

UNIVERSITI PUTRA MALAYSIA

FORMULATION OF EMPIRICAL MODELS FOR SOLAR MODULE BY OPTIMISATION OF ITS TILT-ANGLE UNDER NATURAL CONDITIONS

SIOW WEE SIONG

FSAS 2001 12

FORMULATION OF EMPIRICAL MODELS FOR SOLAR MODULE BY OPTIMISATION OF ITS TILT-ANGLE UNDER NATURAL CONDITIONS

By

SIOW WEE SIONG

Thesis Submitted in Fulfilment of the Requirement for the Degree of Master of Science in the Faculty of Science and Environmental Studies Universiti Putra Malaysia

July 2001

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

FORMULATION OF EMPIRICAL MODELS FOR SOLAR MODULES BY OPTIMISATION OF ITS TILT-ANGLE UNDER NATURAL CONDITIONS

By

SIOW WEE SIONG

July 2001

Chairman: Prof. Hj. Mohd Yusof Sulaiman, Ph.D.

Faculty: Science and Environmental Studies

Malaysia is a tropical country with abundant sunshine all the year round. The use of solar energy as an alternative to the conventional should be developed urgently as the conventional fuels will be exhausted within this century. Information of global irradiance at any site of the country is essential for proper design and assessed for optimum solar energy conversion. The aim of this study is to find suitable empirical models to explain the incident global irradiance on solar modules for electrical conversion at a fixed optimum tilt-angle throughout the entire day and under the natural conditions.

This research presents a comparative assessment of tilted insolation models using hourly measurements of constant global insolation on solar modules tilted at 0°, 15°, 30° and 45° oriented south in Universiti Putra Malaysia. The experimental research was carried out for six months by exposing the solar modules to natural environment where their environmental parameters such as

global insolation, ambient temperature, solar cell temperature, wind speed, time, module-current and voltage at various load conditions were recorded.

By using the recorded data, a variety of graphical and statistical analyses were performed in order to deduce the module's internal parameters and formulation of models. The analysis reviewed that the optimum tilt-angle was 15° due south as the solar module achieved the highest average global insolation and power production for the entire day during the test. Statistical regression analyses were also performed to formulate empirical models for showing the relationship between these environmental parameters. The formulated empirical models maybe able to predict the outcome of solar electricity production under various tilt-angles and environmental parameters.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains.

FORMULASI MODEL EMPIRIKAL DENGAN KAEDAH OPTIMISASI SUDUT CONDONG MODUL SURIA DI BAWAH KEADAAN SEMULAJADI

Oleh

SIOW WEE SIONG

Julai 2001

Pengerusi: Prof. Hj. Mohd. Yusof Sulaiman, Ph. D.

Fakulti: Sains dan Pengajian Alam Sekitar

Malaysia adalah sebuah negara tropik yang hanya dengan sianaran suria sepanjang tahun. Penggunaan tenaga suria sebagai satu tenaga alternatif wajib dibangunkan dengan segera kerana bahan api konvensional akan pupus dalam abad ini. Maklumat mengenai sinaran suria global di negara ini sangat diperlukan untuk mereka-cipta dan menilai pemukaran optima tenaga suria. Kajian ini bertujuan mencari model empirikal yang sesuai bagi menerangkan fenomena sinaran suria tuju ke atas modul suria untuk pemukaran kepada tenaga elektrik pada satah sudut-condong yang tetap sepanjang hari serta terdedah kepada persekitran semulajadi.

Kajian ini juga memberi penilaian bandingan modul suria yang tercondong pada sudut 0°,15°,30°dan 45° menghala ke selatan di Universiti Putra Malaysia. Segala catatan sinaran tuju yang tetap adalah berdasarkan sukatan masa dalam unit jam pada siang hari. Eksperimen ini dijalankan selama enam bulan di

Universiti Putra Malaysia di mana parameter alam sekitar seperti sinaran tuju global suria, suhu ambang persekitaran, suhu sel suria, kelajuan angin, masa, arus dan beza keupayaan modul suria pada beban elektrik yang berbeza dicatatkan.

Dengan menggunakan data yang tercatat, pelbagai analisis dalam bentuk graf dan statistik dilakukan untuk mentahkik parameter dalaman modul dan pemformulasi model. Analisis tersebut dapat menjelaskan sudut condong yang optima modul suria ialah 15° menghala selatan kerana modul suria telah menghasilkan purata sinaran yang tertinggi dan menghasilkan kuasa elektrik maksimum pada keseluruhan hari dalam tempoh kajian. Analisis statistik regresi juga dijalankan bagi memformulasi medel empirikal bagi menunjukkan hubungan antara parameter-parameter alam selaitar tersebut. Rumusan model empirikal ini mungkin digunakan bagi meramal penghasilan kuasa elektrik suria pada pelbagai sudut condong dan keadaan persekitaran semulajadi yang berbeza.

