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Cellulose nanofibrils (CNFs) is an emerging, versatile nanomaterial with vast 
applications such as plastics, papers, composites, thickener agents, healthcare, 
coatings etc. Nevertheless, there are several issues in the sustainable 
production of CNFs pertaining to the non-ecofriendly pretreatment method for 
cellulose isolation related to the use of chlorinated solution, as well as high 
energy intensity and throughput limitation which limit the productivity during 
nanofibrillation process by wet disc mill (WDM). The natural cellulose high 
degree of polymerization (DP) caused the formation of a highly viscous cellulose 
suspension during processing and was hypothesized to contribute to the high 
energy requirement and low productivity of the nanofibrillation process. In this 
research, cellulose isolation from oil palm biomass was conducted by using a 
totally chlorine free (TCF) bleaching for lignin removal. A multi-step pretreatment 
method consisting of a sequence of pretreatment, i.e., superheated steam 
(SHS), enzymatic hydrolysis and 5% NaOH was evaluated for its effectiveness 
in hemicellulose removal and its effect on the environmental loads. The multi-
step pretreatment method was compared with the conventional soda pulping 
method at 14% NaOH under elevated pressure. After cellulose isolation step, 
the cellulose was treated by SHS at 150°C for 1 and 2h (SHS1 and SHS2) aimed 
at depolymerization for DP reduction. This method was compared with the 
enzymatic hydrolysis. It was shown that the multi-step pretreatment method 
produced lesser purity cellulose from oil palm biomass (83-88%) as compared 
to soda pulping method (89-95%). Its environmental load based on qualitative 
analysis was however similar to that of soda pulping. The TCF bleaching 
successfully removed the lignin almost completely, showing the effectiveness of 

TCF bleaching as an alternative to chlorinated bleaching. In the subsequent 
experiment for cellulose DP reduction, it was demonstrated that SHS treatment 
caused cellulose DP reduction up to 43% after 2h of SHS treatment (SHS2). As 
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a comparison, enzymatic hydrolysis contributed to almost similar percentage 
reduction after 6h and 12h of hydrolysis using 20 FPU/g and 10 FPU/g cellulase, 
respectively. The SHS treated cellulose was used in nanofibrillation process, and 
it was interesting to note that SHS2 cellulose (DP - 820) contributed to lower 
viscosity CNFs suspension (60 cP), shorter processing duration (4.0 h/kg), and 
smoother processing without clogging even at 4 wt% solid content processing; 
compared to the untreated (UT) cellulose (DP - 1,440). All these contributed to 
higher CNFs productivity by 86% from 0.044 kg/h to 0.320 kg/h, and lower 
energy consumption by 90% from 42.3 kWh/kg to 4.2 kWh/kg, compared to the 
untreated (UT) cellulose. The results obtained confirmed the hypothesis that 
CNFs productivity and energy consumption were related to the original 
characteristic of cellulose, i.e., high DP. The SHS treatment also contributed to 
versatile properties of CNFs produced, as exhibited by the characteristics of the 
CNFs as well as the CNF films. CNF-SHS films were thinner, stiffer and had 
smoother surface compared to CNF-UT film. Higher light transmittance by 22.5% 
and greater water-repellent property by 15.1% were also recorded for CNF-
SHS2 film as compared to the CNF-UT film. SHS treatment also promotes the 
production of versatile mechanical properties of CNF films, to meet vast 
applications of nanofilms. Feasibility analysis conducted showed that the 
pretreatment and production methods proposed are technical feasible, which 
can attribute to the lower environmental loads compared to the conventional 
process, the simplicity of the process, as well as the availability of the steam 
energy should the plant be located near the palm oil mill. It is also economically 
feasible with the NPV of USD 714,031 for 10 years and IRR of 45%. CNFs from 
OPEFB is also potentially marketable based on its comparable characteristics to 
those of commercial CNFs, as well as its market acceptability based on the 
survey. Overall, the proposed processing methods provided herewith will 
contribute significantly towards a more sustainable CNFs production from oil 
palm biomass in the near future.
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Nanofibril selulosa (CNFs) merupakan nanomaterial baru serta serba boleh 
dengan aplikasi yang luas seperti plastik, kertas, komposit, agen pemekat, 
produk kesihatan, pelapis permukaan dan sebagainya. Walaupun begitu, 
terdapat beberapa masalah dalam penghasilan CNFs yang berkesinambungan 
dengan kaedah pra-rawatan tidak mesra iaitu pengekstrakan selulosa 
menggunakan peluntur klorat, serta intensiti tenaga yang tinggi dan daya 
pemprosesan yang membatasi produktiviti semasa proses nanofibrilasi oleh 
penggilingan cakera basah (WDM). Darjah pempolimeran (DP) tahap tinggi oleh 
selulosa semula jadi menyebabkan penghasilan larutan selulosa yang 
berkelikatan tinggi semasa pemprosesan, dan dihipotesis akan mempengaruhi 
kepada penggunaan tenaga tinggi dan penurunan produktiviti bagi proses 
nanofibrilasi. Dalam penyelidikan ini, pengekstrakan selulosa dari biomas kelapa 
sawit dijalankan dengan menggunakan peluntur bebas klorin (TCF) untuk 
penyingkiran lignin. Kaedah pra-rawatan pelbagai langkah yang terdiri daripada 
susunan pra-rawatan, iaitu rawatan stim panas lampau (SHS), hidrolisis enzim 
dan rawatan beralkali berkepakatan 5% telah dinilai memberi keberkesanan 
dalam penyingkiran hemiselulosa dan memberi impak terhadap beban 
persekitaran. Kaedah pra-rawatan pelbagai langkah dibandingkan dengan 
rawatan konvensional pulpa-soda berkepekatan alkali 14% melalui tekanan 
tinggi. Setelah langkah pengasingan selulosa, selulosa tersebut dirawat 
menggunakan SHS pada suhu 150°C selama 1 dan 2 jam (SHS1 dan SHS2), 
bertujuan depolimerisasi untuk mengurangkan DP. Kaedah ini dibandingkan 
dengan hidrolisis enzim. Kaedah pelbagai langkah memberi hasil nilai selulosa 
yang lebih rendah daripada biomas kelapa sawit (83-88%) jika dibandingkan 
dengan kaedah pulpa-soda (89-95%). Walau bagaimanapun, beban 
persekitaran berdasarkan analisis kualitatif adalah setanding dengan pulpa-

