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ABSTRACT
The increasing number of smart devices has led to a rise in the complexity and volume 
of the image generated. Deep learning is an increasingly common approach for image 
classification, a fundamental task in many applications. Due to its high computational 
requirements, implementation in edge devices becomes challenging. Cloud computing 
serves as an enabler, allowing devices with limited resources to perform deep learning. For 
cloud computing, however, latency is an issue and is undesirable. Edge computing addresses 
the issue by redistributing data and tasks closer to the edge. Still, a suitable offloading 
strategy is required to ensure optimal performance with methods such as LeNet-5, OAHR, 
and Autoencoder (ANC) as feature extractors paired with different classifiers (such as 
artificial neural network (ANN) and support vector machine (SVM)). In this study, models 
are evaluated using a dataset representing Optical Character Recognition (OCR) task.  The 
OCR application has recently been used in many task-offloading studies. The evaluation 
is based on the time performance and scoring criteria.  In terms of time performance, a 
fully connected ANN using features from the ANC is faster by a factor of over 60 times 
compared to the fastest performing SVM. Moreover, scoring performance shows that the 
SVM is less prone to overfit in the case of a noisy or imbalanced dataset in comparison 

with ANN. So, adopting SVM in which the 
data distribution is unspecified will be wiser 
as there is a lower tendency to overfit. The 
training and inference time, however, are 
generally higher than ANN.

Keywords: Artificial neural networks, convolutional 
neural networks, edge computing, image classification, 
support vector machines
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INTRODUCTION

Image classification is assigning an input image the one or more classes. It is a fundamental 
task with many applications, including object identification, image captioning, as well as 
face and emotion recognition. Typically, the task can be approached manually with a set 
of algorithms designed by an expert in digital image processing or autonomously using a 
machine learning classifier. In many cases, it involves a combination of both approaches, 
where the image is pre-processed before being fed into a classifier. With the advent of 
the Internet-of-Things (IoT) and the rise in smart household and personal devices, digital 
image data is generated faster than ever. As the volume and complexity of the data increase 
exponentially, more sophisticated methods are required to tackle the problem. It has led 
many data scientists to turn to deep learning as a means of solving the classification problem 
(Chen & Ran, 2019). 

However, a higher degree of computing power is required for the task, making it 
difficult for the solution framework to be deployed on the end device. Cloud computing 
seemingly addresses the problem at the cost of time as uploading data to the cloud 
introduces latency to the system. It  is further complicated when factoring in bandwidth, 
reliability, and resource constraints such as battery life (Chang et al., 2019), leading to the 
ever-familiar conundrum of modern data scientists–balancing computational accuracy, 
resource availability, and cost-efficiency.

In many real-world image classification applications, the problem often requires a real-
time solution. The latency that entails using a cloud-based solution thus poses a problem 
for such applications. For instance, in a security-surveillance application, the system is 
required to detect trespassers and other anomalies in real-time. However, implementing the 
entire framework on the edge device is expensive and will lead to feasibility and scalability 
issues, particularly when there is a multitude of devices involved. Streaming entire video 
feeds to the cloud is equally implausible due to bandwidth and security issues. The need 
to resolve these challenges has given rise to edge intelligence (Zhou et al., 2019).

In recent years, artificial intelligence (AI) researchers have been looking into edge 
computing as a means to bridge the gap between computational accuracy, latency, and 
resource management. Edge computing extends the capabilities of centralized cloud 
computing by distributing program methods and data to the network edge to enhance 
performance and efficiency (Dube et al., 2021). It also addresses scalability issues posed by 
network bottlenecking from many devices connected to the network (Chen & Ran, 2019).

In implementing edge intelligence, there are several approaches that can be taken 
depending on the application involved, and typically involves data and task offloading 
to and from sensors, devices, and the cloud (Nee & Nugroho, 2020). In many cases, 
middleware such as cloudlets and data centers are used and are covered in greater detail 
(Xu et al., 2019). Further focusing on the scenario of offloading from cloud to edge, there 
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are two main partitioning strategies: static and dynamic. Static partitioning is established 
offline before the execution of  an application, while dynamic partitioning occurs during the 
runtime of an application (Yan et al., 2018). While the latter may lead to better practicality 
when considering communication conditions, the study is interested in the former due to 
its lower energy cost. 