ACKNOWLEDGEMENT

I would like to express my most sincere gratitude and highest thanks to Professor Dr. Mohd. Yusof Sulaiman, chairman of my supervisory committee, for his valuable guidance, unlimited assistance, patience, and beneficial advice through out this project.

Similarly, I would like to express my heartfelt thanks to members of my supervisory committee, they are Dr. Mahdi Abd. Wahab, Dr. Azmi Zakaria and Associate Professor Dr. Zainal Abidin Sulaiman, for their interest, suggestions and guidance through out the project.

I am also grateful to members and staff of Physics Department of UPM who have always willing to offer assistance and advice, in particular, En. Shahraruddin Hj. Abd. Rahman.

I also take this opportunity to express special thanks to my coursemates Khalid Osman, Mohd Alghoul, Ahmed Akaak, Win Maw and Mohd. Ali who have helped in the discussion and for solving problems of this project.

I would also wish to thank the Ministry of Education of Malaysia for sponsoring my studies. This project was financially supported by grants from Intensified Research in Priority Area Program (IRPA).

TABLE OF CONTENTS

P	age
-	REC.

ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGEMENT	vi
APPROVAL SHEETS	vii
DECLARATION FORM	ix
TABLE OF CONTENTS	x
LIST OF TABLES	xiii
LIST OF FIGURES	xvi
LIST OF SYMBOLS AND ABBREVIATIONS	XX

CHAPTER

Ι	INTRODUCTION	1
	What is Solar Energy ?	1
	Solar Heating	1
	Solar Electricity	1
	Application of Solar Energy	2
	Objectives of Project Works	4
	The Principle of Solar Cells as p-n Junction Diode	5
	Energy Band Structure	8
	Variety in Photovoltaic Cells and Manufacturing Processes	12

	Crystalline Silicon Solar Cells(Thick-film)	12
	Polycrystalline Silicon	13
	Thin-film Solar Cells	14
	Amorphous Silicon	15
	Cadmium Telluride (CdTe)	16
	Copper Indium Diselenide (CIS)	16
	Concentrator Solar Cells	17
	Silicon	17
	Gallium Arsenide	17
П	SUN-EARTH GEOMETRIC RELATIONS	19
	Solar Positions in Relation to Earth	19
	Insolation on Tilted Surfaces	31
ш	LITERATURE REVIEW	36
IV	PRINCIPLE AND CHARACTERISTICS OF SOLAR CELLS	43
	Principle of Solar Cells	43
	Factors Affecting the Electrical Characteristics of PV Cells	45
	Short-circuit Current	47
	Open-circuit Voltage	48
	Maximum Power Operation	50
	Definations	51
	Peakpower	51
	Conversion Efficiency	51
	Fill Factor	51
	Parametric Analysis of the Current-voltage Characteristics of PV Cells	52
	Influence of Solar Irradiance	55
	Influence of Temperature	60
	Effect of the Numbers of Cells in a Module	62
v	METHODOLOGY	65
	Test Procedure	65
	Description on Equipment Used	68
VI	RESULTS	70
	Fyneriment	70
	Summary of Module Voltage Current and Power Produced	83
	Summary of Module Maximum Power Maximum Voltage	05
	and Maximum Current	02
	Shunt Resistance and Series Resistance of Solar	76
	Modules	112

S	tatistical Analysis on the Variation of the Global Insolation H at Different Time Interval t During the Testing Day	116
VIII	DISCUSSION	101
V II	DISCUSSION Equivient Models of Short circuit Current Measure Current	121
	Empirical Models of Short-circuit Current, Maximum Current,	
	Maximum Power and Open-circuit Voltage Versus Global	
	Insolation	121
	Empirical Models of Global Insolation, Maximum Power, Maxim	um
	Current Versus Module Temperature	144
	Empirical Model of I-V Characteristics Curves	160
	Empirical Model for Tilt-angle and Mean Maximum Power	202
	Empirical Model for Global Insolation H and Time t	206
VIII	CONCLUSION	207
	REFERENCES	218
	APPENDICES	221
	VITA	244

