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By 

RAE'D ALI AHMED ALKIIASA WNEH 

December 2001 

Chairman: Fudziah bt Ismail, Ph.D. 

Faculty: Science and Environmental Studies 

Introduction to delay differential equations (DDEs) and the areas where they 

arise are given. Analysis of specific numerical methods for solving delay differential 

equation is considered. A brief discussion on Runge-Kutta method when adapted to 

delay differential equation is introduced. 

Embedded Singly Diagonally Implicit Runge-Kutta (SDIRK) method of 

third order four-stage in fourth order five-stage which is more attractive from the 

practical point of view is used to solve delay differential equations. The delay term is 

approximated using three typess of interpolation that is the divided difference 

interpolation, Hermite interpolation and In't Hout interpolation. Numerical results 

based on these three interpolations are tabulated and compared. 

Finally, the stability properties of SDIRK method when applied to DDEs 

using Lagrange interpolation and In't Hout interpolation are investigated and their 

regions of stability are presented. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Master Sains 

MENYELESAIKAN PERSAMAAN PEMBEZAAN LENGAH 
DENGAN KAEDAH RUNGE-KUTTA MENGGUNAKAN 

INTERPOLASI YANG BERBEZA 

Oleh 

RAE'D ALI AHMED ALKHASA WNEH 

Disember 2001 

Pengerusi: Fudziah bt Ismaii, Ph.D. 

Fakulti: Sains dan Pengajian Alam Sekitar 

Pengenalan kepada persamaan pembezaan lengah (PPL) dan bidang di mana 

tanya kerap muneul diberikan. Analisis bagi beberapa kaedah berangka bagi 

menyelesaikan PPL dibineangkan. Kaedah Runge-Kutta bila disesuaikan bagi 

menyelesaikan PPL juga tumt dibineangkan. 

Kaedah Terbenam Runge-Kutta Pepenjuru Tunggal Tersirat (RKPTT) 

peringkat tiga tahap empat dalam peringkat empat tahap lima yang lebih eekap dari 

segi praktikalnya digunakan bagi menyelesaikan persamaan pembezaan lengah. 

Sebutan lengahnya di perolehi dengan menggunakan tiga jenis interpolasi iaitu 

interpolasi beza bahagi, interpolasi Hermite dan interpolasi yang diterbitkan oleh In't 

Hout. Keputusan berangka berdasarkan ketiga-tiga interpolasi ini dibandingkan. 

Akhir sekali, eiri ciri ke stabilan kaedah RKPTI bagi menyelesaikan PPL 

menggunakan interpolasi Lagrange dan interpolasi yang diterbitkan oleh In't Hout 

dikaji, dan rantau kestabilannya diberikan. 
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CHAPTER I 

INTRODUCTION TO DELAY DIFFERENTIAL 
EQUATION AND INTERPOLATION 

Delay Differential Equation 

Many physical systems posses the feature of having a delayed response to input 

conditions, so that the rate at which processes occur depends not only on the current 

state of the system but also the past states. Mathematical models of such process 

commonly result in differential equations with a time delay. Equations of this type are 

called delay differential equations (DDEs). 

Delay differential equations have their origin in domains of application, such as 

physics, engineering, biology, medicine and economics. They appear in connection with 

fundamental problems to an�lyze mathematical model and to determine the future 

behavior. Because of that, in recent years, there has been a growing interest in the 

numerical treatment of DDEs, such as the work of Feldstein and Goodman ( 1973), 

Orbele and Pesch ( 198 1), Thompson ( 1990), Paul ( 1992), Ismail ( 1999) and many more. 

Two examples of DDEs applications are as follows: 

1 .  Population growth (Beliar, 1991) as a model of biological processes can be 

modeled by state dependent DDE 

'(t) = 
b(y(t» -b(y(t -L(y(t»» y 
1 -L'(y(t»b(t - L(y(t»» 
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where y (I) is the population size and L(.) is the lifespan of indivduals in the population. 

2 .  The variation in market price, p(/), of a particular commodity (Karoui, 1992), 

can be modeled by the following DDE. 

p'(/) = p(/)f(D(p(/»,S(p(1 - 'r») , 

where D(.) and S(.), denote the demand and supply functions for the commodity. 

