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In this project, the investigation towards morphology and dielectric properties of single 

sample Strontium Titanate (ST) and Yttrium Iron Garnet (YIG), ST-YIG composite 

slabs (SYCS) and ST-YIG composites (SYC) were carried out. This is a pioneer work 

since no reports or studies were found on dielectric-magnetic slabs.  

Each slab is made up of ST and YIG sample where for one slab, the samples were 

prepared via mechanical alloying (MA) method while the other were prepared via 

conventional solid state (SS) method. X-ray Diffraction (XRD) was employed for 

phase identification and purity of the samples. Since the ST-YIG composites prepared 

were multiphase, Rietveld refinement method was used to estimate the phase 

composition in each sample. MA method successfully reduced the sintering 

temperature for the reaction to occur at a much lower temperature compare to SS 

method. The surfaces of the sample were visualized using Field emission scanning 

electron microscopy (FESEM) and the average grain size was calculated. From FESEM 

images, MA method produced very fine particles in nano-scale while SS method in 

micro-scale.  

The slabs were sintered at 1300
o
C with different sintering hours from 10 hours to 20 

hours at intervals of 2 hours for SS method whereas for MA method, it was sintered at 

1200
o
C. The samples for the slab were co-joined strongly through diffusional processes 

where no welding was involved. The junction properties were studied. FESEM images 

were also taken of the cross-sectional area of the slab and the diffusion of ST into YIG 

and vice versa can be observed at the junction. This only occurs for the slab prepared 

via SS method. The diffusion depth of both samples of the composite slab was 

determined via EDX. The distance at the junction where the ions moved from one 

compound to the other during the diffusion process is calculated. Movement of ions in 

the samples is dependent on the different sintering hours. However, for the slab 
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prepared via MA method, a slight diffusion occurs but the samples do not stick 

together. This is probably due to the continuous network of grain in YIG which only 

indicated the initial stage of sintering. The increased on migration of grain boundary 

increased the driving force for neck growth. Since surface diffusion and lattice 

diffusion dominated, therefore no interdiffusion process happened on the surface 

contact of ST and YIG. Thus, interstitial lattice diffusion among ST and YIG were 

difficult to obtain.  

 

 

To understand the charge stored and energy dissipated, the dielectric properties of 

samples were investigated. Since the samples are multi-phase, hence the dielectric 

constant obtained is a contribution from different phases. Generally, the dielectric 

constant of the samples increases with the rise in temperature and decreases with 

frequency. The samples prepared via SS method have the best dielectric properties 

among the samples possibly due to the fine grain size of ST with large grain size of 

YIG produced denser grains by increasing the insulating grain boundary volume. For 

the slabs prepared via SS method, the dielectric constant and dielectric loss factor 

follows the trend of YIG rather than ST. The slabs produced better dielectric properties 

with higher value of dielectric constant and lower dielectric loss factor compared with 

single sample YIG. Therefore, it may be useful in microwave applications such as 

tunable HTS (high temperature superconducting) microwave filters. Analysis using 

complex modulus was also done on the samples to verify the polarization mechanism 

involved in the samples and slabs. 
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sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

MIKROSTRUKTUR DAN SIFAT DIELEKTRIK BAGI SIMPANGAN 
DWI-LAPISAN YTTRIUM IRON GARNET-STRONTIUM TITANATE DAN 

SIMPANGAN KOMPOSIT  

Oleh 

WONG SWEE YIN 

Januari 2017 

Pengerusi : Jumiah Hassan, PhD 

Fakulti : Sains 

Dalam projek ini, siasatan terhadap morfologi dan sifat dielektrik kepada Strontium 

Titanate dan Yttrium Iron Garnet sampel tunggal, papak komposit ST-YIG (SYCS) dan 

komposit ST-YIG (SYC) telah dijalankan. Ini adalah kerja perintis di mana tiada 

siasatan pernah dilakukan terhadap papak dielektrik-magnetik.  

Setiap papak terdiri daripada ST dan YIG sampel di mana untuk satu papak, sampel 

telah disediakan melalui kaedah mekanikal pengaloian (MA) manakala yang lain telah 

disediakan melalui kaedah konvensional keadaan pepejal (SS). X-ray Diffraction (XRD) 

telah digunakan untuk mengenal pasti fasa dan ketulenan sampel. Oleh kerana sampel-

sampel yang disediakan adalah berbilang fasa, maka kaedah penyempurnaan Rietveld 

telah digunakan untuk menganggarkan komposisi fasa dalam setiap sampel. Kaedah 

MA berjaya meningkatkan kereaktifan serbuk campuran dengan menurunkan suhu 

pensinteraan untuk tindak balas berlaku berbanding dengan kaedah SS. 

