

UNIVERSITI PUTRA MALAYSIA

COLOSSAL MAGNETORESISTANCE OF Lao.67Cao.33Mn1-xAxO3 [A =V, Dy AND Zr] PEROVSKITE

KOH SONG FOO

FSAS 2001 20

COLOSSAL MAGNETORESISTANCE OF La_{0.67}Ca_{0.33}Mn_{1-x}A_xO₃ [A=V, Dy AND Zr] PEROVSKITE

By

KOH SONG FOO

Thesis Submitted in Fulfilment of the Requirements for the degree of Master of Science in the Faculty of Science and Environmental Studies Universiti Putra Malaysia

April 2001

DEDICATIONS

To Prof. Dr. Halim, for his patience and guidance....

To my dear family, Grandma (Tan Kua) Mother (Tey Hong Eng @ Tey Kim Hong) Late father (Koh Eng Chuan) Brothers (Shuang Long and Shuang Par) Sisters (Sok Hui, Sok Ching, Sok Theng and Sock San) for their love and concern....

> To my dear, Girl friend (Su Cheng) for her love, support and understanding....

> Fellow friends, ex-coursemates and University Putra Malaysia as a whole !

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

COLOSSAL MAGNETORESISTANCE OF LANTHANUM MANGANITE PEROVSKITE

By

KOH SONG FOO

April 2001

Chairman : Professor Abdul Halim bin Shaari, Ph.D

Faculty : Science and Environmental Studies

The colossal magnetoresistive $La_{0.67}Ca_{0.33}Mn_{1-x}V_{x}O_{3}$ of (LCMVO), $La_{0.67}Ca_{0.33}Mn_{1-x}Dy_{x}O_{3}$ (LCMDO) and $La_{0.67}Ca_{0.33}Mn_{1-x}Zr_{x}O_{3}$ (LCMZO), x=0.00 to x=0.30, ceramics have been studied. X-ray diffraction (XRD) patterns show single-phase perovskite structure with the presence of some minor impurities for all the samples. The systems exhibit tetragonal and orthorhombic distorted perovskite structures, which resulted from the Jahn Teller distortion. Paramagnetic - Ferromagnetic phase transitions were observed in the χ '-temperature curves for all the samples. The Curie temperature, T_C shifts to lower temperature as vanadium, dysprosium and zirconium doping increases respectively, which indicate the loss of ferromagnetic order. Zirconium doping is observed to decrease the T_c more than the effect of other dopants. For LCMVO system, samples with x=0.01, 0.02, 0.03 and 0.30 show an enhancement of volume susceptibility as the temperature increases from 110 K-140 K, 120 K-142 K, 123 K-140 K and 77 K-94 K respectively. These enhancements are due to the formation of magnetic clusters

in the samples. For LCMDO system, all the samples show the typical ferromagnetic-paramagnetic transition and no spin glass behaviour was detected. However, in LCMZO system, the samples with x>0.05 show ferromagnetic onset followed by a cusp when cooling from room temperature. The anomalies were due to the formation of spin glass in the sample. The transport properties show the transition of semiconducting to metallic conductivity at T_P . The existence of T_P and T_c was found correlated. This phenomenon of coexistence was due to the double exchange interaction of two electrons in $Mn^{3+}-O^{2-}-Mn^{4+}$ and $Mn^{4+}-O^{2-}-Mn^{4+}$ Mn^{3+} configuration that brings the system below T_C into a metallic state. The semiconductor model, $\ln (\sigma) \sim (-Ea/kT)$ was used to explain the conduction mechanism of pervoskite manganites above T_P. It was concluded that the total conductivity, σ_{tot} , consists of the intrinsic and the extrinsic components. The energy gap found for all the samples was very small and thus exhibits narrow gap semiconductor properties. The measurement of temperature dependence of magnetoresistance has been carried out for each sample. Colossal magnetoresistance value appears at low temperature and the large magnetoresistive effect was observed at temperature approaching T_P. The highest CMR value observed is in LCMZO system for sample with x=0.14. The value is 72.2 % at 80 K. However, in LCMVO and LCMDO systems, the observed maximum CMR values are respectively 58.0 % at 170 K for sample with x=0.20 and 68.8 % at 126 K for sample with x=0.20. For LCMVO system, the increase in CMR value at low temperature may be due to the formation of magnetic clusters.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