Assumptions and Definitions 

Generally a DDE refers to both a retarded type of DDE (RO E) and a neutral type 

ofDDE (NDE). RDE is an ODE involving solution of the delay term and is given by 

y' (t) = I(t, y(/), y(t- 'rJ (I, y(t»), y(t- 'r 2 (t, y(t»), ..... , 

y(t- 'r y (I , y(t») for t;:�O 

y (t)=q>(t) for t � 0, 

[1 . 1] 

Where y,fand q> are N-vector functions and 'r; i=I ( 1 )  v are scalar functions. An NDE is 

an ODE involving both the solution and the derivative of the delay term itself and is 

given by 

y' (t) = f(t, y(/),y(/� 'rJ (I, y(/»), ... , y(/� 'rv (t, y(t»), 

y' (/� 'ry+J (t, y(/»), ... , y' (I - 'ry+w (I, y(/») 

y (I) = q> (I), y' (1)= q>' (I) 1 � 10 

I � 10 

y ,J, q>and q>' are N�vector functions and 'r, i=I ( 1)v +w are scalar functions. 

2 

[ 1 .2] 



For simplicity assume v=1 for RDE and v=1,  w=1 for NDE. So, a simple RDE can be 

written as 

y' (t) = /(1, y(1), y(1- 'I (I, y(/») 
[ 1 .3] 

Y (I) = rp(/) 

And a simple NDE can be written as 

y' (t)=/(/,y(t),y(I-'1 (t,y(I»), y' (/-'2 (/,y(I») t � to } 
[ 1 .4] 

y(t) = rp(t) 

Ifv> I in [ 1 . 1 ], then we have RDE with multiple delays, if v > 1 and w > 1 in [ 1 .2], then 

it is called NDE with multiple delays. 

Generally DDE is referred to both retarded type and neutral type of delay 

differential equations. However many authors refer to the retarded type of DDE as DDE 

only. Since in this thesis we are only concerned with DDE of the retarded type, it will 

therefore be referred to as DDE only. 

The function ,(I, Y (I» is called the delay, 1-, (I, y (t» is called the delay 

argument, the value of y (t-, (I, y(1» is the solution of the delay term or commonly 

referred to as the delay term only. 

If the delay is a function of time t, then it is called time dependent delay. If the 

delay is a function of time t and y (I), it is called the state dependent delay. A delay 

argument that passes the current time (/-, (t, Y (t» > t, it is called an advanced delay. In 
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our work here, we are using DOE with time dependent delay and also state dependent 

delay. 

We will assume the existence, uniqueness of the solution to the problems under 

consideration. For example, sufficient conditions for the existence and uniqueness of 

solutions to RDE [ 1 .3] are J continuous with respect to t, y (t), and y (t- 'I (t, Y (t» ), yet) is 

continuous, I satisfies a Lipschtiz condition in the last two arguments, cp is continuous, 

and lis bounded (Driver 1977). 

Let yet) be a solution of a differential equation and Ui(t) be a continuous 

approximation to y (t) on [ti, ti+/] associated with a method. The method is said to be 

convergent if 

max max I�, (t) - y(t)II � 0 as H = max hi � 0 and N � 00, 

o 5, i 5, N t, S i 5, t,+ I 

N 

where h· = 1-+1 - I- and "h = t - t I I I L... , F o' 
1=0 

We define a local solution of the RDE [ 1 .3] as the solution of 

y' (t) = J(t, yet), y(t- 'I (t, yet» �) t � to 

where z(t) is a continuous approximation to yet) on ( to, tn] associated with a method and 

z(t) = cp  (t) for t � to' 

A method is said to be order p if the local error is of order p+ 1 ,i.e. 

II .. (t +rh )-z (t +rh )0= o (hP+1), P'" " " " "  " H " 

4 



for all 'r E [0, 1]. Here ZIt (I) is the continuous approximation to y(/) on [tIl' 1,,+ I] associated 

with the method. 

