beam-column theory using adomian decomposition method. Mathemat-
ical Problems in Engineering, 2014.

Kuboye, J. and Omar, Z. (2015). New zero-stable block method for direct solution
of fourth order ordinary differential equations. Indian Journal of Science and
Technology, 8(12):1.

116

© C
OPYRIG

HT U
PM



Lambert, J. D. (1991). Numerical methods for ordinary differential systems: the
initial value problem. John Wiley & Sons, Inc.

Majid, Z. A., Suleiman, M., Ismail, F., and Othman, M. (2003). 2-point implicit
block one-step method half gauss-seidel for solving first order ordinary differential
equations. Matematika, 19:91–100.

Malek, A. and Beidokhti, R. S. (2006). Numerical solution for high order differ-
ential equations using a hybrid neural network—optimization method. Applied
Mathematics and Computation, 183(1):260–271.

Margolina, A. and Wu, S. (1988). Percolation model for brittle-tough transition in
nylon/rubber blends. Polymer, 29(12):2170–2173.

Mechee, M., Senu, N., Ismail, F., Nikouravan, B., and Siri, Z. (2013). A three-stage
fifth-order runge-kutta method for directly solving special third-order differential
equation with application to thin film flow problem. Mathematical Problems in
Engineering, 2013.

Mehrkanoon, S. (2011). A direct variable step block multistep method for solving
general third-order odes. Numerical Algorithms, 57(1):53–66.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781.

Mohammed, U. and Tech, M. (2010). A six step block method for solution of fourth
order ordinary differential equations. The Pacific Journal of Science and Technol-
ogy, 11(1):259–265.

Mohammmed, U. (2010). A class of implicit five step block method for general
second order ordinary differential equations. Journal of Nigerian Mathematical
Society, 30:25–39.

Odekunle, M. R., Egwurube, M. O., Adesanya, A. O., and Udo, M. O. (2014). Five
steps block predictor-block corrector method for the solution of y”= f (x, y, y’).
Applied Mathematics, 5(08):1252.

Olabode, B. (2009). An accurate scheme by block method for the third order ordinary
differential equation. Pacific journal of science and technology, 10(1):136–142.

Omar, Z. and Suleiman, M. (2005). Solving ordinary differential equations using
parallel 2-point explicit block method. Matematika, 21:15–23.

Radzi, H. M., Majid, Z. A., Ismail, F., and Suleiman, M. (2011). Four step im-
plicit block method of runge-kutta type for solving first order ordinary differential
equations. In Modeling, Simulation and Applied Optimization (ICMSAO), 2011
4th International Conference on, pages 1–5. IEEE.

Rikova, K., Guo, A., Zeng, Q., Possemato, A., Yu, J., Haack, H., Nardone, J., Lee,
K., Reeves, C., Li, Y., et al. (2007). Global survey of phosphotyrosine signaling
identifies oncogenic kinases in lung cancer. Cell, 131(6):1190–1203.

117

© C
OPYRIG

HT U
PM



Senu, N., Mechee, M., Ismail, F., and Siri, Z. (2014). Embedded explicit runge–kutta
type methods for directly solving special third order differential equations y= f (x,
y). Applied Mathematics and Computation, 240:281–293.

Shokri, R. and Shmatikov, V. (2015). Privacy-preserving deep learning. In Pro-
ceedings of the 22nd ACM SIGSAC conference on computer and communications
security, pages 1310–1321. ACM.

Temimi, H. and Adjerid, S. (2013). Error analysis of a discontinuous galerkin method
for systems of higher-order differential equations. Applied Mathematics and Com-
putation, 219(9):4503–4525.

Twizell, E. and Boutayeb, A. (1990). Numerical methods for the solution of spe-
cial and general sixth-order boundary-value problems, with applications to bénard
layer eigenvalue problems. Proceedings of the Royal Society of London. Series A:
Mathematical and Physical Sciences, 431(1883):433–450.

Waeleh, N., Majid, Z. A., Ismail, F., and Suleiman, M. (2012). Numerical solution
of higher order ordinary differential equations by direct block code. Journal of
Mathematics & Statistics, 8(1).

Yap, L. K., Ismail, F., and Senu, N. (2014). An accurate block hybrid collocation
method for third order ordinary differential equations. Journal of Applied Mathe-
matics, 2014.

118

© C
OPYRIG

HT U
PM


	Blank Page