For interpretability and modularity, the study splits the classification framework into 
a feature extractor to be implemented on the edge and a classifier to be implemented on 
the cloud.  However, it becomes difficult to pick a suitable feature extractor and classifier 
without a priori knowledge of its effectiveness and efficiency. To that end, this paper 
presents a comparison study on the image classification performance of fully connected 
feed-forward artificial neural networks (ANN), support vector machines (SVM), and an 
enhanced SVM (ESVM), with emphasis on-time performance as well as the effect of 
various CNN architectures on feature extraction performance.  The classifier and the feature 
extraction methods are selected based on the recent trends for OCR applications (Cheriet 
et al., 2007; Elleuch et al., 2016a; Verma & Ali, 2019). 

MATERIALS AND METHODS

Experimental Setup

The limited memory and processing capabilities on an edge device would make it slow 
and ineffective, whereas sending many high-resolution images to the cloud would lead to 
service bottlenecks and the inherent latency in delivery. In order to achieve a good balance in 
performance, the classifier is statically offloaded to the cloud, similar to model partitioning 
(Zhou et al., 2019). Thus, the study emulates having a pre-trained feature extractor on the 
edge device and a classifier on the cloud. It means smaller data will be passed to the cloud, 
reducing service bottleneck issues and the accompanying latency.

In order to emulate an edge-cloud computing framework, the classification task is 
conducted in two parts. The first part consists of a CNN feature extractor, while the second 
consists of a classifier framework. As smart devices become commonplace and cameras 
more sophisticated, performing feature extraction and classification on either the cloud or 
edge becomes infeasible for real-time performance.  For the application, an optical character 
recognition (OCR)-based function was emulated.  The OCR application has been adopted 
in many studies regarding task offloading of edge computing/intelligence (Cao et al., 2019; 
Li et al., 2018; Lin et al., 2019).

The experiment was conducted using the R statistical programming language and the 
LIBSVM package,

MNIST Dataset. For the study, the MNIST handwritten digit dataset  is used as the model 
data (LeCun et al., 1998). Widely used in many experiments as benchmark data, the data 
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consists of 70000 28x28 grayscale images 
of handwritten digits in 10 classes (Amri 
et al., 2018; Ghiassirad et al., 2019). Each 
pixel has a value ranging from 0 to 255, 
and the categorical labels range from 0 to 9, 
corresponding to the handwritten digit of the 
image. The dataset is split into a training and 
testing set at a ratio of 6:1 and is distributed, 
as shown in Table 1.

Feature  Extract ion  Us ing  CNN. 
Convolutional Neural Networks (CNN) are 
a class of deep learning algorithms that excel 

Table 1
Distribution of MNIST data by class

Label Training Testing
0 5923 980
1 6742 1135
2 5958 1032
3 6131 1010
4 5842 982
5 5421 892
6 5918 958
7 6265 1028
8 5851 974
9 5949 1009

at handling images and other forms of data that exhibit spatial or temporal dependencies. 
It is a deep neural network architecture consisting of stacked convolutional and pooling 
layers. It creates multiple feature maps that are subsequently connected to a classifier or 
regressor for the final task. The network learns the features which best represent the model 
via back-propagation and can also be used as an auto-encoder via unsupervised learning. 
It  makes it highly suited for image processing applications where there is a high level of 
spatial correlation in the data. Many researchers have turned to CNNs for various image-
related applications, such as face recognition (Ding & Tao, 2015), biometric authentication 
(Hammad et al., 2019), and object detection (Ismail et al., 2020). CNNs have been reported 
to exhibit feature extraction capabilities exceeding those of conventional methods, as well 
as being easier to train due to having fewer connections and parameters (Krizhevsky et 
al., 2012). It has also been reported that CNNs outperform Deep Belief Networks (DBN) 
and Deep Neural Networks (DNN) in terms of speed (Amri et al., 2018). However, CNNs 
are still expensive to implement on high-resolution images, limiting their applications on 
edge devices with limited memory and processing power.

