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The natural product molecule 2,4,6-trihydroxy-3-geranylacetophenone (tHGA) 

isolated from the medicinal plant Melicope ptelefolia was shown to exhibit potent 

lipoxygenase (LOX) inhibitory activity. It is known that LOX plays an important 

role in inflammatory response as it catalyzes the oxidation of unsaturated fatty acids, 

such as linoleic acid to form hydroperoxides that are potent proinflammatory 

mediators. The search for selective LOX inhibitors may provide new therapeutic 

approach for inflammatory diseases. Previous studies reported that tHGA was an 

effective LOX inhibitor and was able to control airway-hyper-responsiveness in an 

acute model of murine asthma. However, the structure-activity relationship (SAR) of 

this group of compounds is still unknown. Herein, we report the synthesis of tHGA 

analogues using simple Friedel-Craft acylation, direct C-alkylation and methylation 

reactions with the objective of obtaining a better insight into the structure-activity 

relationships of the compounds. 

 

 

A total of seventeen synthetic analogues of tHGA were synthesized and evaluated 

for their soybean 15-LOX inhibitory activity, while three of them are new 

compounds. Modifications were made on the acyl moiety, alkyl moiety, and also the 

important hydroxyl group of phloroglucinol structural core. The combination of both 

electrophilic substitution on the phloroglucinol compound and nucleophilic 

substitution on the acylphloroglucinol derivatives gave tHGA analogues. In vitro 

soybean 15-LOX inhibiting activity was measured using spectrophotometric method. 

All the synthesized analogues showed potent to moderate soybean 15-LOX 

inhibitory activity in a dose-dependent manner (IC50 = 10.31–95.38 μM), the most 

active being compound 18e (IC50 value of 10.31 μM ± 1.5) with the longest aliphatic 

chain on the acyl substituent. Interestingly, four target compounds 18c (IC50 value of 
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12.32 μM ± 0.6), 18d (IC50 value of 15.26 μM ± 0.5), 18e (IC50 value of 10.31 μM ± 

1.5) and 18g (IC50 value of 15.20 μM ± 1.2) exhibited better 15-LOX inhibition than 

tHGA (8) where improvement in activities range from approximately 30-50%. The 

SAR study revealed that the presence of a short, branched acyl substituent and the 

introduction of a cyclohexyl ring were less favourable for LOX inhibitory activity 

when compared to aliphatic acyl substituent. On the other hand, the introduction of a 

planar aromatic ring in the acyl substituent was found to improve the inhibitory 

activity. The results of the simple SAR study suggest that a longer, aliphatic and 

aromatic acyl substituent is favourable for better inhibitory action. 

 

 

Kinetic inhibition assay showed that both of the most active compound 18e and 

tHGA (8) are competitive inhibitors. Molecular docking studies (cDOCKER) and 

molecular dynamic (MD) simulation (GROMACs) revealed that hydrophobic 

interactions were the main driving force for the binding interactions of the active 

analogues with the target protein. Analogues with the larger lipophilic nature had 

better binding affinity as compared to others. Besides, the binding interaction with 

one crucial amino acid residue (His499) involved in iron chelation for the target 

enzyme correlates well with the kinetic assay’s result. Therefore, our findings 

support that these geranylated acylphloroglucinol compounds have promising 

potential as lead compounds for the design of new anti-inflammatory drugs or Non-

Steroidal Anti-inflammatory Drugs (NSAIDs).  The combination of both the 

bioassay results and in silico studies has reinforced the crucial structural features that 

are involved in the inhibitory activity which is important information for structure-

based drug design. 
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2,4,6-trihidroksi-3-geranil-asetofenon (tHGA) merupakan molekul semula jadi yang 

dipencilkan daripada tumbuhan ubatan Melicope ptelefolia dan telah menpamerkan 

aktiviti perencatan enzim lipoksigenas (LOX) yang poten. Enzim LOX dikenali 

memainkan peranan penting dalam tindak balas keradangan kerana ia 

memangkinkan pengoksidaaan asid lemak tak tepu, seperti asid linoleik, untuk 

membentuk hidroperoksida yang merupakan perantara pro-radang yang poten. 

Pencarian perencat LOX terpilih dapat memberikan pendekatan terapeutik baru 

untuk penyakit radang. Pengajian sebelum ini melaporkan bahawa tHGA adalah 

perencat LOX yang berkesan dan dapat mengawal hiper-responsif bagi saluran udara 

dalam model tikus asma yang runcing. Namun begitu, hubungkait struktur-aktiviti 

(SAR) bagi kumpulan sebatian ini masih tidak diketahui. Di sini, kita melaporkan 

sintesis untuk beberapa sebatian analog tHGA dengan menggunakan tindak balas 

pengasilan Friedel-Craft yang mudah, diikuti dengan tindakbalas pengalkilan-C dan 

pemetilan dengan tujuan untuk mendapatkan gambaran yang lebih baik mengenai 

SAR sebatian.  