MAGNETORINTANGAN RAKSAKSA BAGI SERAMIK LANTHANUM MANGANITE

Oleh

KOH SONG FOO

April 2001

Pengerusi : Profesor Abdul Halim Shaari, Ph.D

Fakulti : Sains dan Pengajian Alam Sekitar

Sifat magnetorintangan raksaksa $La_{0.67}Ca_{0.33}Mn_{1-x}V_{x}O_{3}$ (LCMVO), La_{0.67}Ca_{0.33}Mn_{1-x}Dy_xO₃ (LCMDO) dan La_{0.67}Ca_{0.33}Mn_{1-x}Zr_xO₃ (LCMZO), x=0.00 hingga x=0.30, telah dikaji. Corak belauan sinar-x (XRD) menunjukkan kewujudan satu fasa dengan sedikit bendasing untuk semua sampel. Semua sampel menunjukkan bentuk tetragonal dan ortorombik, akibat daripada herotan Jahn Teller. Peralihan fasa paramagnet-ferromagnet ada dicerap pada lengkung χ '-suhu untuk semua sampel. Suhu Curie, T_C masing-masing beralih ke suhu lebih rendah apabila pendopan dengan vanadium, dysprosium dan zirkonium meningkat, menunjukkan kehilangan fasa ferromagnet. Pendopan dengan zirkonium menunjukkan penurunan suhu T_c lebih daripada kesan pendopan lain. Untuk LCMVO sistem, sampel dengan x=0.01, 0.02, 0.03 and 0.30 masing-masing menunjukkan perangsangan pada ketelapan isipadu apabila suhu meningkat daripada 110 K-140 K, 120 K-142 K, 123 K-140 K dan 77 K-94 K. Rangsangan ini adalah disebabkan oleh pembentukan kelompok magnet di dalam sampel

tersebut. Untuk sistem LCMDO, semua sampel menunjukkan peralihan ferromagnet-paramagnet tipikal dan tiada sifat kaca spin dikesan. Bagaimanapun, dalam sistem LCMZO, sampel dengan x>0.05 menunjukkan permulaan ferromagnet diikuti oleh pembentukan juring semasa penyejukan daripada suhu bilik. Sifat luar biasa ini adalah disebabkan oleh pembentukan kaca spin di dalam sampel. Ciri sifat angkutan menunjukkan perubahan daripada sifat kebolehaliran separa kepada sifat kebolehaliran logam pada T_P. Kewujudan T_P dan T_C didapati saling berkait. Fenomena ini disebabkan oleh interaksi tukarganti ganda dua oleh $Mn^{3+}-O^{2-}-Mn^{4+}$ dan $Mn^{4+}-O^{2-}-Mn^{3+}$ yang dua elektron pada konfigurasi membawa sistem pada paras di bawah T_c ke keadaan pengalir. Untuk sifat angkutan, model semikonduktor ln (σ) ~ (-Ea/kT) digunakan untuk menjelaskan mekanisma konduksi manganite perovskite pada suhu yang lebih daripada T_P. Secara kesimpulannya, jumlah kebolehaliran, otot terdiri daripada komponen intrinsik dan ekstrinsik. Jurang tenaga untuk semua sampel didapati sangat kecil dan mempamerkan sifat jurang sempit kebolehaliran separa. Suhu kebergantungan magnetorintangan telah diuji bagi setiap sampel. Nilai magnetorintangan raksaksa muncul pada suhu rendah dan kesan kemagnetorintangan besar diperhatikan pada suhu dekat dengan T_P. Nilai CMR tertinggi dicerap pada sistem LCMZO, bagi sampel dengan x=0.14. Nilainya ialah 72.2 % pada 80 K. Walaupun demikian, bagi sistem LCMVO dan sistem LCMDO, nilai maksimum CMR masing-masing ialah 58.0 % pada 170 K untuk sampel x=0.20 dan 68.8 % pada 126 K untuk sampel x=0.20. Untuk sistem LCMVO, peningkatan nilai CMR pada suhu rendah barangkali disebabkan oleh pembentukan kelompok magnet.