Here, three different CNN architectures implemented are scrutinized using the Keras 
backend (Allaire & Chollet, 2019), namely LeNet-5 (Lecun et al., 1998), OAHR (Elleuch 
et al., 2016b), and a simple autoencoder (ANC) (Chollet, 2016). The CNNs were selected 
as they were designed with 28x28 handwritten character images, thus suitable for use with the 
MNIST dataset. The architectures of each network are detailed in Table 2. LeNet-5 and OAHR 
were trained with a batch size of 32 over 10 epochs, while the autoencoder was trained with 
a batch size of 128 over 50 epochs.  The ANN dense layers in LeNet-5 and OAHR were 
treated as classifiers. The same layers were appended after layer 6 in the autoencoder and 
trained for classifier performance after the autoencoder training was concluded.
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Classification with SVM and Euclidean SVM (ESVM). While support vector machines 
(SVM) are no strangers to the field of AI, they are by no means obsolete either. Originating 
from the work of Vapnik (2000), SVMs implement Structural Risk Minimization (SRM) to 
compute the optimal separating hyperplane. Input data is mapped into higher dimensional 
feature space using the “kernel trick,” where the kernel transformation need not be done 
explicitly but can be found implicitly using dot products in the form of kernel functions. 
These kernel functions are always convergent, provided that they satisfy Mercer’s 
conditions (Burges, 1998). Thus, a unique set of support vectors representing each class is 
always obtainable after training. The optimal separating hyperplane is then computed by 
maximizing the margin between the support vectors of each class. In practice, the problem 
is implemented as a minimization of the dual form of the Lagrangian, as in Equation 1:

Table 2
CNN architectures

Name Optimizer Loss Layers
LeNet-5 RMSProp categorical 

crossentropy
2d_conv(3x3, filters = 6, activation = ReLu) 
average_pooling(2x2)
2d_conv(3x3, filters = 16, activation = ReLu) average_
pooling(2x2)
flatten(units = 400)
dense(units = 120, activation = ReLu) 
dense(units = 84, activation = ReLu) 
output(units = 10, activation = softmax)

OAHR RMSProp categorical 
crossentropy

2d_conv(5x5, filters = 6, activation = ReLu) max_
pooling(2x2)
2d_conv(5x5, filters = 12, activation = ReLu) max_
pooling(2x2)
flatten(units = 192)
dense(units = 120, activation = ReLu) dense(units = 
84, activation = ReLu) output(units = 10, activation = 
softmax)

Autoencoder 
(ANC)

AdaDelta binary 
crossentropy

2d_conv(3x3, filters = 16, padding = same, activation = 
ReLu) max_pooling(2x2, padding = same)
2d_conv(3x3, filters = 8, padding = same, activation = 
ReLu) max_pooling(2x2, padding = same)
2d_conv(3x3, filters = 8, padding = same, activation = 
ReLu) max_pooling(2x2, padding = same)
2d_conv(3x3, filters = 8, padding = same, activation = 
ReLu) 2d_upsampling(2x2)
2d_conv(3x3, filters = 8, padding = same, activation = 
ReLu) 2d_upsampling(2x2)
2d_conv(3x3, filters = 16, padding = same, activation = 
ReLu) 2d_upsampling(2x2)
2d_conv(3x3, filters = 1, activation = sigmoid)
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s.t.

    (1)