© C
OPYRIG

HT U
PM



 

 
 

iv 

soda. Peluntur TCF berjaya menyingkirkan lignin hampir keseluhurannya, 
membuktikan keberkesanan peluntur TCF sebagai rawatan alternatif bagi 
menggantikan peluntur klorit. Dalam eksperimen berikutnya untuk pengurangan 
DP selulosa, rawatan SHS menunjukkan penurunan DP selulosa sehingga 43% 
dalam rawatan SHS selama 2 jam (SHS2). Sebagai perbandingan, hidrolisis 
enzim menyumbang kepada pengurangan peratusan yang hampir sama setelah 
hidrolisis selama 6  dan 12 jam menggunakan enzim “cellulase’ pada 20 FPU/g 
dan 10 FPU/g. Rawatan SHS selulosa telah digunakan dalam proses 
nanofibrilasi, dan yang menarik perhatian bahawa selulosa SHS2 (DP - 820) 
menyumbang kepada kelikatan CNFs yang lebih rendah (60 cP), jangka masa 
pemprosesan yang lebih pendek (4.0 h/kg), dan pemprosesan yang lebih lancar 
tanpa menyebabkan penyumbatan, walaupun pada pemprosesan dengan 
kelikatan 4% kandungan pepejal; berbanding dengan selulosa (UT) yang tidak 
dirawat (DP - 1,440). Kaedah ini menyumbang kepada peningkatan produktiviti 
CNFs sebanyak 86% dari 0.044 kg/h kepada 0.320 kg/h, dan penggunaan 
tenaga yang lebih rendah sebanyak 90% daripada 42.3 kWh/kg kepada 4.2 
kWh/kg berbanding dengan selulosa yang tidak dirawat (UT). Hasil yang 
diperoleh mengesahkan secara hipotesis bahawa produktiviti dan penggunaan 
tenaga CNFs adalah berkait dengan ciri asal selulosa, iaitu DP yang tinggi. 
Rawatan SHS juga menyumbang kepada sifat serbaguna CNFs yang dihasilkan, 
seperti yang dipamerkan oleh ciri-ciri CNFs dan juga CNF filem. Filem daripada 
CNF-SHS adalah lebih nipis, kuat dan mempunyai permukaan yang lebih licin 
berbanding filem daripada CNF-UT. Transmisi cahaya adalah lebih tinggi iaitu 
22.5% dan sifat kalis air yang tinggi sebanyak 15.1% juga dicatatkan untuk filem 
CNF-SHS2 berbanding dengan filem CNF-UT. Rawatan SHS juga mendorong 
penghasilan sifat mekanikal serbaguna filem CNF, bagi memenuhi aplikasi 
nano-filem yang luas. Analisis kebolehlaksanaan yang dilakukan menunjukkan 
bahawa kaedah pra-rawatan dan proses penghasilan yang dicadangkan secara 
teknikal adalah fisibel yang tersedia yang mana dapat menyumbang kepada 
pengurangan beban persekitaran berbanding proses konvensional, 
kesederhanaan proses, serta ketersediaan tenaga stim sekiranya lokasi kilang 
berhampiran dengan kilang sawit. Ia juga dapat dilaksanakan secara ekonomi 
dengan nilai NPV iaitu USD 714,031 bagi tempoh 10 tahun dan IRR sebanyak 
45%. CNFs dari OPEFB juga berpotensi untuk dipasarkan berdasarkan ciri 
kesetandingnya dengan ciri-ciri CNFs komersial, serta penerimaan pasaran 
berdasarkan tinjauan. Secara keseluruhan, kaedah pemprosesan yang 
dicadangkan dapat menyumbang secara signifikan terhadap pengeluaran CNFs 
yang lebih mampan dari biomas kelapa sawit pada masa hadapan.
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CHAPTER 1  
 