LIST OF TABLES

Table

Page

4.1.	Band-gap energies of silicon and GaAs, together with	
	the parameters a and b in equation (4.12).	62
6.1.	Summary of Voltage V (volt) and Current I (mA) at constant Global Insolation (Wm ⁻²) at tilt-angle 0° due south.	74
6.2.	Summary of Voltage V (volt) and Current I (mA) at constant Global Insolation (Wm ⁻²) at tilt-angle 15° due south.	77
6.3.	Summary of Voltage V (volt) and Current I (mA) at constant Global Insolation (Wm ⁻²) at tilt-angle 30° due south.	80
6.4.	Summary of Voltage V (volt) and Current I (mA) at constant Global Insolation (Wm ⁻²) at tilt-angle 45° due south.	83
6.5.	Module voltage, current and power produced for tilt-angle 0° under constant global insolation from 350 to 1000 W m ⁻² with the tilted plane.	86
6.6.	Module voltage, current and power produced for tilt-angle 15° under constant global insolation from $350 \text{ to } 1150 \text{ W m}^{-2}$ with the tilted plane.	90
6.7.	Module voltage, current and power produced for tilt-angle 30° under constant global insolation from 300 to 1050 W m ⁻² with the tilted plane.	94
6.8.	Module voltage, current and power produced for tilt-angle 45° under constant global insolation from $300 \text{ to } 1000 \text{ W m}^{-2}$ with the tilted plane.	98

6.9.1.	Statistical analysis on the variation of H, Tc, TA, WS, Voc, Isc, Vm, Im, Pm, Nmax and FF of solar module tilted at 0° due south.	103
6.9.2.	Statistical analysis on the variation of H, Tc, TA, WS, Voc, Isc, Vm, Im, Pm, Nmax and FF of solar module tilted at 15° due south.	105
6.9.3.	Statistical analysis on the variation of H, Tc, TA, WS, Voc, Isc, Vm, Im, Pm, Nmax and FF of solar module tilted at 30° due south.	107
6.9.4.	Statistical analysis on the variation of H, Tc, TA, WS, Voc, Isc, Vm, Im, Pm, Nmax and FF of solar module tilted at 45° due south.	109
6.10.	Statistical analysis of shunt resistance Rsh and series resistance Rs under global insolation from 300 to 1150 W m ⁻² at tilt-angle 0°, 15°, 30° and 45° due south.	116
6.10.1.	The overall statistical analysis of shunt resistance Rsh and series resistance Rs of solar modules tilted at 0° , 15° , 30° and 45° due south and under constant global insolation from 300 to 1150 W m ⁻² with the tilted plane.	118
6.11.	Statistical analysis for the variation of global insolation H at different time t interval for solar modules tilted at 0°,15°,30° and 45° due south during the tested days.	120
7.1.	Calculation of regression curves for H and Isc with tilt-angle 0°, 15°, 30° and 45° due south.	131
7.2.	Calculation of regression curves for H and Im with tilt-angle 0°, 15°, 30° and 45° due south.	135
7.3.	Calculation of regression curves for H and Pm with tilt-angle 0°,15°, 30° and 45° due south.	139
7.4.	Calculation of regression curves for H and Voc with tilt-angle 0°, 15°, 30° and 45° due south.	143
7.5.	Calculation of regression curve Tc and H for tilt-angle 0°, 15°, 30° and 45° due south.	150
7.6.	Calculation of regression curve Pm and Tc tilt-angle 0°, 15°, 30° and 45° due south.	155

7.7 .	Calculation of regression curve Im and Tc for	
	tilt-angle 0°, 15°, 30° and 45° due south.	160
7.8.	Regression statistics for I-V characteristics	
	curve of solar modules tilted at 0° due south	
	under constant global insolation 350 to 1000Wm ⁻² .	165
7.9.	Regression statistics for I-V characteristics	
	curve of solar modules tilted at 15° due south	
	under constant global insolation 350 to 1150 Wm ⁻² .	174
7.10.	Regression statistics for I-V characteristics curve	
	of solar modules tilted at 15° due south under	
	constant global insolation 300 to 1050 Wm ⁻² .	185
7.11.	Regression statistics for I-V characteristics curve	
	of solar modules tilted at 45° due south under	
	constant global insolation 300 to 1000 Wm ⁻² .	196
7.12.	The mean maximum power generated by solar	
	modules tilted at 0°, 15°, 30° and 45° due south	
	under constant global insolation from 300 to	
	1150 Wm ⁻² during the entire test period.	201
7.13.	The regression statistics calculation of mean	
	maximum powers and tilt-angle.	202
7.14.	The regression statistics calculation of time of the	
	day t and global insolation H during the testing day.	206