SVMs are desirable over loss minimization classifiers whose performance may vary 
due to convergence at local minima (Boser et al., 1992). Thus, SVMs are highly resilient 
against the Curse of Dimensionality, making them suitable for processing data that is 
large, complex, and noisy. While the SVM is a good classifier by nature, there are many 
challenges to optimizing and using it due to its complex nature. Various improvements on 
the fundamental SVM model have also been observed in recent years, such as the use of 
weighted kernel functions (Varatharajan et al., 2018), optimization algorithms (Shen et al., 
2016), and multiple kernel learning (MKL) methods (Liu & Gu, 2020; Saeed & Ong, 2019).  
While much work has been done in those areas, the bottleneck of an  SVM’s  performance  
lies  ultimately in the selection of kernel function, which exhibits varying performance 
depending on the nature of the input data (Lee et al., 2012). In dealing with an unknown 
problem, SVMs will more often than not produce subpar performance in terms of accuracy 
and robustness. It is mainly due to the problem of hyperparameter and kernel selection 
(Johnson & Khoshgoftaar, 2019). Thus, the study turns to Euclidean SVM (ESVM), an 
enhanced SVM reported having a low dependency on kernel and hyperparameter value 
selection (Lee et al., 2012; Wan et al., 2012). The ESVM is fundamentally different from 
an SVM due to its inference strategy. While the training is carried out in the same manner, 
the hyperplane classification task is replaced by a Euclidean similarity measure. Unseen 
examples are compared in data space to the support vectors belonging to each class and are 
thus resistant to performance degradation via incorrect kernel selection. A breakdown of 
its implementation as well as its performance under various hyperparameters and kernels, 
can be found (Lee et al., 2012; Wan et al., 2012). However, previous work is performed 
only on text documents, where the nature of features is different compared to images. 
Hence, the study sets up the experiment to compare its performance versus a fundamental 

Table 3
LIBSVM default configuration

Parameter Value
svm_type 0 (C-SVC)
kernel_type 2 (RBF kernel)
gamma 1/num_features
cost 1
tolerance 0.001

SVM. Parameter selection is performed 
based on the default values of LIBSVM 
(Chang & Lin, 2011), as depicted in Table 
3. In the LIBSVM configuration, the radial 
basis function (RBF) kernel is used, which 
is defined as Equation 2:

             (2)
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where γ is the equivalent of . The hyperparameter for cost is used in the minimization 
problem posed in Equation 1, whereas tolerance is the training termination criterion.

Performance Evaluation Metrics. In addition to time performance, several performance 
metrics are used to measure the selected classifiers’ performance. These metrics are 
summarized from the confusion matrix, where metrics commonly used to evaluate machine 
learning algorithms such as true positive (TP), false positive(FP), false negative(FN), and 
true negative (TN) values can be derived (Sujatha & Rajagopalan, 2017).

Table 4 shows a confusion matrix for a multi-class classification problem. We can 
extend the matrix as required to obtain the terms necessary as follows (Sokolova & 
Lapalme, 2009):

• Average accuracy (AvgAcc) – The average per-class performance of a classifier in 
Equation 3. 

   (3)

• Error rate (ErrRate)– The average per-class classification error of a classifier in 
Equation 4.

   (4)

• Positive predictive value (PPV) – Also known as precision, PPV is the possibility 
of a sample predicted in class to belong to the class truly. Here, micro-averaging 
(denoted with subscript µ) favors bigger classes while macro-averaging (denoted 
with subscript M) treats all classes equally. Thus, if both measures of the same 
metric are similar, it can be said that the dataset is balanced, which is usually not 
the case for real-world data. The micro-and macro-averaged values are defined as 
in Equation 5: 

Table 4
Multiclass confusion matrix

Reference
Predicted

Class 1 Class 2 Class 3
Class 1 [TP1, TN2, TN3] [FN1, FP2, TN3] [FN1, TN2, FP3]
Class 2 [FP1, FN2, TN3] [TN1, TP2, TN3] [TN1, FN2, FP3]
Class 3 [FP1, TN2, FN3] [TN1, FP2, FN3] [TN1, TN2, TP3]
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     (5)

• Negative predictive value (NPV)—The mirror version of the PPV, NPV is the 
possibility of a rejection not belonging to the class (Sokolova & Lapalme, 2009)] 
and the micro-and macro-averaged values can be defined as Equation 6:

     (6)

• True positive rate (TPR)—Also known as sensitivity or recall, TPR measures the 
ability of the classifier to classify a sample that belongs to the class correctly.  The 
micro-and macro-averaged values are as in Equation 7:

     (7)

• True negative rate (TNR)—Also known as specificity, TNR is a mirror version 
of TPR and measures the classifier’s ability to reject samples not belonging to a 
class correctly. The micro-and macro-averaged values are as in Equation 8:

     (8)

• F-score – F-score is the harmonic mean of recall and precision. It is typically 
used to show the relation between the data’s positive labels and those given by 
the classifier. While there are many variants of the F-score, such as the F-1, F-0.5, 
and F-2 score, the study is interested in the classifier’s ability to balance both 
false positives and false negatives; hence the study uses the F-1 metric with β = 1 
(Equation 9).
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    (9)

RESULTS AND DISCUSSION

Time Performance

Table 5 shows the time performance of the three feature extractors discussed in the Material 
and Method section in terms of training and testing performance, while Table 6 depicts 
the time performance of the various classifiers under different features extracted from 
the feature extractors. LeNet-5 and OAHR were trained together with the ANN’s fully 
connected (FC) layers due to its supervised nature, and thus the training time is combined 
in Table 5.

In terms of time performance, the study finds that feature extraction using only the 
encoder layers in the ANC gave the best time performance, despite having more parameters 
compared to LeNet-5 and OAHR at their best. Output dimension-wise, both LeNet-5, and 
OAHR at CNN+2FC give a vector of 84 features, whereas ANC gives 128 features. These 
studies favor LeNet-5 and OAHR as fewer features equate to a smaller payload transmitted 
to the cloud. The training time for ANC is almost double that of LeNet-5 and OAHR due 
to having twice the number of convolutional layers; however, as the networks are to be 
pre-trained before implementation on the edge device, the setback is minor.

At the classifier end, the fastest result was achieved for the testing on 10000 samples 
by a 3-layer fully connected ANN using features from the ANC. It is faster by a factor 
of over 60 times compared to the fastest performing SVM and over 1000 times against 
the fastest ESVM. It can also be observed. It can also be observed that in most cases, 
the inference time of ESVM approaches that of the fundamental SVM training time. In 
terms of training time, the study observed that training with the most number of features 
(LeNet-5 CNN only, 400 features) took only 934.27s, which was substantially faster than 

Table 5
Feature extraction time performance

Feature extractor Time performance
LeNet-5 CNN + 3FC training: 95.68s

CNN + 2FC feature extraction: 2.43s
CNN only feature extraction: 2.5s

OAHR CNN + 3FC training: 93.89s
CNN + 2FC feature extraction: 2.52s 
CNN only feature extraction: 2.89s

Autoencoder (ANC) CNN only training: 180.01s 
CNN only feature extraction: 2.3s
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both OAHR configurations (84 features, 2268.71s; 192 features, 13348.05s) and marginally 
faster than the ANC configuration (128 features, 1031.72s). The inference times of said 
configurations exhibit a similar trend. Hence, there is no direct apparent relation between 
the number of features used and the training time of an SVM, and further work should be 
conducted to discover the relation between the nature of features extracted and the time 
performance of the SVM.

Classification Performance

Table 7 shows the classification performance of the best performing classifier corresponding 
to each feature extractor. For LeNet-5, The best performing classifier was the fundamental 
SVM using CNN-only features. In OAHR and ANC, both feature extractors worked best 
with the 3-layer ANN. In all cases, both the fundamental SVM and ANN outperform 
ESVM in classification performance. While ESVM has been shown in the literature to 
have a low dependency on kernel and hyperparameter selection, its effectiveness is still 
poor compared to a fundamental SVM. It makes it unsuitable for applications where 
classification performance is important. The study also notes that the fundamental SVM 
achieved marginally better performance when using CNN-only features in LeNet-5, as 
depicted in Table 8. However, there was no distinct difference in performance for ESVM 
regardless of whether CNN only or CNN+2FC features are used.