ACKNOWLEDGEMENTS

Firstly, I would like to express my utmost appreciation to Professor Dr. Abdul Halim Shaari, my project supervisor for his patience, ideas, critics, advice, guidance and discussions. I also express my gratitude to my co-supervisor, Associate Professor Dr. Chow Sai Pew and Associate Professor Dr. Hishamuddin Zainuddin for their comments and suggestions throughout the research work.

I am very grateful for the financial assistance provided through PASCA. I would like to thank my friend, Kak Ana, Dr. Rita and all the lecturers in the Physics Department for their comments and discussions. I am very thankful to Mr. Razak Harun for technical favours and other staffs in the Physics Department for their kind help.

Sincere thanks to Mr. Ho Oi Kuan, Ms. Azilah Bt. Abdul Jalil, Mrs. Aminah and staffs from Electron Microscope Unit, Faculty of Bioscience for rendering help in taking SEM micrographs. I am grateful to Dr. Rahim Sahar and En. Jaafar from UTM, Professor Dr. Hamzah Mohamad from UKM and Ling Tze from UPM for allowing the use of the XRD machine.

I wish to thank Dr. S. B. Mohamed and Dr. Azhan B. Hashim @ Ismail for their assistance in using AC susceptometer, resistivity machine and furnace. I am grateful to my friends K.P. Lim and O.S. Yu for helping me during the MR measurement and fruitful discussion. I would like to thank all my labmates,

Kabashi, Malik, Imad, Iftetan, Huda and Talib for their help and understanding regarding this work.

To my friends who always encourage me, Shou Sing, Eng Loke, Hee Chuah, Evon, Lai Soon, Chung Hau, Ee Phing, Fanny, Lucia, Su Kheng and Ei Bee, thanks to all of you. To Ah Mah, Mr. and Mrs. Haw, your support I will never forget.

To grandma, mom, brothers and sisters, your love and support keep me going. To my late father, who leave me in peace, your love and advice always give me high spirit towards my work. I am grateful to my brothers in law, Teck Chuan and Henry, my future brothers in law, Ah Cai and Mike, my uncles and aunts, especially Uncle Choo, who have been concerning about my study all this while. At last but not least, to my girl friend, Su Cheng for her endless love, continuous support, encouragement and understanding.

TABLE OF CONTENTS

Page

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL SHEETS	ix
DECLARATION FORM	xi
LISTOF TABLES	XV
LIST OF FIGURES	xvi
LIST OF PLATES	xxi
LIST OF ABREVIATIONS/NOTATIONS/GLOSSARY OF TERM	IS xxii

CHAPTER

Ι	INTRODUCTION	1
	What is CMR?	2
	CMR phenomenon	
	Application of CMR Effect	
	Objective of the Thesis	7
П	LITERATURE REVIEW	8
	La _{1-x} Ca _x MnO ₃ System (LCMO)	8
	Doping Effect on Mn Site	
	$La_{0.67}Ca_{0.33}Mn_{1-x}Fe_xO_3$ System (LCMFO)	
	$La_{0.67}Ca_{0.33}Mn_{1-x}Al_xO_3$ System (LCMAO)	
	$La_{0.67}Ca_{0.33}Mn_{1-x}In_xO_3$ System (LCMIO)	14
	$La_{0.67}Ca_{0.33}Mn_{1-x}Co_xO_3$ System (LCMCO)	
	Antiferromagnetic Superexchange	
	Jahn-Teller Effect	19
	Tolerance Factor	19
	Mn Bond Angle and Bond Distance	
	Conduction in Mixed-valence Manganites	
ш	THEORY	23
	Introduction To Magnetism	23
	Ferromagnetism	23
	Antiferromagnetism	
	Paramagnetism	25
	Susceptibility. $\gamma = M/H$	
	Curie-Weiss Law	
	Fundamental Information	
	Localized and Itinerant of $3d$ Electron	29