LIST OF FIGURES

Figure		Page
1.1.	A typical planar junction n-on-p solar cell.	6
1.2.	The Fermi-Dirac distribution function.	7
1.3.	The energy band diagram of homojunction and the drift of electrons and holes under the influence of the diffusion potential.	8
1.4.	The energy band diagram of heterojunction of a PV cell.	9
1.5	The energy band diagram of a Schottky Barrier junction of a PV cell.	10
1.6	Schematic representation of light interaction and current flow in a photovoltaic cell.	11
2.1	Sun-earth geometric relationship: (a) motion of earth about the sun.(b) Location of Arctic and Antarctic circles and the tropics.	21
2.2	Definition of latitude L, hour angle h and solar declination δ	22
2.3	Variation of solar declination.	23
2.4	Apparent solar path and definition of solar zenith angle z, altitude angle α , and azimuth angle ϕ .	26
2.5	Definition of surface tilt angle s, surface azimuth angle ψ , and solar incident angle i.	27
2.6	Beam radiation on horizontal and tilted surfaces.	32
4.1	Electrical equivalent diagram of a solar cell: (a) voltage source; (b) current source; (c) PV generator.	44
4.2	Solar cell I-V characteristics.	45

4.3	Solar cell I-V characteristics with constant-power curves and load lines.	47
4.4.	Solar cell (a) in the short-circuit condition and (b) in the open circuit condition.	49
4.5.	Influence of temperature on the PV current and voltage output characteristics at constant irradiance.	49
4.6.	Effect of series resistance on the I-V curve shape.	53
4.7	Effect of shunt resistance on the I-V curve shape of 2 cm x 2 cm solar cell A	54
4.8	Analysis of the series resistance in an n-i-p silicon solar cell.	55
4.9.	Influence of irradiance on the PV current and voltage output characteristics of a single cell at constant cell temperature.	56
4.10.	Effect of solar irradiance on the I-V curve of a solar module.	58
4.11.	The effect that cell temperature has on the I-V curve (at 1000 Wm ⁻²) for a solar module.	61
4.12.	The effect of the different number of cells in a module on the <i>I-V</i> curve (at 1000 W m ⁻² and 25 °C cell temperature).	63
4.13	Comparison of $I-V$ curves under the same test conditions for the same size of modules made of thin-film silicon and single-crystal silicon.	64
5.1	The experiment set-up.	67
6.1	I-V characteristics curve H 350-1000 Wm ⁻² tilt-angle 0° due south	76
6.2	I-V characteristics curve H 350-1150 Wm ⁻² tilt-angle 15° due south	79

6.3	I-V characteristics curve H 300-1050 Wm ⁻² tilt-angle 30° due south	82
6.4	I-V characteristics curve H 300-1000 Wm ⁻² tilt-angle 45° due south	85
6.5	Graph of module voltage versus power at tilt-angle 0° due south and H 350-1000 Wm ⁻²	89
6.6	Graph of module voltage versus power at tilt-angle 15° due south and H 350-1150 Wm ⁻² .	93
6.7	Graph of module voltage versus power at tilt-angle 30° due south and H 300-1050 Wm ⁻² .	97
6.8	Graph of module voltage versus power at tilt-angle 45° due south and H 300-1000 Wm ⁻² .	100
6.9.1	Variation of H, Tc,TA,WS, Voc, Isc, Vm,Im,Pm,Nmax and FF fot tilt-angle 0° due south.	111
6.9.2	Variation of H, Tc, TA, WS, Voc, Isc, Vm, and FF fot tilt-angle 15° due south.	112
6.9.3	Variation of H, Tc,TA, and FF fot tilt-angle 30° due south.	113
6.9.4	Variation of H, Tc,TA, and FF fot tilt-angle 45° due south.	114
6.10.	Variation of global insolation H at different time t during the tested day.	123
7.1	Short-circuit current Isc versus global insolation H with regression curve.	130
7.2	Maximum current Im versus global insolation H with regression curve.	134
7.3	Maximum power Pm versus global insolation H with regression curve.	138
7.4	Open-circuit voltage Voc versus global insolation H with regression curve.	142
7.5.	Module temperature Tc vs global insolation H	149

