

UNIVERSITI PUTRA MALAYSIA

ASSOCIATION BEHAVIOUR AND RHEOLOGY OF PALM BASED EMULSION USING MIXED SUGAR BASED EMULSIFIERS

ZAHARIAH ISMAIL

FSAS 2001 14

ASSOCIATION BEHAVIOUR AND RHEOLOGY OF PALM BASED EMULSION USING MIXED SUGAR BASED EMULSIFIERS

ZAHARIAH ISMAIL

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA 2001

ASSOCIATION BEHAVIOUR AND RHEOLOGY OF PALM BASED EMULSION USING MIXED SUGAR BASED EMULSIFIERS

By

ZAHARIAH ISMAIL

Thesis Submitted in Fulfilment of the Requirement for the Degree of Doctor of Philosophy in the Faculty of Science and Environmental Studies Universiti Putra Malaysia

December 2001

Dedicated to my loving husband; Zulkifli bin Jaafar

Thank you for your encouragement and persuasion to me to explore the ability to pursue for knowledge beyond the ambit of my mental horizon in Nov, 1998. Without with I wouldn't have the confidence to embark in this research

I pray to Allah Almighty that HE would brighten your path in achieving your <u>"academic dream</u>" - Doctorate of Business Administration by Oct, 2002. InshaAllah!

Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

ASSOCIATION BEHAVIOUR AND RHEOLOGY OF PALM BASED EMULSION USING MIXED SUGAR BASED EMULSIFIERS

By

ZAHARIAH ISMAIL

December 2001

Chairman: Associate Professor Dr. Anuar Kassim

Faculty : Science Environmental Studies

Methyl glucose based emulsifiers such as Glucamate SSE-20 (PEG-20 methyl glucose sesquistearate) and Glucate SS (methyl glucose sesquistearate) are widely used in the application of cosmetic products. The methyl glucoside products have excellent safety, mildness and effectiveness. Although these methyl glucosides are widely used as emulsifiers, little is known about their phase behaviour in binary and ternary systems. The phase behaviours in binary and ternary system have been studied at 80°C under visual observation by polarizing light and they were confirmed by polarization microscope.

In the binary system, lamellar phases (L α) were observed at the combination of 60/40, 70/30 and 80/20 of glucamate SSE-20 and glucate SS. It was identified as maltese crosses and oily streaks. When heated at 80°C, the oily streaks pattern of 70/30 took a longer time to change to isotropic phases if compared to the other ratios. This observation correlated well with yield value, viscosity, and thixotropy in the following order 70/30> 60/40>80/20.

In the ternary system (mixed sugar based emulsifiers/water/medium chain triglycerides), the optical pattern indicated a combination of maltese crosses + oily streaks, maltese crosses and oily streaks texture alone. This system exhibited viscoelastic properties

Equal ratio of medium chain triglycerides and water (1/1) were emulsified with 5% w/w of mixed nonionic sugar-based surfactants with various hydrophilic-lipophilic balance values (HLBs). The HLB numbers ranged from 6.6 to 15.0. The effect of HLB and with and without hydrocolloids on stability, particle size droplet and rheological properties of the resulting emulsions were studied. The presence of hydrocolloids in the emulsion system dramatically lowers the interfacial tension and thus increased interparticle attraction, weak van der Waals and increased steric repulsion to stabilize the system. The systems show increasing viscosity, yield value, critical stress and exhibit viscoelastic properties.

iv

The ratio of bound water and bulk water in emulsion system is determined by thermogravimetry. Shifting the ratio of bound water and bulk water may result in regulated release of water, a principle that can be used to produce cream or lotion with controlled release of moisture.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia bagi memenuhi keperluan ijazah Doktor Falsafah

KELAKUAN PENYEKUTUAN DAN REOLOGI TERHADAP EMULSI BERASASKAN MINYAK SAWIT DENGAN MENGGUNAKAN PENGEMULSI CAMPURAN BERASAS GLUKOS

Oleh

ZAHARIAH ISMAIL

December 2001

Pengerusi: Profesor Madya Dr. Anuar Kassim

Fakulti: Sains dan Pengajian Alam Sekitar

Pengemulsi berasaskan glukos seperti glukamat SSE-20 (PEG-20 metil glukos sesquistearat) dan glukat SS (metil glukos sesquistearat) telah digunakan didalam barangan kosmetik. Ianya dikenali kerana tidak toksid, selamat di gunakan dan berkesan. Walaupun penggunaan bahan mentah ini terkenal, pengetahuan tentang perubahan dua fasa dan tiga fasa agak berkurangan. Dengan itu kajian dua dan tiga fasa di lakukan pada suhu 80°C dengan menggunakan cahaya berpengutub dan mikroskop berpengetup.