	Double Exchange Model
	Orbital Hybridization and Superexchange
	Jahn-Teller Effect 36
	Spin Polaron 37
	Spin Glass 38
	Polaron States in Ionic Crystals 41
IV	SAMPI F PREPARATION AND
1 V	CUADACTEDIZATION AND
	Drengration 42
	Chamical Dowder Weighing 42
	Chemical Powder weighing
	Colorentian 46
	Calcination
	Grinding and Sleving
	Pressing
	Final Sintering
	Sample Characterization
	AC Magnetic Susceptibility Measurement
	Resistivity Measurement
	Magnetoresistance Measurement
	X-ray Diffraction Analysis
	Microstructure Analysis58
	DEGULES AND DEGULESIONS
V	RESULTS AND DISCUSSIONS
V	RESULTS AND DISCUSSIONS
V	RESULTS AND DISCUSSIONS
V	RESULTS AND DISCUSSIONS
V	RESULTS AND DISCUSSIONS
V	RESULTS AND DISCUSSIONS
V	RESULTS AND DISCUSSIONS
V	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
V	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
V	RESULTS AND DISCUSSIONS. 60LCMVO System60XRD Patterns and Lattice Parameters60Volume Susceptibility and Curie Temperature, T_c 62Effect of Field Intensity66Resistivity, ρ and Phase Transition Temperature, T_P 69Magnetic and Electrical Phase Diagram71Activation Energy, E_a and Total Conduction, σ_{tot} 72Microstructure Properties75Magnetoresistance79
V	RESULTS AND DISCUSSIONS
V	RESULTS AND DISCUSSIONS. 60LCMVO System60XRD Patterns and Lattice Parameters60Volume Susceptibility and Curie Temperature, T_c 62Effect of Field Intensity66Resistivity, ρ and Phase Transition Temperature, T_P 69Magnetic and Electrical Phase Diagram71Activation Energy, E_a and Total Conduction, σ_{tot} 72Microstructure Properties75Magnetoresistance79LCMDO system88XRD Patterns and Lattice Parameters88
V	RESULTS AND DISCUSSIONS. 60LCMVO System60XRD Patterns and Lattice Parameters60Volume Susceptibility and Curie Temperature, T_C 62Effect of Field Intensity66Resistivity, ρ and Phase Transition Temperature, T_P 69Magnetic and Electrical Phase Diagram71Activation Energy, E_a and Total Conduction, σ_{tot} 72Microstructure Properties75Magnetoresistance79LCMDO system88XRD Patterns and Lattice Parameters88Volume Susceptibility and Curie Temperature, T_C 90
V	RESULTS AND DISCUSSIONS .60LCMVO System60XRD Patterns and Lattice Parameters60Volume Susceptibility and Curie Temperature, T_C 62Effect of Field Intensity66Resistivity, ρ and Phase Transition Temperature, T_P 69Magnetic and Electrical Phase Diagram71Activation Energy, E_a and Total Conduction, σ_{tot} 72Microstructure Properties75Magnetoresistance79LCMDO system88XRD Patterns and Lattice Parameters88Volume Susceptibility and Curie Temperature, T_C 90Effect of Field Intensity92
V	RESULTS AND DISCUSSIONS. 60LCMVO System60XRD Patterns and Lattice Parameters60Volume Susceptibility and Curie Temperature, T_C 62Effect of Field Intensity66Resistivity, ρ and Phase Transition Temperature, T_P 69Magnetic and Electrical Phase Diagram71Activation Energy, E_a and Total Conduction, σ_{tot} 72Microstructure Properties75Magnetoresistance79LCMDO system88XRD Patterns and Lattice Parameters88Volume Susceptibility and Curie Temperature, T_C 90Effect of Field Intensity92Resistivity, ρ and Phase Transition Temperature, T_P 95
V	RESULTS AND DISCUSSIONS. 60LCMVO System60XRD Patterns and Lattice Parameters60Volume Susceptibility and Curie Temperature, T_C 62Effect of Field Intensity66Resistivity, ρ and Phase Transition Temperature, T_P 69Magnetic and Electrical Phase Diagram71Activation Energy, E_a and Total Conduction, σ_{tot} 72Microstructure Properties75Magnetoresistance79LCMDO system88XRD Patterns and Lattice Parameters88Volume Susceptibility and Curie Temperature, T_C 90Effect of Field Intensity92Resistivity, ρ and Phase Transition Temperature, T_P 95Magnetic and Electrical Phase Diagram97