A method for RDE [1.3] is said to be consistent if the method satisfies 

Numerical Methods for Delay differential Equations 

It appears in the literature that there is wide interest in the numerical solution of 

DDE and many approaches have been adopted for solving particular equations. Most of 

the numerical methods for ordinary differential equations can be adapted to give 

corresponding techniques for delay differential equations. The range of methods 

therefore comprises one step methods (including Euler's method and Runge-Kutta type 

method), multistep methods and block-implicit methods. In each of these methods the 

standard formula must generally be augmented by an interpolation formula. 

If y' (x) is bounded and Rieman -integrable, 

y(x + h) = y(x) + hf(x,y) + 0 (1); 

the 0 (1) term is O(h2) if y' (x) is Lipsctiz contiuous. 

From this relation we construct Euler's formula for DDE (1.3), namely 

y (x+ h) = y(x) + hf(x,y(x),y(x-'r(x» for x �xo [1.5] 

Choosing a sequence Xr+1 = Xr (r � 0), and substituting h = hr in [1.5], we compute 

values Yr = y( xr) satisfying 
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Yr+1 = Yr + hr f (xr, Yr, y(Xr - 1"r)} [1.6] 

where 't r = 't (xr). If Xr - 1"r � {xs} �, then we require Y (xr - 1"r), and the use of piecewise-

constant interpolation suggests the substitution 

Y(Xr - 1"r}: = y(xq} where Xr - 1"r E (xq, Xq+/) 

in the interpolation yield 

[1.7] 

where hq ==Xq+l -Xq 

CF == (x - x } - 1"  ,cr" = h -u·. 
r r q r r  q r 

The trapezium rule gives a simple formula with a degree of added sophistication. 

With minimum condition 

1 y(x+h) = y(x} + -h[j(x} + j(x+h}] 2 

when applied to DDE, will give 

1 y(x+h} = y(x}+-h(f(x, Y(X}, Y(X-1" (x}}) + j(x+h, y(x+h}, y(x+h-1" (x+h}}] 2 

Given a mesh Xr with hr = Xr+/ - Xr we can obtain values Yr = Y (xr) from the relations 

for r = 0, 1 ,  2, ... , when the values y(xr - 1"r} and y(Xr+1 - 1"r+/} are obtained by 

interpolation on values of {y}and with extrapolation if 1"r+1 < hr. 
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Neves (1975a) developed a numerical method based on the fourth order Merson's 

formula with a two-point Hermite interpolant defined by the endpoints of each step. The 

Fortran code DMRODE is presented in the (Neves 1975a). 

Oppelstrup (1978) described a numerical method based on the Runge-Kutta 

Fehlberg 5(4) formula with a three-point fourth-degree Hermite-Birkhoff interpolant. 

Oberle and Pesch (1981) developed a numerical method for RDEs with constant 

delays. The method is based on the Runge-Kutta Fehlberg 4(5) and 7(8) pairs with three­

and Five-Point Hermite interpol ants. These mesh points are assumed to be chosen such 

that they satisfy the following three conditions: they do not cross discontinuity; 

extrapolation is avoided; the delay argument under consideration should be close to the 

center of the mesh points chosen. Propagated derivative discontinuity points are 

determined at the beginning of integration. 

Arndt (1984) developed a general convergence theory for RDEs by considering 

that a numerical method is actually trying to solve the initial value problem for ODEs 

y' (t) = f(t, y(t), z(t -u(t, z(t»» , for 10 :s; I:S; IF 

Y(/o) = Yo' 

(y(t) = (,) for t:S; to ) 

where Z(/) is a known continuous approximation to y(t). This approximation z (t) is 

known before the numerical solution is computed in each step unless the delay argument 

is in the current step. 
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The latest technique in approximating the delay term, when using Runge-Kutta 

method to solve DDE is using continuous Runge-Kutta method itself. As we know, 

Runge-Kutta method produces approximations only at discrete points, sometimes 

continuous approximation to the solution of ODE is needed to obtain dense output for 

plotting the solution of the ODE, to find roots of a function associated with the solution 

or to handle discontinuity. Consequently CRK formulas, which produce continuous 

approximation to the solution of ODE, have been developed by Dormand and Prince 

(1986), Enright et al. (1986), Gladwell et al. (1987), Shampine (1986) and Verner 

(1993). They are of the form 

1=1 

k, = J(tn + C, hn, f,) 

fori=I , 2, . . .  , s+l, Be[O,I], �(B),i = I(I)s+1 are polynomials in B and z_J(to)=yo. The 

CRK formula is constructed by adding extra stage s+1 to s +1 with Cs+J , as+Jj = b, for 

j=l, . . . ,s to the original Runge-Kutta method. 