 

 

Sebanyak tujuh belas analog tHGA telah disintesis dan diuji dengan aktiviti 

perencatan 15-LOX kacang soya, manakala tiga daripada mereka adalah sebatian 

baru. Pengubahsuaian telah dibuat pada kumpulan asil, alkil, dan juga hidroksil pada 

teras struktur sebatian floroglusinol. Penggabungan kedua-dua gantian elektrofilik 

pada sebatian floroglusinol dan gantian nukleofilik pada terbitan asilfloroglusinol 

menghasilkan analog tHGA. Aktiviti perencatan 15-LOX kacang soya in vitro 

diukur dengan menggunakan cara spektrofotometrik. Semua analog yang disintesis 

menunjukkan aktiviti yang poten dan sederhana dalam aktiviti perencatan 15-LOX 

kacang soya secara bersandarkan dos (IC50 = 10.31-95.38 μM). Sebatian 18e (nilai 

IC50 10.31 μM ± 1.5) merupakan sebatian yang paling aktif dengan rantai alifatik 
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terpanjang di gantian asil. Secara menariknya, empat sebatian sasaran iaitu 18c (nilai 

IC50 12.32 μM ± 0.6), 18d (nilai IC50 15.26 μM ± 0.5), 18e (nilai IC50 10.31 μM ± 

1,5) dan 18g (nilai IC50 15.20 μM ± 1.2) menunjukkan perencatan 15-LOX yang 

lebih baik daripada tHGA (8) di mana penambahbaikan aktiviti adalah sekitar 30-

50%. Kajian SAR mendedahkan bahawa penggantian dengan kumpulan asil yang 

pendek, yang bercabang dan mempunyai kumpulan sikloheksil adalah kurang baik 

untuk aktiviti perencatan LOX berbanding dengan penggantian dengan kumpulan 

asil alifatik. Manakala, penggantian kumpulan asil dengan kumpulan aromatik yang 

satar didapati dapat mempertingkatkan aktiviti perencatan. Secara amnya, kajian 

SAR ini menunjukkan bahawa kumpulan asil yang panjang, alifatik  dan aromatik 

memberikan aktiviti perencatan yang lebih baik. 

 

 

Bioasai perencatan aktiviti kinetik menunjukkan bahawa kedua-dua sebatian iaitu 

18e yang merupakan sebatian yang paling aktif dan tHGA (8) adalah perencat 

kompetitif. Kajian dok molekul (cDOCKER) dan simulasi dinamik molekul (MD) 

(GROMACs) menunjukkan bahawa interaksi hidrofobik adalah penyebab utama 

yang mendorong interaksi yang mengikat analog aktif dengan protein sasaran. 

Analog dengan sifat yang lebih lipofilik mempunyai potensi mengikat yang lebih 

tinngi berbanding dengan yang lain. Selain itu, interaksi mengikat dengan satu baki 

asid amino penting (His499) yang terlibat dalam kelatan besi untuk enzim sasaran 

berhubung kait dengan keputusan asai kinetik. Oleh itu, penemuan kajian ini 

menyokong bahawa sebatian geranil asilfloroglusinol mempunyai potensi yang 

menggalakkan sebagai sebatian utama untuk reka bentuk ubat-ubatan anti-radang 

baru atau ubat anti-radang bukan steroid (NSAIDs). Penggabungan kedua-dua 

keputusan bioasai dan pengajian in silico telah memperkuatkan ciri-ciri struktur yang 

penting dalam melibatkan aktiviti perencatan di mana ia merupakan informasi yang 

penting bagi reka bentuk ubat berdasarkan struktur.   
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DEVELOPMENT

CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 General Introduction 

 

 

Drug discovery and development is an important activity to combat diseases 

especially those of unmet clinical needs. Furthermore, for some diseases the drugs in 

clinical use have been found to have serious side effects or the drugs have been 

rendered ineffective due to development of resistance of the causative agent. 

Therefore, the task of discovering and developing safe and more effective drugs 

become more pressing. The World Health Organization (WHO) identified that 11% 

of the 252 drugs discovered in the twenty-first century and considered as basic or 

essential were exclusively of flowering plant origin (Veeresham, 2012). In many 

areas of drug discovery research, the influence of natural products is very clear as 

can be seen from the high number of ‘natural product mimics’ approved as drugs for 

many diseases (Newman and Cragg, 2007). The drug discovery process involves the 

identification of lead and its target, synthesis, characterization, screening and assay 

for therapeutic efficacy. The average time required to bring a drug to the market 

ranges from 10-15 years at an average cost of U$$ 897 million to U$$ 1.9 billion 

(Giersiefen et al., 2003). Figure 1 shows the schematic flow of a drug discovery 

pipeline. 