V	RESULTS AND DISCUSSIONS. 60LCMVO System60XRD Patterns and Lattice Parameters60Volume Susceptibility and Curie Temperature, T_c 62Effect of Field Intensity66Resistivity, ρ and Phase Transition Temperature, T_P 69Magnetic and Electrical Phase Diagram71Activation Energy, E_a and Total Conduction, σ_{tot} 72Microstructure Properties75Magnetoresistance79LCMDO system88XRD Patterns and Lattice Parameters88Volume Susceptibility and Curie Temperature, T_c 90Effect of Field Intensity92Resistivity, ρ and Phase Transition Temperature, T_P 95Magnetic and Electrical Phase Diagram97Activation Energy, E_a and Total Conduction, σ_{tot} 99
V	RESULTS AND DISCUSSIONS. 60LCMVO System60XRD Patterns and Lattice Parameters60Volume Susceptibility and Curie Temperature, T_C 62Effect of Field Intensity66Resistivity, ρ and Phase Transition Temperature, T_P 69Magnetic and Electrical Phase Diagram71Activation Energy, E_a and Total Conduction, σ_{tot} 72Microstructure Properties75Magnetoresistance79LCMDO system88XRD Patterns and Lattice Parameters88Volume Susceptibility and Curie Temperature, T_C 90Effect of Field Intensity92Resistivity, ρ and Phase Transition Temperature, T_P 95Magnetic and Electrical Phase Diagram97Activation Energy, E_a and Total Conduction, σ_{tot} 99Microstructure Properties101
V	RESULTS AND DISCUSSIONS. 60LCMVO System60XRD Patterns and Lattice Parameters60Volume Susceptibility and Curie Temperature, T_c 62Effect of Field Intensity66Resistivity, ρ and Phase Transition Temperature, T_P 69Magnetic and Electrical Phase Diagram71Activation Energy, E_a and Total Conduction, σ_{tot} 72Microstructure Properties75Magnetoresistance79LCMDO system88XRD Patterns and Lattice Parameters88Volume Susceptibility and Curie Temperature, T_c 90Effect of Field Intensity92Resistivity, ρ and Phase Transition Temperature, T_P 95Magnetic and Electrical Phase Diagram97Activation Energy, E_a and Total Conduction, σ_{tot} 99Microstructure Properties101Magnetic and Electrical Phase Diagram91Activation Energy, E_a and Total Conduction, σ_{tot} 99Microstructure Properties101Magnetoresistance101
V	RESULTS AND DISCUSSIONS. 60LCMVO System60XRD Patterns and Lattice Parameters60Volume Susceptibility and Curie Temperature, T_c 62Effect of Field Intensity66Resistivity, ρ and Phase Transition Temperature, T_P 69Magnetic and Electrical Phase Diagram71Activation Energy, E_a and Total Conduction, σ_{tot} 72Microstructure Properties75Magnetoresistance79LCMDO system88XRD Patterns and Lattice Parameters88Volume Susceptibility and Curie Temperature, T_c 90Effect of Field Intensity92Resistivity, ρ and Phase Transition Temperature, T_P 95Magnetic and Electrical Phase Diagram97Activation Energy, E_a and Total Conduction, σ_{tot} 99Microstructure Properties101Magnetic and Electrical Phase Diagram97Activation Energy, E_a and Total Conduction, σ_{tot} 99Microstructure Properties101Magnetoresistance105LCMZO system111
V	RESULTS AND DISCUSSIONS. 60LCMVO System60XRD Patterns and Lattice Parameters60Volume Susceptibility and Curie Temperature, T_c 62Effect of Field Intensity66Resistivity, ρ and Phase Transition Temperature, T_P 69Magnetic and Electrical Phase Diagram71Activation Energy, E_a and Total Conduction, σ_{tot} 72Microstructure Properties75Magnetoresistance79LCMDO system88XRD Patterns and Lattice Parameters88Volume Susceptibility and Curie Temperature, T_c 90Effect of Field Intensity92Resistivity, ρ and Phase Transition Temperature, T_P 95Magnetic and Electrical Phase Diagram97Activation Energy, E_a and Total Conduction, σ_{tot} 99Microstructure Properties101Magnetic and Electrical Phase Diagram97Activation Energy, E_a and Total Conduction, σ_{tot} 99Microstructure Properties101Magnetoresistance105LCMZO system111XRD Patterns and Lattice Parameters111