Define a CRK formula for the DDE by 

$+1 

zn(tn+B h,J = zn-J(tn) + hn "b (B)k L..J , 1 
,=1 

kj = J(tn + Cj hn, Y, , z(tn +c, hn - 'Z( In + c, h, Y,» ) 
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for i= 1 (1) S + 1 and Z,,_I (to) = fP (to). 

It is proven that, CRK method has can handle some of the difficulties, which 

DDE inherits, such as the ability to cope with discontinuity. 

Runge-Kutta Method 

A q-stage Runge-Kutta method can be written as 

q 
kj =f(x" + Cj h, y" + h "a. k ) L.J IJ 1 

q 

Yn+1 = Yn + " b k L.J 1 1 
1=1 

or it can be written in a table form as 

Cq aq J , • • • , aqq 

bl , . . .  , bq 

1=1 

[1.8) 

A= {aij} is called the generating matrix, b is the vector weights and C is the vector 

abscissae. The method is said to be explicit if aij = 0 for i �j, semi implicit if aij = 0 for 

i < j and fully implicit otherwise. 

When we applied Runge-Kutta method [1.8] to DDE [1 .3], the following are 

obtained: 
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or 

ki = f( In + c;h ,y(ln + c;h),y( In + c;h - , »  

; 
ki =J( In + c;h ,y(ln + h " a .. k. ),y( In + c;h - , »  L.J IJ J 

j-I 

q 

Yn+1 = Yn + Lb;k; 
;=1 

where ( In + c;h - ,) is the delay argument and interpolation is needed to approximate the 

value of the delay term y( In + c;h - , ). 

Using Embedding Method for the Local Error Estimation 

An essential part of any integration algorithm for ODE is the procedure to 

estimate the local error, which provides a basis for choosing the next setpsize. One of the 

most popular procedure is by using an embedding method, where each integration step is 

performed twice, using the pth and (p+ 1 )th order methods and local truncation error can 

be obtained by taking 

LTE = y -y. n+1 n+1 [1.9] 

Here y. 1 is the integration using the pth order method. Usually in Runge-Kutta method, n+ 

the pth order is obtained as a by product of the (p + l)th order method. Thus a significant 

saving in computational effort can be made which makes such technique very attractive 

from the practical point of view. 
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Interpolation 

Definition: Interpolation is the process of finding and evaluating a function 

whose graph goes through a set of given points or the computing of values for a 

tabulated function at points not in the table, is historically a most important task. 

Interpolation was the first technique for obtaining an approximation of a function. 

Polynomial interpolation was then used in quadrature methods and methods for the 

numerical solution of ordinary differential equation. 

Many famous mathematicians have their names associated with procedures for 

interpolation such as: Gauss, Newton, Bessel, and Stirling. The need to interpolate began 

with the early studies of astronomy when the motion of heavenly bodies was to be 

determined from periodic observations. A good interpolation polynomial needs to 

provide a relatively accurate approximation over an entire interval. 

A Review of Previous Work 

Neves (1975b) used two-points Hermite interpolation defined by the end points 

of each step to evaluate the delay term. Orbele and Pesch (1981) used three-points 

Hermite interpolation for the 4(5) Runge-Kutta Fehlberg method (RKF), and five-points 

Hermite interpolation for the 7(8) pair. The interpolation order and thereby the number 

of support points have to be adapted to the order of the method. If RKF method is of 

order p then the interpolation order must be equal or greater than p. For Hermite 

interpolation, if ip denotes the number of support points for the interpolation, then the 

following inequality must hold 
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