 
INTRODUCTION 

 

 
1.1 Overview 
 
 
About 80 million tons of oil palm biomass is being generated in Malaysia annually 
(Aljuboori, 2013; Hassan et al., 2019). Oil palm biomass consists of oil palm 
mesocarp fiber (OPMF), oil palm empty fruit bunches (OPEFB), oil palm fronds 
(OPF), oil palm trunks (OPT), leaves and roots. Oil palm biomass are mainly 
used for fuel generation, composting and mulching (Abas et al., 2011; Hamzah 
et al., 2019). Other applications include animal feed, organic fertilizer, biosugar, 
biogas, biochar, and biocomposites (Hassan et al., 2019; Nordin et al., 2017; 
Samsudin et al., 2019; Zainal et al., 2017). Recently, the use of oil palm biomass 
for cellulose nanofibrils (CNFs) production has been reported (Norrrahim et al., 
2018; Yasim-Anuar et al., 2019). 
 
 
CNFs production from plant cellulose has attracted interest and great deal of 
research has been widely done (Bardet & Bras, 2014; Foster et al., 2018). CNF's 
are generally lightweight, has high aspect ratio, gel-like in water, hydrophilic and 
semi-crystalline (Klemm et al., 2011). Due to these characteristics, CNFs  is used 
to reinforce biocomposites, enhance paper properties, functions as a thickener 
in paints and coatings, as a low calorie food additive, and could act as a 
functional material in many other versatile applications (Ariffin et al., 2018; Bardet 
& Bras, 2014; Kasuga et al., 2018; Missoum et al., 2013; Mohamad Haafiz et al., 
2013). At present, commercial scale CNFs production mainly takes place in 
developed countries such as USA, Canada, Japan, UK, Sweden and Finland, 
and the CNFs is produced from wood-based resources (Future Markets Inc., 
2019). Based on the report, commercial CNFs from non-wood resources is very 
little, mainly from bamboo. Being a country with abundance of oil palm biomass, 
Malaysia has great potential to be CNFs producer considering its potential as an 
emerging material with versatile applications. Therefore, the feasibility of CNFs 
production from oil palm biomass should be determined.    
 
 
One of the challenges in CNFs production is related to the isolation of cellulose 
from lignocellulosic materials since the current pretreatment methods are time-
consuming and involve hazardous chemicals. Desizing, scouring and bleaching 
are the three common pretreatment process to prepare high degree of whiteness 
of cellulose pulp with minimum degradation (Prabaharan & Rao, 2003). In the 
conventional process, pulping such as steam explosion and kraft pulping are 
used to rupture the fiber cell wall and results in removal of hemicellulose 
(Nechyporchuk et al., 2016; Suzuki et al., 2017). Besides pulping, other cellulose 
isolation methods are by using ethanol organosolv, acid, alkali, or ionic liquid. 
These pretreatment methods are inefficient for complete cellulose isolation (Tian 
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et al., 2017), mainly due to the presence of residual lignin and recalcitrant 
hemicellulose. Bleaching agents like sodium chlorite, sodium hypochlorite, 
chlorine dioxide, and chlorate which are strong oxidizing agent are commonly 
used to remove the lignin. However, these bleaching agents are toxic and could 
affect human health if handled carelessly; and at the same time, the disposal of 
these chemicals into the water stream could have a negative impact on aquatic 
life and other organisms. Thus, it is important to consider the type of pretreatment 
process in cellulose isolation towards sustainable production of CNFs.  
 
 
On top of cellulose isolation, the major obstacles in CNFs production are the high 
energy consumption for the disintegration of the cellulose fibers into CNFs, and 
the low productivity of the CNFs production process. CNFs is produced through 
multiple cycle mechanical process of cellulose suspension in order to provide 
shearing forces to allow fibrillation of the cellulose into nanocellulose. This 
generally results in high energy consumption.  The CNFs suspension eventually 
becomes thicker throughout the process due to the nanofibrillation which causes 
the cellulose suspension to increase in viscosity.   
 