	Effect of Field Intensity	116
	Resistivity, ρ and Phase Transition Temperature, $T_{\rm p}$	120
	Magnetic and Electrical Phase Diagram	123
	Activation Energy, E_a and Total Conduction, σ_{tot}	124
	Microstructure Properties	128
	Magnetoresistance	132
	Comparison among the Three Systems	139
	Curie Temperature. $T_{\rm C}$ and	
	Phase Transition Temperature, T _P	139
	Activation Energy, E ₂	142
	Magnetoresistence	144
	5	
VI	CONCLUSIONS AND SUGGESTIONS	146
	Conclusions	146
	Suggestions	149
REFEREN	VCES	150
APPENDI	CES	155
Α	Uncertainties of the Equipments	156
В	Field dependence of the undoped sample of LCMO	
	and doped LCMVO system	157
С	Field dependence of the doped LCMDO system	163
D	Field dependence of the doped LCMZO system	168
E	Colossal magnetoresistance as a function of applied	
	magnetic field at different temperature for LCMVO system.	173
F	Colossal magnetoresistance as a function of applied	
	magnetic field at different temperature for LCMVO system.	179
G	Colossal magnetoresistance as a function of applied	
	magnetic field at different temperature for LCMVO system.	184
VITA		189

LIST OF TABLES

Table		Page
2.1	The structure, lattice parameters and transition temperatures of different element doped at Mn site for LCMO ceramics	18
4.1	Demagnetization factors, D (SI) for cylinders as a function of the ratio of length to diameter, 1/d	51
5.1	Lattice parameters, a, b, c and unit-cell volume of LCMVO system	62
5.2	Lattice parameters, a, b, c and unit-cell volume of LCMDO system	88
5.3	Lattice parameters, a, b, c and unit-cell volume of LCMZO system.	113

LIST OF FIGURES

FiguresPa		Page
1.1	Temperature dependence of resistivity	6
1.2	Schematic structure of an ideal perovskite structure	6
2.1	The phase diagram of La _{1-x} Ca _x MnO ₃ system	10
3.1	Antiferromagnetic behavior of the sample	25
3.2	The atomic spin moment of (a) ferromagnetic, (b) antiferromagnetic and (c) paramagnetic materials	26
3.3	Curie-Weiss law shows the presence of paramagnetic phase	28
3.4	Schematic illustration of double exchange model	31
3.5	(a) Boundary surfaces for angular probability function of $1s$ and $2p$ orbitals (b) Boundary surfaces for angular parts of $3d$ wave functions	33
3.6	Schematic illustration of superexchange coupling by σ - transfer and π - transfer	35
3.7	Electronic structure of (a) Mn^{3+} in octahedral coordination before and after JT distortion. (b) Mn^{4+} in octahedral coordination	37
3.8	Magnetization versus temperature for ZFC and FC	40
3.9	Temperature dependence of ac susceptibility (a) in different fields at 100 Hz and (b) in a field of 1 Oe with different frequencies	40
4.1	Sample preparation via solid-state reaction	43
4.2	Temperature setting for calcination stage	49
4.3	Temperature setting for final sintering stage	50
4.4	Cylindrical shape of sample	. 53
4.5	Schematic diagram of resistivity measurement	54