vi

Sistem dua fasa, didapati hablur cecair pada nisbah 60/40, 70/30 dan 80/20 (nisbah glukamat SSE-20/ glukat SS). Jenis tekstur hablur cecair ialah palang Maltese dan carikan berminyak. Apabila di panaskan pada suhu 80°C tekstur carikan berminyak pada nisbah 70/30 menggambil masa yang lama untuk lebur jika di bandingkan dengan nisbah yang lain. Pemerhatian tersebut menunjukkan korelasi yang baik terhadap viskositi dan tixotropi seperti berikut 70/30>60/40>80/20.

Sistem tiga fasa (campuran pengemulsi/air/MCT) telah menunjukkan jenis tekstur hablur cecair iaitu campuran palang Maltese dengan carikan berminyak, palang Maltese dan carikan berminyak. Sistem ini menunjukkan jalinan hablur cecair yang bersifat viskoelastik.

MCT dan air (1/1) telah diemulsikan dengan 5 % w/w campuran surfaktan tak ionik berasaskan gula dengan pelbagai nilai imbangan hidrofiliklipofilik (HLB). Nilai HLB bemula dari 6.6 sehingga 15.0. Keberkesanan HLB dengan penggunaan hidrokoloid dan tanpa hidrokoloid terhadap kestabilan, saiz titisan dan sifat reologi dikaji. Kehadiran hidrokoloid di dalam sistem, dapat merendahkan ketegangan di antara dua permukaan, meningkatkan tarikan saling bertindak di antara titisan, melemahkan daya Van der Waals dan meningkat penolakan sterik untuk menstabilkan sistem ini. Sistem ini juga meningkatkan kepekatan, nilai kandungan, nilai kritikal dan sifat viskoelastik.

Vİİ

Nisbah air terkekang melalui perantaraan jalinan hablur cecair dan kandungan air pukal dalam sistem emulsi dilakukan dengan menggunakan alat termogravimetri. Peranjakan nilai nisbah tersebut berkemungkinan sifat yang diperlukan sebagai perlepasan air secara berperingkat dan konsep ini boleh di gunakan untuk menghasilkan krim atau losyen dengan pengawalan pelepasan kandungan air secara berperingkat.

ACKNOWLEDGEMENTS

I bow my head before Allah Almighty who enable me to write this thesis. "YA ALLAH without your light the beauty of liquid crystal would be hidden beyond the naked eye".

I would like to thank my committee members, Prof. Madya Dr. Anuar Kassim (chairman), Prof. Hamdan Suhaimi and Dr. Salmiah Ahmad for their guidance, idea, and time toward my project throughout the course of my study.

I would like to thanks Prof. Tharwat Tadros and Dr. Hans Brand for the discussion we had regarding the project.

I would like to thank Dr. Chow Me Chin and her assistant for their help in rheology and particle sizing work.

I would like to thank AOTC's staff for their kind cooperation throughout my study and for taking the time to share their expertise.

I would like to thank the Malaysia Palm Oil Board (MPOB) for giving me the opportunity to carry out my PhD programme and Kementerian Sains, Teknologi Alam Sekitar Malaysia for providing the scholarship without which this study could not have been conducted.

Last but not least, I would like to thank my family for their encouragement, understanding and patient in sharing my excitements and frustrations of research.

İХ

TABLE OF CONTENTS

	Page
DEDICATION	ü
ABSTRACT	iii
ABSTRAK	vi
ACKNOWLEDGEMENTS	ix
APPROVAL SHEETS	X
DECLARATION FORM	xii
LIST OF TABLES	xvi
LIST OF FIGURES	xix
LIST OF ABBREVIATIONS	XXV

CHAPTER

1	INTROD	DUCTIONS	
	1.1	Palm-based Oleochemicals	2
	1.2	Carbohydrates-derived Surfactants	3
	1.3	Lyotropic Liquid Crystal	4
	1.4	Rheological Additives in Emulsion System	6
	1.5	Emulsion Systems	7
	1.6	Emulsion Instability	9
	1.7	Stabilization of Emulsions	9
	1.8	Interfacial Film Strengthening	10
	1.9	HLB System	12
	1.10	Objective of The Study	13
2	LITERA	TURE REVIEW	
	2.1	Carbohydrates Liquid Crystal	15
	2.2	Lamellar Liquid Crystal in Emulsion Systems	19
	2.3	Interlamellarly Fixed Water and Bulk Water	24
3	MATERI	ALS AND METHODS	
	3.1	Materials	
		3.1.1 Sugar-based Surfactants	27
		3.1.2 Glycerol Tricaprylate/Tricaprate	28
		3.1.3 Hydrocolloids	29