 
Dissertations by Norrrahim (2018) and Yasim-Anuar (2018) reported that 
mechanical processing of oil palm biomass into CNFs using a wet disc mill 
(WDM) has several advantages compared to other processes such as high 
pressure homogenization and ultrasonication. CNFs produced by WDM had 
smaller diameter size (<50 nm), and the productivity is much higher compared 
to the other two methods due to the ability to process cellulose suspension with 
higher cellulose content (wt%) in WDM. Moreover, WDM does not involve any 
chemicals such as strong acid to disintegrate the fibers (Hideno et al., 2009; 
Xiao-zheng Sun et al., 2017; Zakaria et al., 2015). WDM is a promising method 
for large scale processing of CNFs. 


1.2 Problem statements 
 
 
There are three main issues related to the sustainable production of CNFs as 
outlined earlier: 
 

i) a need for efficient and sustainable cellulose isolation methods 
ii) a major cost to producing CNF relate to high energy consumption 
iii) the long cellulose fibers resulting in the low productivity of CNF 

 
 

A further goal is to prepare CNFs without chemical derivatization of the cellulose. 
For instance, there are large numbers of publications in which TEMPO mediated 
oxidation is commonly used. However, the process been considered too 
expensive. In order to produce CNFs, lignocellulosic material including oil palm 
biomass need to be pretreated for cellulose isolation, with the aim to remove 
lignin and hemicellulose which can interfere the nanofibrillation process. 
Regardless, current pretreatment is not environmentally friendly and is highly 
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dependent on chemicals usage, which may lead to environmental issues. The 
common pretreatment used to fractionate the lignocellulosic component 
requiring active chlorine or halogenated chemicals which is unfavorable to the 
environment. It has been demonstrated that complete removal of hemicellulose 
is not needed as the presence of some amount of hemicellulose could promote 
the nanofibrillation of cellulose (Norrrahim et al., 2018). It is hence in this 
research the pretreatment is designed in such a way to use a more 
environmentally friendly pretreatment method and yet efficient for the removal of 
hemicellulose and lignin.  
 
 
The high energy consumption during nanofibrillation is postulated due to the 
increase in cellulose suspension viscosity when the number of cycles is 
increased, as a result of nanofibrils formation. The fibrillation causes cellulose 
surface area to increase and exposes abundance of hydroxyl groups, which 
promotes the interaction with water through hydrogen bonds. This effect is 
related to the cellulose degree of polymerization (DP). Cellulose with higher 
chain length results in higher viscosity and eventually requires more energy for 
the microfibrils disintegration into nanofibrils.  In this study, controlled reduction 
of cellulose DP is designed to lower the energy consumption. The effect of the 
DP reduction on the nanocellulose characteristics is portrayed by characterizing 
the nanofilm produced from the nanocellulose with reduced DP.   
 
 
Productivity of the CNFs relates to the cellulose throughput during WDM 
processing. In the conventional processing using WDM, cellulose throughput is 
between 1 – 2 wt% of the total cellulose volume suspension processed (Nair et 
al., 2014; Qin et al., 2016; Wang & Zhu, 2016). Higher cellulose suspension 
concentration used leads to clogging, and high energy consumption due to the 
increased in viscosity. This cellulose feature (long fiber length) is the main 
drawback of produce CNFs at high concentration using WDM. It is postulated 
that the productivity can be increased when the viscosity issue is solved while 
achieves at high solid content (in kg) of CNFs product.     
 
 
The research was designed to tackle the above-mentioned issues as it is 
important to offer a platform for sustainable CNFs processing, especially for the 
production of CNFs from the local biomass. Techno-economic feasibility of the 
CNFs was also conducted. 
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1.3 Objectives 
 
 
The general objective of this research was to develop a sustainable processing 
method for CNFs production from oil palm biomass. The specific objectives of 
this study were:  

1. To determine the feasibility of reducing the use of hazardous chemicals 
for cellulose isolation from oil palm biomass by using non-halogenated 
chemical pretreatment method. 

2. To investigate the effect of superheated steam and cellulase enzyme 
treatments on controlled reduction of cellulose degree of polymerization. 

3. To determine the influence of cellulose degree of polymerization on the 
productivity of cellulose nanofibrils production and energy consumption 
in wet disc milling process.  

4. To characterize nanocellulose films developed from various degree of 
polymerization cellulose nanofibrils for their physical, mechanical, and 
thermal characteristics. 

5. To evaluate the techno-economic feasibility of cellulose nanofibrils 
production from oil palm biomass based on multiplier to an economic 
factor. 

 
 
1.4 Experimental overview 
 
 
Chapter 1 of this thesis consists of the general overview, the problem 
statements, and the objectives of this research. Figure 1.1 shows the overall 
experimental overview of this research.
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