 

 

Figure 1: Schematic flow of the drug discovery pipeline (Prakash and Devangi, 

2010) 

 

 

Rational drug design efficiently guided medicinal chemists in lead identification to 

rapidly synthesize a large number of potential pharmacologically active compounds. 

Lead identification combines the knowledge and skills from the field of 

cheminformatics, molecular modeling and structural bioinformatics and 

understanding of the physicochemical properties of the three-dimensional molecule. 

Meanwhile, lead optimization aims to improve the effectiveness, diminish toxicity, 

or increase absorption for enhancing the most promising compounds (Adam, 2005). 

Although lead optimization is a time-consuming and costly step which often 

becomes a tight bottleneck in the drug discovery process, it is a key step in turning a 

biologically active chemical into an effective and safe drug.  Thus, lead optimization 

is an essential step in the drug discovery process (Prakash and Devangi, 2010). 
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Structure-Activity-Relationship (SAR) is the relationship between the biological 

activity of a molecule and its chemical or three-dimensional structural features. The 

physiological action of a molecule is a function of its chemical constitution, thus the 

analysis of SAR enables the determination of the chemical groups that are 

responsible for inducing a target pharmacological activity. This allows the medicinal 

chemist to modify the potency of a bioactive compound (typically a drug) by 

inserting or substituting new chemical groups into the bioactive compound and test 

the modification for their biological effects (Kalyani et al., 2013). Further refinement 

of the method enabled mathematical relationships between the chemical structure 

and the biological activity, known as quantitative structure-activity relationship 

(QSAR), to be built. QSAR can be considered as the method of trying to build a 

model to understand why some compound interacts and others do not (Prakash and 

Devangi, 2010).  

 

 

Natural products containing a phloroglucinol core have been reported to have 

interesting biological properties (Chung, 1995). In an earlier study on the anti-

inflammatory properties of the medicinal plant Melicope ptelefolia, a simple 

compound containing the phloroglucinol structural-core, 2,4,6-trihydroxy-3 

geranylacetophenone (tHGA), was identified as one of the bioactive principles of the 

plant (Suryati, 2005; Khozirah et al., 2006). Initially, this compound was found to 

exert a dose-dependent inhibition against soybean 15-lipoxygenase (15-LOX) with 

an IC50 value of 20 μM. Subsequently, this compound was shown to exert a dose-

dependent inhibition of cysteinyl leukotriene secretion from activated macrophage 

cells. Further exploration of both the chemistry and pharmacology of tHGA revealed 

that tHGA inhibited human 5-lipoxygenase (5-LOX) and both cyclooxygenase 

isoforms (COX-1 and COX-2), albeit with greater selectivity towards COX-2 

(Khozirah et al., 2006; Khozirah et al., 2011).  

 

 

When used in an acute model of murine asthma, tHGA was found to be as effective 

as Zileuton, a clinically used 5-LOX inhibitor. The compound was able to control 

airway hyper-responsiveness to methacholine challenge, and  reduce pulmonary 

cellular infiltration, goblet cell metaplasia, cytokine (IL-4, IL-5, IL-13) and cysteinyl 

leukotriene secretions as well as reduce systemic IgE concentrations (Khozirah et al., 

2006; Khozirah et al., 2011; Ismail et al., 2012). These interesting biological 

activities of tHGA have prompted this study to synthesize several synthetic 

analogues of the compound by varying the substituents and to re-evaluate them for 

any improvement in their anti-inflammatory activity against LOX. In summary, 

tHGA is an effective LOX inhibitor and able to control airway hyper-responsiveness 

in acute model of murine asthma, however, the SARs for this groups of compounds 

is still unkown. A better insight into the SARs is important for designing a better 

drug.  
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1.2 Objectives of Research 

On going effort to develop a better lead compound than tHGA, the studies of SARs 

of the compounds generated substantial interest because it is believed to be essential 

for a better drug design. With the assistance from the in silico studies, a better insight 

about the SARs of the compounds will help to identify important structural features 

that influence the ligand-protein interactions between the compounds and the 

enzyme. Our goal of present study is to synthesize several synthetic analogues of 

tHGA and to re-evaluate them for any improvement in their anti-inflammatory 

activity against LOX.  

The specific objectives of the present study are: 

1. To synthesize a series of analogues of tHGA.

2. To determine the 15-LOX inhibitory activity of the synthesized analogues.

3. To determine the structure-activity relationships of the synthetic analogues

with regards to their 15-LOX inhibition.

4. To determine the ligand-receptor interactions of tHGA analogues with 15-

LOX enzyme via in silico studies.

5. To predict the pharmacological effect of tHGA analogues by using ADMET

and TOPKAT analysis.
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