3.2	Methods	33
	3.2.1 Measurement of Surface and	33
	Interfacial Tension	
3.3	Theory Packing Constraint Concept	36
	3.3.1 Calculation of The Surface Excess, Γ	
	and Surface Area per Molecules, σ	40
3.4	Optical Microscopy Measurement	41
3.5	Evaporation Experiment	41
	3.5.1 Control Temperature	
3.6	Constructing the Binary and Ternary Phase	41
	Diagrammes	
	3.6.1 Preparing the Binary Systems of	41
	Mixed Emulsifiers/Water	
	3.6.2 Preparing the Ternary System	41
	of Mixed Emulsifiers/Water/MCT	
3.7	Emulsion Preparation	42
	3.7.1 Without Hydrocolloid	42
	3.7.2 With Hydrocolloids	43
3.8	Measurement of Emulsions Stability	43
3.9	Measurement of Particle Size	44
3.10	Rheology Measurements	45
	3.10.1 Thixotropy measurement	45
	3.10.2 Flow curve	46
	3 10.3 Dynamic test	47
	3.10.4 Creep test	50
3.11	Thermogravimetric Analysis	52
	TS AND DISCUSSION	E 4
4.1	Surface Tension and Interfacial Tension	54
4.1.1	Glucamate SSE-20 and Glucate SS 4.1.2 Mixed Emulsifiers	54
		57
	4.1.3 Hydrocolloids 4.1.4 Relation Surface Tension Toward	59
	Adsorption and Critical Packing Concept	60
4.2	Binary Phase Behaviour	61
4.2	4.2.1 Constructing Phase Diagramme	61
	4.2.2 Thixotropy Behaviour	68
	4.2.3 Evaporation Studies	76
4.3	Ternary Phase Behaviour	82
	4.3.1 Phase Diagramme of 60/40 Mixed	84
	Emulsifiers System	54

		4.3.2	······································	85
			Emulsifiers Systems	
		4.3.3		86
			Emulsifiers System	
		4.3.4		87
	4.4		sion Without Hydrocolloid (Control)	89
		4.4.1		89
		4.4.2	•	98
			Droplet size Under Microscope	102
		4.4.4	Emulsion Droplet Under	104
			Birefringent Light	
			Rheology Measurements	106
			Thermogravimetric Analysis	118
	4.5		sion With Hydrocolloid-	
			oxyethyl Cellulose	121
			Stability index and Droplet Size	121
			Droplet Size Distribution	129
		4.5.3	Emulsion Droplet under Birefringence Light	130
		4.5.4	Rheology Measurements	131
			Thermogravimetric Analysis	140
	4.6		sion With Hydrocolloid-Xanthan	
		Gum		141
		4.6.1	Stability index and Droplet Size and	141
			Droplet Size Distribution	149
		4.6.3	Emulsion Droplet Under Birefringent Light	150
		4.6.4	Rheology Measurements	151
			Thermogravimetric Analysis	159
5	CONCL	USION	AND FUTURE WORK	161
	REFER	ENCES	8	167
	APPEN	DICES		176
	VITA			189
				109

LIST OF TABLES

Table		Page
1.1	Industrial uses of carbohydrate-derived surfactants	4
1.2	Classification for rheological additives	6
1.3	Appearance of systems and their likely HLB values	13
3.1 3.2	Specifications of glucate SS and glucamate SSE-20 Specifications of glycerol tricaprylate/tricaprate	28 29
3.3	Specification of xanthan gum	32
4.1	Summary phases transition of the binary system glucamate SSE-20/glucate SS	63
4.2	Rheology of glucamate SSE/-20glucate SS binary systems	76
4.3	Components in the liquid crystal of the 60/40 mixed emulsifier system	84
4.4	Components in the liquid crystal of the 70/30 mixed emulsifier system	85
4.5	Components in the liquid crystal of the 80/20 mixed emulsifier system	86
4.7	Appearance of *ternary system (emulsions) of mixed emulsifiers/water/MCT without hydrocolloid	90
4.8	Mean droplet diameter D[4,3] and specific surface area of emulsions without hydrocolloid (Control)	95
4.8	Expected surface area of mixed emulsifiers molecules for complete coverage of an oil droplet in emulsions without hydrocolloid (Control) after one month's storage	97
4.9	*Spans and modes distribution for emulsions without hydrocolloid (Control)	101