Papak telah disinterkan pada 1300
o
C dengan masa pensinteran yang berbeza dari 10 

jam hingga 20 jam pada selang 2 jam untuk kaedah SS manakala untuk kaedah MA, ia 

disinterkan pada 1200
o
C. Sampel papak telah bercantum dengan kuat melalui proses 

resapan di mana tiada kimpalan terlibat. Sifat simpangan telah dikaji. Imej FESEM 

juga diambil daripada kawasan keratan rentas papak dan peresapan ST ke YIG dan 

sebaliknya boleh diperhatikan di persimpangannya. Ini hanya berlaku bagi papak yang 

disediakan melalui kaedah SS. Kedalaman peresapan bagi kedua-dua sampel papak 

komposit telah ditentukan melalui EDX. Jarak di persimpangan di mana ion bergerak 

dari satu kawasan ke kawasan yang lain semasa proses peresapan dapat dikira. 

Pergerakan ion dalam sampel adalah bergantung kepada masa pensinteran yang berbeza. 

Walau bagaimanapun, bagi papak yang disediakan melalui kaedah MA, peresapan 

hanya berlaku sedikit tetapi sampel tidak bercantum bersama-sama. Ini mungkin 

disebabkan oleh rangkaian berterusan gandum YIG yang hanya menunjukkan peringkat 
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awal pensinteran. Peningkatan penghijrahan bagi sempadan bijian meningkatkan daya 

penggerak bagi pertumbuhan leher. Oleh sebab peresapan permukaan dan peresapan 

kekisi dikuasai, maka tiada proses peresapan dalaman berlaku pada sentuhan 

permukaan ST dan YIG. Oleh itu, peresapan kekisi pada celahan antara ST dan YIG 

sukar didapati. 

Untuk memahami pengumpulan cas dan tenaga lesapan, sifat-sifat dielektrik sampel 

telah disiasat. Oleh sebab sampel mengandungi pelbagai fasa, maka pemalar dielektrik 

yang diperolehi adalah sumbangan daripada fasa yang berbeza. Secara umumnya, 

pemalar dielektrik sampel meningkat dengan kenaikan suhu dan berkurang dengan 

kekerapan. Sampel disediakan melalui kaedah SS mempunyai sifat dielektrik yang 

terbaik di kalangan sampel mungkin disebabkan oleh saiz butiran halus ST dengan saiz 

butiran besar YIG lalu menghasilkan bijirin padat dengan meningkatkan jumlah 

sempadan bijian penebat. Bagi papak yang disediakan melalui kaedah SS, pemalar 

dielektrik dan faktor kehilangan dielektrik mengikuti trend YIG bukannya ST. Papak 

yang dihasilkan mempunyai sifat dielektrik yang lebih baik dengan nilai yang lebih 

tinggi daripada pemalar dielektrik dan faktor kehilangan dielektrik yang lebih rendah 

berbanding dengan sampel YIG tunggal. Oleh itu, ia mungkin berguna dalam aplikasi 

gelombang mikro seperti HTS merdu (suhu tinggi superkonduktor) penapis gelombang 

mikro. Analisis terhadap modulus kompleks juga telah dijalankan ke atas sampel untuk 

mengesahkan mekanisme polarisasi yang terlibat dalam sampel dan papak. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Project 

In this project, a new development of diffusional change and the dielectric behavior of 

dielectric-magnetic composite slabs were studied. The samples were prepared using 

different preparation methods, conventional solid state method and mechanical alloying 

method. 

Each preparation method produced a series of samples with different sintering hours, 

10 hours - 20 hours at 2 hours intervals. The samples were Strontium Titanate (ST) and 

Yttrium Iron Garnet (YIG). ST was sintered at 1200°C and 1000°C respectively while 

YIG was sintered at 1400°C and 1200°C respectively for conventional solid state 

method and mechanical alloying method. Both samples were sandwiched together and 

sintered at a specific sintering temperature, 1300°C and 1200°C respectively with 

different sintering hours.  