4.6	Schematic diagram of magnetoresistance measurement
4.7	Schematic illustration of fundamental process in XRD measurement57
5.1	XRD spectrum for all the samples of LCMVO system
5.2	Thermal dependence of volume susceptibility of LCMVO system at H=0.1 Oe
5.3	Inverse volume susceptibility against temperature of LCMVO system
5.4	T_{C} and Θ as a function of vanadium content of LCMVO system
5.5	Volume susceptibility as a function of vanadium content at 100 K66
5.6	Volume susceptibility as a function of vanadium content at 150 K67
5.7	Abnormal peak of LCMVO system for samples with (a) x=0.14 and (b) x=0.16
5.8	Temperature dependence of resistivity of LCMVO system71
5.9	T_C and T_P as a function of vanadium content of LCMVO system72
5.10	$ln(\sigma)$ as a function of 1/T of LCMVO system
5.11	Variation of activation energy against vanadium concentration of LCMVO system
5.12	Sample density of LCMVO system
5.13	SEM image of the fracture surface of LCMVO system78
5.14	CMR curve of LCMVO system as a function of applied magnetic field at 100 K79
5.15	CMR curve of LCMVO system as a function of applied magnetic field at 150 K
5.16	CMR curve of LCMVO system as a function of applied magnetic field at 170 K
5.17	CMR curve of LCMVO system as a function of applied magnetic field at 200 K
5.18	CMR curve of LCMVO system as a function of applied magnetic field at 250 K

5.19	$\begin{array}{l} CMR \ curve \ of \ sample \ (a) \ La_{0.67}Ca_{0.33}Mn_{0.99}V_{0.01}O_3 \\ (b) \ La_{0.67}Ca_{0.33}Mn_{0.98}V_{6.02}O_3 \ (c) \ La_{0.67}Ca_{0.33}Mn_{0.97}V_{0.03}O_3 \\ and \ (d) \ La_{0.67}Ca_{0.33}Mn_{0.70}V_{0.30}O_3 \\ \end{array} \tag{85}$
5.20	$CMR \text{ curve of sample } La_{0.67}Ca_{0.33}Mn_{0.92}V_{0.08}O_3$
5.21	CMR curve of LCMVO system as a function of temperature at 1 Tesla
5.22	XRD spectrum for the samples of LCMDO system
5.23	Thermal dependence of volume susceptibility of LCMDO system at H=0.1 Oe 90
5.24	Inverse volume susceptibility against temperature of LCMDO system
5.25	T_{C} and Θ as a function of dysprosium content of LCMDO system92
5.26	Thermal dependence of volume susceptibility of LCMDO system at different field intensity when x=0.1293
5.27	Volume susceptibility as a function of dysprosium content at 40 K94
5.28	Volume susceptibility as a function of dysprosium content at $150 \text{ K} \dots 94$
5.29	(a) and (b) Temperature dependence of resistivity of LCMDO system97
5.30	T_{C} and T_{P} as a function of dysprosium content of LCMDO system98
5.31	(a) and (b) $ln(\sigma)$ as a function of 1/T of LCMDO system100
5.32	Variation of activation energy against dysprosium concentration of LCMDO system
5.33	Sample density of LCMDO system
5.34	SEM image of the fracture surface of LCMDO system104
5.35	CMR curve of LCMDO system as a function of applied magnetic field at 100 K
5.36	CMR curve of LCMDO system as a function of applied magnetic field at 150 K
5.37	CMR curve of LCMDO system as a function of applied magnetic field at 170 K

5.38	CMR curve of LCMDO system as a function of applied magnetic field at 200 K
5.39	CMR curve of LCMDO system as a function of applied magnetic field at 250 K
5.40	CMR curve of LCMDO system as a function of temperature at 1 Tesla
5.41	XRD spectrum for all the samples of LCMZO system112
5.42	Thermal dependence of volume susceptibility of LCMZO system at H=0.1 Oe114
5.43	Inverse volume susceptibility against temperature of LCMZO system
5.44	T_C and Θ as a function of zirconium content of LCMZO system116
5.45	Thermal dependence of volume susceptibility of LCMZO system at different field intensity when (a) $x=0.08$ (b) $x=0.12$ (c) $x=0.14$ (d) $x=0.16$ (e) $x=0.20$ and (f) $x=0.30$
5.46	(a) and (b) Temperature dependence of resistivity of LCMZO system. 122
5.47	T _C , T _P and T _{min} as a function of zirconium content of LCMZO system
5.48	(a) and (b) $\ln(\sigma)$ as a function of 1/T of LCMZO system
5.49	Variation of activation energy against zirconium concentration of LCMZO system
5.50	Sample density of LCMZO system
5.51	SEM image of the fracture surface of LCMZO system
5.52	CMR curve of LCMZO system as a function of applied magnetic field at 100 K
5.53	CMR curve of LCMZO system as a function of applied magnetic field at 150 K
5.54	CMR curve of LCMZO system as a function of applied magnetic field at 170 K
5.55	CMR curve of LCMZO system as a function of applied magnetic field at 200 K