4.10	*Rheological data obtained by curve fitting the palm-based emulsions without hydrocolloid (Control)	107
4.11	Apparent viscosity at 25° C for shear rate of 30s ⁻¹ of emulsions without hydrocolloid (Control)	109
4.12	Steady state compliance, J_{eo} , and zero shear viscosity, η_o of emulsions without hydrocolloid (Control)	117
4.13	Interlamellarly fixed and bulk water in emulsions without hydrocolloid (Control)	120
4.14	Appearance of ternary system of mixed emulsifiers/ water/MCT with HEC	121
4.15	Mean droplets diameter, D[4,3] and specific surface area for HEC emulsions after storage for one month	125
4.16	Expected surface area molecules from the mixed emulsifiers for complete coverage of oil droplets in HEC emulsions after one month's storage	128
4.17	Spans and mode distribution of HEC emulsions	130
4.18	*Rheological data from fitting curve to HEC emulsions	132
4.19	Apparent viscosity of HEC emulsions for shear rate of 30 s^{-1} at 25° C	134
4.20	Steady state compliance, $J_{\text{eo}}, \ \text{and} \ \text{zero shear viscosity}, \\ \eta_{\text{o}} \ \text{of} \ \ \text{HEC emulsions}$	140
4.21	Interlamellarly and bulk water in HEC emulsions	141
4.22	Appearance of ternary system of mixed emulsifiers/ water/MCT with *XG	142
4.23	Mean droplets diameter, D[4,3] and specific surface area (SSA)for XG emulsion after storage for one month	146

4.24	Expected surface area for complete coverage of oil droplet by mixed emulsifiers molecule with XG after one month's storage	148
4.25	*Spans and modes of droplet size distribution for XG emulsions	150
4.26	Rheological data obtained by curve fitting the XG emulsions	152
4.27	Apparent viscosity of XG emulsions at 25° C and shear rate of 30 s ⁻¹	153
4.28	Steady state compliance, $J_{\text{eo}}, \ \text{and} \ \text{zero shear viscosity,} \ \eta_{\text{o}} \ \text{of} \ \text{emulsions with XG}$	159
4.29	Interlamellarly and bulk water in XG emulsions	160

LIST OF FIGURES

Figure		Page
1.1	Orientation of polymer in interfacial film strengthening P= hydrophilic polar group;zig-zag, line represents the polymer backbone	11
2.1	Schematic diagramme of a typical semisolid cream prepared with cetostearyl alcohol and ionic surfactant.	25
3.1	Structures of glucamate SSE-20 and glucate SS	27
3.2	Structure of hydroxyethyl cellulose	30
3.3	Structure of xanthan gum	31
3.4	DuNoül ring method for measuring surface tension	34
3.5	DuNoül ring method for measuring interfacial tension	35
3.6	Aggregation of micelles and lyotropic liquid crystals	39
3.7	Sinusoidal variation in stress and strain	48
3.8	Creep recovery of a viscoelastic material	52
3.9	Examples of a typical TG(I) and DTG (II)curve	53
4.1	Surface tension of aqueous solution of glucamate SSE-20 at 25 °C	55
4.2	Surface tension of non-aqueous solution of glucate SS at 25 °C	55
4.3	Interfacial tension of aqueous solution glucamate SSE-20 at 25°C	56
4.4	Interfacial tension of non-aqueous solution of glucate SS at 25°C	57

4.5	Surface tension of aqueous mixed emulsifiers solution at 50°C	58
4.6	Interfacial tension of aqueous mixed emulsifiers solution at 50°C	59
4.7	Phase diagramme of glucamate SSE-20/glucate SS / water at 80°C	62
4.8	Optical patterns in 60/40 glucamate SSE-20 and glucate SS	65
4.9	Optical patterns in 70/30 glucamate SSE-20 and glucate SS	66
4.10	Optical pattens on 80/20 glucamate SSE–20 and glucate SS	67
4.11	Optical pattern in 90/10 glucamate SSE-20 and glucate SS	68
4.12	Optical pattern in 0/100 glucamate SSE-20 and glucate SS	68
4.13	Thixotropic behaviour of 60/40 glucamate SSE-20 and glucate SS	70
4.14	Thixotropic behaviour of 70/30 glucamate SSE-20 and glucate SS	71
4.15	Thixotropic behaviour of 80/20 glucamate SSE-20 and glucate SS	72
4.16	Viscosity vs shear rate of 60/40 glucamate SSE-20 and glucate SS	73
4.17	Viscosity vs shear rate of 70/30 glucamate SSE-20 and glucate SS	74
4.18	Viscosity vs shear rate of 80/20 glucamate SSE-20 and glucate SS	75