The purification and crystallinity of the samples were characterized using X-ray 

Diffraction (XRD), while the surface morphology and the diffusion depths were 

characterized using Field Emission Scanning Electron Microscope (FESEM) and 

Energy Dispersive X-ray Spectroscopy (EDX). The dielectric behavior of the samples 

was measured using Agilent High Resolution Analyzer at frequency ranges, 10 mHz - 1 

MHz and Agilent 4294A Precision Impedance Analyzer at frequency ranges, 40 Hz - 

10 MHz at different measuring temperatures, 30C, 50C - 250C at 25C intervals.  

1.2 Problem Statement 

In the past researches, there were some investigations and reports made on the 

diffusional and dielectric properties at the junction of the dielectric-dielectric 

composites slab. However, studies on the dielectric-magnetic composite slab have not 

been reported.    

Diffusion process which occurred in solid state materials were studied especially for 

samples prepared using the sputtering technique, but diffusion process for samples 

prepared by conventional solid state method has not been investigated. 

Dielectric behavior is usually studied in insulating materials, such as ceramics, glass, 

and etc. Based on past researches, ceramics which have high dielectric constant will 

also have high dielectric loss factor at high frequency range. Materials which exhibit 

high dielectric constant and low dielectric loss factor at high frequency range have not 

been developed. 
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1.3 Benefit of Research 

 

In this project, there are some new findings which have not been discovered in previous 

works. Dielectric-magnetic composite slab is a new composite which may produce both 

dielectric and magnetic behavior at the same time. These new composite slabs were 

prepared by conventional solid state method and mechanical alloying method.  

 

 

Grain growth and diffusion process for both dielectric and magnetic composite slab 

were analyzed at the junction of the composite slab. The dielectric behavior of the 

single sample and composite slab were analyzed and comparison between their 

properties was made. The morphological and diffusional changes and the dielectric 

behavior within the dielectric-magnetic bi-plate junctions were determined.   

 

 

In addition, the dielectric-magnetic composite slabs are useful especially in electronic 

industry. It can be used as power insulation and charge storage in industry. Besides, it 

can also be used in microwave applications such as tunable HTS (high temperature 

superconducting) microwave filters. 

 

 

1.4 Conventional Solid State Method (SS) 

 

Conventional solid state method (SS) is a traditional method where two or more 

different starting materials will react together after heating to form the required 

products. This method which involves of mixing different powders is common to use to 

prepare a wide range of ceramic products, such as metal oxides, titanates, ferrites, 

silicates, and etc (Rahaman, 2003).  

 

 

Conventional solid state method is a method which is widely used in preparation of 

polycrystalline ceramics. This method implicates the consolidation of fine powders to 

form a green body which is then sintered to produce a dense product with 

heterogeneous microstructure. These can be prepared by pressing it in pellet form. 

Solid state reaction relies on several parameters, such as size and shape of the particles, 

uniformity of the mixing, sintering temperature and time, and etc (Rahaman, 2003). 

 

 

Solid state sintering resulted in atomic diffusion which leads to densification of the 

grains or coarsening of the microstructure. Changes in density, grain size, and pore size 

show the behavior on densification of grains. Coarsening process also undergoes the 

same changes as densification except pore size. Pores shrink during densification, while 

pores grow during coarsening. Moreover, surface diffusion, volume diffusion, grain 

boundary diffusion, viscous flow, plastic flow, and vapor transport from solid surfaces 

also contribute to the sintering process (Rahaman, 2003).  

 

 

There are advantages and disadvantages using this method. This method can be used to 

prepare a large amount of the required products. High purification on the starting 

materials is not required and the cost of production is low (C. Barry Carter, M. Grant 

Norton, 2007). However, contamination of powder with impurities may happen during 
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the grinding process. Besides, particle size of powders is hard to control. This may 

produce chemically inhomogeneous product with complex microstructures. (Rahaman, 

2003). Furthermore, high sintering temperature (above 1000°C) is required for the 

materials to undergo chemical reaction among the reactants to produce the product.  

 

 

1.5 Mechanical Alloying Method (MA) 

 

Mechanical alloying method (MA) is a method which is similar to the conventional 

solid state method excluding the preparation of a green body. Mechanical alloying is a 

technique where two or more different compounds are mixed and milled together in a 

small high-speed shaker in dry condition. The mixture which forms solid solution, 

intermetallic, or amorphous phase after milling is a homogeneous alloy. These means 

material transfer is involved in this method (Suryanarayana, 2004).  