Table 6
Classifier time performance

Input features Time performance
CNN + 3-layer FC ANC features train: 73.64s 

ANC features test: 0.28s
 LeNet-5 features test: 0.43s 
OAHR features test: 0.50s

CNN + 2-layer FC LeNet-5 features SVM train: 559.71s
LeNet-5 features SVM test: 17.03s 
LeNet-5 features ESVM test: 304.83s 
OAHR features SVM train: 2268.71s 
OAHR features SVM test: 45.91s 
OAHR features ESVM test: 2337.05s

CNN only ANC features SVM train: 1031.72s
ANC features SVM test: 65.05s 
ANC features ESVM test: 1037.36s 
LeNet-5 features SVM train: 934.27s 
LeNet-5 features SVM test: 62.00s 
LeNet-5 features ESVM test: 652.61s 
OAHR features SVM train: 13348.05s 
OAHR features SVM test: 193.24s 
OAHR features ESVM test: 3566.28s
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From the metrics described in the previous section, the performance of the classifiers 
can be scrutinized further. Looking at the selected classifiers in Table 7, despite the slight 
imbalance of the MNIST dataset, the SVM does not show much difference between the 
macro and micro attributes of the extended metrics.  However, the ANNs have slightly 
better overall macro performance. It may indicate that in the event of a highly imbalanced 
dataset, ANNs are more susceptible to overfitting compared to SVMs.

Comparing the extended metrics of the two classifiers, while both SVMs and ANNs 
exhibit a strong ability to reject correctly due to high values of NPV and TNR, their abilities 
to classify correctly are comparatively weaker, more so with ANN. Thus, while there is no 
clear winner among the classifiers, selecting SVM over ANN and ESVM for an application 
where the data distribution is unknown will be wiser as there is a lower tendency to overfit

Table 7
Best classification performance by feature extractor

Feature extractor Classifier Accuracy PPV NPV TPR TNR F-Score
LeNet-5 SVM AvgAcc: 

0.9979
ErrRate: 

0.002

PPVM : 
0.9894
PPVµ: 
0.9893

NPVM: 
0.9988
NPVµ: 
0.9988

TPRM: 
0.9892
TPRµ: 
0.9893

NPRM: 
0.9988
NPRµ: 
0.9988

FscoreM: 
0.9893

Fscoreµ: 
0.9893

OAHR ANN AvgAcc: 
0.9948

ErrRate: 
0.0052

PPVM : 
0.9741
PPVµ: 
0.9741

NPVM : 
0.9971
NPVµ: 
0.9971

TPRM: 
0.9744
TPRµ: 
0.9741

NPRM: 
0.9971
NPRµ: 
0.9971

FscoreM: 
0.9743

Fscoreµ: 
0.9741

Autoencoder 
(ANC)

ANN AvgAcc: 
0.9889

ErrRate: 
0.0111

PPVM : 
0.9456
PPVµ: 
0.9446

NPVM : 
0.9939
NPVµ: 
0.9938

TPRM: 
0.9443
TPRµ: 
0.9446

NPRM: 
0.9939
NPRµ: 
0.9938

FscoreM: 
0.9449

Fscoreµ: 
0.9446

Table 8
SVM vs ESVM performance with LeNet-5 features

Classifier Features Accuracy F-score
SVM CNN+2FC AvgAcc: 0.9971

ErrRate: 0.0029
FscoreM : 0.9854
Fscoreµ: 0.9854

CNN only AvgAcc: 0.9979
ErrRate: 0.0021

FscoreM : 0.9893
Fscoreµ: 0.9893

ESVM CNN+2FC AvgAcc: 0.8072
ErrRate: 0.1928

FscoreM : 0.0196
Fscoreµ: 0.0361

CNN only AvgAcc: 0.8072
ErrRate: 0.1928

FscoreM : 0.0195
Fscoreµ: 0.0361

CONCLUSION

In this study, the researchers investigated the efficiency and effectiveness of LeNet-5, 
OAHR, and ANC as feature extractors paired against ANN, SVM, and ESVM as classifiers 
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for OCR application in the Edge-Cloud settings. The evidence found from this comparison 
study suggests that while ANNs have good classification and time performance, SVMs are 
less prone to overfit in the case of a noisy or imbalanced dataset. While ESVM has been 
shown in the literature to be resilient to incorrect kernel and parameter selection, the time 
performance in both training and inference suggests that it is unsuited for applications 
where latency is a major concern. In addition, this study finds that the training time of an 
SVM classifier is independent of the number of input features used.  The study believes the 
findings will assist future image classification application research directions, especially 
for OCR applications in the cloud and edge settings.  
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