5.56	CMR curve of LCMZO system as a function of applied magnetic field at 250 K	
5.57	CMR curve of LCMZO system as a function of temperature at 1 Tesla	138
5.58	T _C of LCMVO, LCMDO and LCMZO systems as a function of doping concentration	141
5.59	T _P of LCMVO, LCMDO and LCMZO systems as a function of doping concentration	141
5.60	E _a - intrinsic of LCMVO, LCMDO and LCMZO system as a function of doping concentration	143
5.61	E _a - extrinsic of LCMVO, LCMDO and LCMZO system as a function of doping concentration	143
5.62	Maximum CMR and respective temperature observed of LCMVO, LCMDO and LCMZO system as a function of doping concentration	145

LIST OF PLATES

Plate		Page
4.1	Alumina pot and alumina balls	45
4.2	Three-speed electric miller machine	45
4.3	Grinder and sieve	47
4.4	Hydraulic pressing	48
4.5	Tube furnace	50
4.6	AC susceptometer Model 7000	53
4.7	Experiment rig for resistance measurement	54
4.8	X-ray diffractometer, Philips (Model PW1830)	57
4.9	Scanning Electron Microscope (SEM)	59

LIST OF ABREVIATIONS/NOTATIONS/GLOSSARY OF TERMS

Т	Temperature in Kelvin
T _c	Curie temperature
T _P	Phase transition temperature
T _{SG}	Spin freezing temperature
T _N	Néel temperature
LCMO	La-Ca-Mn-O system
LCMVO	La-Ca-Mn-V-O system
LCMDO	La-Ca-Mn-Dy-O system
LCMZO	La-Ca-Mn-Zr-O system
LCMFO	La-Ca-Mn-Fe-O system
LCMAO	La-Ca-Mn-Al-O system
LCMIO	La-Ca-Mn-In-O system
LCMCO	La-Ca-Mn-Co-O system
CMR	Colossal Magnetoresistance
MI	Metal to insulator
MIT	Metal-insulator transition
MR	Magnetoresistance
GMR	Giant Magnetoresistance
R (H)	Resistance at present of magnetic field
R (0)	Zero field resistance
AFI	Antiferromagnetic insulator
FMM	Ferromagnetic metal

FMI	Ferromagnetic insulator
PMI	Paramagnetic insulator
MRRAM	Magnetoresistive random access memory
R	Trivalent
Α	Divalent
<r<sub>A></r<sub>	Average ionic radius
t	Tolerance factor
$d_{\text{La-O}}$	La-O bond distances
$d_{ m Mn-O}$	Mn-O bond distances
θ	Mn-O-Mn bond angle
$ heta_{ m ij}$	Angle between spins on neighboring Mn atoms
θ	Bragg angle
$ au_h$	Electron transfer time
τ_s	Time for a localized Mn spin to relax to a new orientation
D	Demagnetization factor
Ea	Activation energy
DE	Double exchange
JT	Jahn-Teller
ρ	Resistivity
XRD	X-ray diffraction
SEM	Scanning Electron Microscope
d	Sample diameter
Н	Applied magnetic field

ł	Sample length
М	Magnetization
k _B	Boltzman constant
a, b, c	Lattice parameters
χ	Susceptibility
χ'	Volume susceptibility
μeff	magnetic moment
AC	Alternating Current
Xac	AC susceptibility
μ	Magnetic dipole moment
B _{ext}	External magnetic field
С	Curie constant
V	Sample volume
Θ	Paramagnetic Curie point
LSDA	Local spin density approximation
S	Spin electron
<i>l</i> -spin	Localized spin
c-electron	Conduction electron
ZFC	Zero-field cooled
FC	Field-cooled
Р	Density
m	Mass
f	Frequency