 

 

Besides, this method induces chemical reactions during the milling process, such as 

mechanochemical reactions. This method can be used to prepare a variety of powders, 

such as oxides, carbides, nitrides, borides, and silicides (Rahaman, 2003). The 

important physical parameters required in this method are the raw materials, the mill, 

and the process variables. Raw materials normally have particle size in the range of 1-

200 µm, which should be smaller than the size of the grinding ball. This method is 

carried out using SPEX SamplePrep 8000D Mixer/Mill, which is able to contain 8-20 g 

of the powder at a time depending on the size of the vials. The vials are clamped and 

swung energetically back and forth for several thousand times a minute. The grinding 

balls which are put together with the powder will collide with the powder and the vials. 

This technique is considered as high-energy milling due to the high velocities of 

grinding balls and the high speed of clamp motion. 

 

 

There are three possibilities based on the mechanism of mechanochemical reaction. The 

first possibility may be due to the solid state diffusion mechanism. During the milling 

process, a slightly increase in temperature in the mill lower the activation energy of the 

mixtures and therefore leads to diffusion process. Since heating of the mill occurs, the 

sintering temperature for the mixtures is obviously lower than that as compared to solid 

state method. The second possibility may be due to the local melting during the milling 

process where exothermic reaction occurs and releases heat to the surrounding. The 

third possibility may cause by a form of self-propagating process at high temperature. 

In highly exothermic reaction, the heat that released sustains the reaction.  

 

 

The advantage of using this method is simple preparation method especially for 

silicides and carbides which have a narrow compositional range which are hardly to 

produce and need to sinter at high temperatures. Besides, this method can produce alloy 

at low temperature without melting them. This method is able to reduce the particle size 

in large dimension to nanometer. Conversely, contamination may occur due to the 

integration of impurities from the mill and milling medium into the powders. Besides, 

the temperature change in the mill during the milling process is hard to control 

(Rahaman, 2003). 
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1.6 Scope of Research 

 

Strontium Titanate is one of the famous ferroelectric materials which exhibit large 

dielectric constant for sintered ceramics while Yttrium Iron Garnet is a kind of soft 

ferromagnetic materials which exhibit high Q factor in microwave applications. The 

dielectric-magnetic composite slabs (Strontium Titanate-Yttrium Iron Garnets 

composite slabs) and dielectric-magnetic composite (Strontium Titanate-Yttrium Iron 

Garnets composite) were prepared by conventional solid state method and mechanical 

alloying method. Each composite slabs and composites were sintered at 1300°C and 

1200°C for 10 hours respectively. The dielectric properties of the samples were 

measured using Agilent High Resolution Analyzer at frequency range of 10 mHz to 1 

MHz and Agilent 4294A Precision Impedance Analyzer at frequency range of 40 Hz to 

10 MHz at 30C, 50C - 250C at 25C intervals. The morphological and diffusional 

changes and the dielectric behavior within the dielectric-magnetic bi-plate junctions 

offer the advancement of new knowledge in this multilayer composite.   

 

 

1.7 Objectives 

 

The objectives of the present study were developed as follows: 

1. To prepare Strontium Titanate (ST), Yttrium Iron Garnet (YIG), Strontium 

Titanate-Yttrium Iron Garnets composites slab (SYCS), and Strontium Titanate-

Yttrium Iron Garnets composites (SYC) via conventional solid state method and 

mechanical alloying method and characterize their crystallinity, surface morphology 

and diffusional properties of the bi-plate junctions via XRD, FESEM including 

EDX and other morphological study techniques. 

2. To characterize the dielectric behavior for single samples, composite slabs and 

composites at different measuring temperatures. 

3. To understand and explain the effects of morphological and diffusional changes and 

the dielectric behavior of the junctions in the composite slabs.  

 

 

Therefore, the present study required to respond to the following research questions: 

1. Would ST, YIG, SYCS, and SYC successfully prepared via conventional solid 

state method and mechanical alloying method? 

2. Would XRD, FESEM including EDX and other morphological study techniques 

analyze the samples’ crystallinity, surface morphology and diffusional properties 

of the bi-plate junctions? 

3. Would the dielectric behavior for single samples, composite slabs and composites 

been analyzed at different measuring temperatures?  

4. Would the effects of morphological and diffusional changes and the dielectric 

behavior of the junctions in the composite slabs been explained? 
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