7.6.	Module temperature Tc vs maximum power Pm	154
7.7.	Module temperature Tc vs maximum current Im	159
7.8.	I-V characteristics curve H 350-1000 Wm ⁻² tilt-angle 0° due south with regression curve	164
7.9.	I-V characteristics curve H 350-1150 Wm ⁻² tilt-angle 15° due south with regression curve	173
7.10.	I-V characteristics curve H 350-1050 Wm ⁻² tilt-angle 30° due south with regression curve	184
7.11.	I-V characteristics curve H 300-1000 Wm ⁻² tilt-angle 45° due south with regression curve	195
7.12.	Tilt-angle versus mean maximum power	204
7.13.	Time versus global insolation H	209

LISTS OF SYMBOLS AND ABBREVIATIONS

Pm	Peak power
Vm	Peak voltage
Im	Peak current
Voc	Open circuit voltage
Н	Global radiation
h	Planck's constant
ν	Frequency
φ	Work function
E _f	Fermi energy level
L	Latitude
h	Hour angle
δ	Solar declination
Z	Zenith angle
H _{Bn}	Beam radiation at normal incidence
H _B	Beam radiation on a horizontal surface
H _{Bt}	Beam radiation on a tilted surface
R _B	Beam radiation tilt factor.
ρ _g	Diffuse reflectivity
$\bar{K_r}$	Monthly average clearness index
h _s	Sunset hour angle in degrees

H	Monthly average daily total radiation
Ū.	Monthly average daily diffuse radiation
<i>¯R</i>	Monthly mean total radiation tilt-factor
\$	Tilt of the surface from the horizontal
I _{ph}	Photocurrent
ID	Diode current.
I.	Saturation current
A	Ideality factor
Q	Electronic charge
K _B	Boltzmanns gas constant
Τ	Junction temperature
R _s	Series resistance
R _{sh}	Shunt resistance.
Eg	Band-gap energy
Ao	Ideality factor of the saturation current
Тс	Cell temperature
WS	Wind speed
TA	Ambient temperature
Nmax	Maximum efficiency of solar module
FF	Fill factor
GI	Global insolation

• •

Chapter I

Introduction

What is Solar Energy?

In general terms, solar energy means all the energy that reaches the earth from the sun. It provides daylight, makes the earth hot, and is the source of energy for plants to grow. Solar energy is classified into two types, which are solar heating and solar electricity.

Solar Heating

This application of solar energy simply makes use of the heating effect of sunlight. It has been used for centuries for drying crops, bricks, and pots and to make salt from salty water in solar evaporation ponds. Solar ovens are made with mirrors that concentrate the sun's heat onto a black-painted box for cooking food. Nowadays, solar water heater are quite common in use and they are easily recognised by rectangular black panels mounted at a slight slope and sometimes with a small water tank fixed near to the top end. A pipe is bent back and forth in the panel and water flowing through the pipe becomes hot since the black surface of the panel absorbs a lot of heat when the sun is out. Hot water flows from the panel up to a tank, which is insulated to prevent the water cooling down too much before it is used.

Solar Electricity

Another major use of solar energy is solar electricity. This is electricity generated directly from sunlight using solar or photovoltaic cells. The word

' photovoltaic' refers to an electric voltage caused by light. Solar cells were first developed to power satellites for the space programme in the 1950s. Most solar cells are made of silicon. This is a hard material that is either dark blue or red in appearance. These blue cells are made as thin discs or squares, which are quite fragile. The red type of silicon is coated on to glass as a thin film. As sunlight shines on the surface of silicon, electricity is generated by a process known as the photoelectric effect. Each silicon solar cell produces about 0.4 volt, so solar cells are connected in series to produce a higher voltage. The connection in this way is often called solar panels or photovoltaic modules.

Applications of Solar Electricity

Solar cell modules are made in many sizes, depending on their use. The smallest ones power electronic calculators and digital wrist-watches, while arrays of large modules can supply electricity for a whole village. Solar modules are good source of electricity because they are very reliable, simple to operate, and do not require fuel. However, since they are also expensive to make, these advantages have to be carefully balanced against their high cost before purchase. The main application for solar electricity is in remote sunny areas that have no main electricity and where the supply of fuel for generators is unreliable or expensive. Solar electricity is already used in many large scaled projects: pumping water for drinking and irrigation, lighting and signaling in small stations along a railways line, powering telecommunications stations, and providing cathodic protection of pipelines to prevent rusting. All electricity to operate. They are

well suited to being run on solar electricity because only a small number of solar modules are required in the system. Appliances that produce a lot of heat, such as an electric cooker, clothes iron, or kettle, are all rated in kilowatts. It is possible to run them on solar electricity. However, they would need many solar modules that would be very expensive and would not be an economical use of solar electricity

[1].