4.19	Changes in the optical pattern from lamellar liquid crystal to isotropic dependence on time with at constant 80°C with 60/40 glucamate SSE-20/ glucate SS mixed emulsifiers in 30 % water	78
4.20	Changes in the optical pattern from lamellar liquid crystal to isotropic dependence on time with at constant 80°C with 70/30 glucamate SSE-20/ glucate SS mixed emulsifiers in 30 % water	80
4.21	Changes in the optical pattern from lamellar liquid crystal to isotropic dependence on time with at constant 80°C with 80/20 glucamate SSE-20/ glucate SS mixed emulsifiers in 29 % water	81
4.22	Ternary phase systems of mixed emulsifiers, water and MCT at 80°C with glucamate SSE-20 and glucate SS ratios of 60/40% w/w (), 70/30% w/w (), 20/80% w/w ()	83
4.23	Optical patterns of lamellar liquid crystal with 60/40 glucamate SSE-20/glucate SS mixed emulsifiers	85
4.24	Optical patterns of lamellar liquid crystal at 70/30 glucamate SSE-20/glucate SS mixed emulsifiers	86
4.25	Optical patterns of lamellar liquid crystal in 80/20 glucamate SSE-20/glucate SS mixed emulsifiers	87
4.26	Thixotropic behaviour for different mixed emulsifiers/ water/MCT regions and ratios : 60/40 mixed emulsifiers A. 70/30/1 B. 70/30/2 C. 60/40/1 70/30 mixed emulsifiers D. 80/20/1 E. 70/30/3 80/20 mixed emulsifiers F. 80/20/1	88

G. 80/20/3

4.27	Thixotropic behaviour for different mixed emulsifiers /water/MCT regions and ratios: 60/40 mixed emulsifiers A. 50/50/1 70/30 mixed emulsifiers B. 70/30/2 C. 70/30/1	89
4.28	Stability of 50 % w/w MCT emulsified with 5% mixed emulsifiers without hydrocolloid at 28°C	91
4.29	Stability of 50 % w/w MCT emulsified with 5% mixed emulsifiers without hydrocolloid at 45°C	92
4.30	Stability index of emulsions without hydrocolloids (Control) after storage for 30 days at 28°C	93
4.31	Stability index of emulsions without hydrocolloids (Control) after storage for 30days at 45°C	93
4.32	Mean droplet diameter of emulsions without hydrocolloid (Control) stored for 30 days at 28°C	95
4.33	Synergistic effect on area per molecule by mixed emulsifiers for complete coverage of an oil droplet in an emulsion	97
4.34	Droplet size distribution of emulsions without hydrocolloids (Control) after ageing	100
4.35	Schematic representation of the formation of a bimodal emulsion	101
4.36	Structures of emulsions at room temperature without hydrocolloid (Control)	103
4.37	Structure of emulsions at 45°C without hydrocolloid (Control)	103
4.38	Liquid crystals in emulsions without hydrocolloid and with onion ring around the oil droplets;	105

4.39	Effect of HLB value on zero stress and yield value of emulsions without hydrocolloids (Control)	108
4.40	Effect of F1 to F11 (with decreasing HLB value) on the critical stress of emulsions without hydrocolloid (Control)	110
4.41	Frequency sweep of emulsions without hydrocolloid (Control)	114
4.42	Interpenetration of adsorbed monolayers. (a) h>2 δ , and (b) h>2 δ	114
4.43	Creep recovery of emulsions without hydrocolloid (Control)	117
4.44	TG and DTG for pure water	118
4.45	TG and DTG of an emulsion without hydrocolloid (Control)	119
4.46	Stability of HEC emulsions at 28°C	123
4.47	Stability of HEC emulsions at 45°C	123
4.48	Stability index HEC emulsions at 28°C	124
4.49	Stability index HEC emulsions at 45°C	124
4.50		
	Structure of agitated HEC emulsions after storage at 45°C for 30 days	126
4.51		126 126
	at 45°C for 30 days Structure of HEC emulsions after storage at 28°C	

