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Buildings play an essential role in urban construction, planning, and climate 
studies.  Extracting detailed and accurate information about building such as 
value, usage, height, and size provides information for town planning, urban 
management, and three-dimensional (3D) visualization. Building extraction with 
remote sensing data especially LiDAR (Light Detection And Ranging) and VHR 
(Very High Resolution) images is a difficult task and open research problem. For 
this purpose, scientists have been developing methods utilizing the standard pixel 
features and additional height features of the data in various ways. In urban areas, 
extracting buildings is more complex than extracting them in rural areas. This is 
because of the presence of nearby objects, such as trees, which frequently have 
similar elevations as buildings. Additional challenges also come from different 
material combinations that create a variety of intensity in the spectral bands, 
employed. Two common methods are widely used in literature, pixel-based and 
object-based methods (also known as OBIA). The former results in salt and 
pepper like noise in the detected buildings, while the latter requires proper feature 
selection and image segmentation. Both methods have poor generalization and 
transferability to other environments, scale dependency, and require good quality 
training examples. As a result, the main goal of this research is to design and 
optimize deep learning-based fusion techniques using Autoencoders (AE) and 
Convolutional Neural Networks (CNN) for integrating LiDAR and Worldview-3 
(WV3) data for building extraction.  The optimization was carried out using grid 
and random search techniques to improve the performance of models. 
Specifically, two fusion methods were developed. First, a method for fusion of 
LiDAR-based digital surface model (DSM) with orthophoto (LO-Fusion), and a 
second method for LiDAR-DSM with WV3 (LW-Fusion) image. The results of this 
thesis are promising.  Our method achieved the highest accuracies of 97.34%, 
94.48%, and 94.37% in the three-subset areas.  It performed better than the 
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traditional methods, such as support vector machine (SVM), random forest (RF), 
and K-nearest neighbour (KNN).  The highest validation accuracy in this group of 
methods was 89.04%, achieved by SVM.  Although KNN achieved better training 
accuracy (92.34%) than RF, the latter achieved better validation accuracy than 
the former (86.17%).  Furthermore, CNN and Optimized CNN with the random 
search were used to detect buildings in the same areas using only LiDAR and 
orthophoto data.  The experimental results show that the use of additional features 
of WV3 image fused with LiDAR data can increase validation accuracy by almost 
11%.  The validation accuracy of Optimized CNN with only LiDAR and orthophoto 
data was 86.19%, which is relatively lower than those of SVM and RF. Overall, 
proper optimization can improve the use of deep learning models such as CNN 
and autoencoders to the extent of outperforming OBIA for building detection from 
LiDAR and VHR satellite data. 
  

© C
OPYRIG

HT U
PM



 
iii 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah 

 
 
PEMBANGUNAN DALAM PEMBELAJARAN MENDALAM BERASASKAN 

GABUNGAN KAEDAH BAGI PENGESANAN BANGUNAN 
MENGGUNAKAN LiDAR DAN IMEJ RESOLUSI YANG SANGAT TINGGI 

 
 

Oleh 
 
 

NAHHAS FATEN HAMED A 
 
 

Ogos 2018  
 
 

Pengerusi :   Profesor Madya Helmi Zulhaidi Bin Mohd Shafri, PhD  
Fakulti  :   Kejuruteraan 
 
 
Bangunan memainkan peranan yang penting dalam pembinaan bandar, 
perancangan, dan iklim. Mendapatkan maklumat yang tepat mengenai 
bangunan seperti nilai, penggunaan, ketinggian dan saiz memainkan peranan 
penting sebagai maklumat utama yang kritikal bagi perancangan bandar, 
pengurusan bandar, pengurusan bencana dan visualisasi tiga demensi (3D). 
Kebelakangan ini, kaedah berasaskan pelajaran mendalam, seperti rangkaian 
Neural mendalam (NN) dan model rangkaian Neural Convolutional (CNN), 
Autoencoders dan ensemble model telah mendapat banyak perhatian dalam 
aplikasi remote sensing, terutamanya untuk pengesanan objek (contohnya, 
pengesanan bangunan). Matlamat utama kajian ini adalah untuk merekabentuk 
pembelajaran mendalam berasaskan teknik gabungan bagi mengintegrasi 
LiDAR point cloud dan imej satelit Worldview-3 untuk pengesanan bangunan. 
Objektif khusus kajian adalah seperti berikut: (1) untuk merekabentuk dan 
membangunkan satu teknik penggabungan yang menggunakan Autoencoders 
mendalam dan rangkaian neural convolutional untuk pengesanan bangunan 
daripada data  LiDAR dan Ortofoto, (2) untuk merekabentuk dan 
membangunkan kaedah gabungan yang mendalam bagi mengintegrasikan data 
LiDAR dan Worldview-3 untuk pengesanan bangunan, dan (3) untuk 
mengoptimumkan kaedah gabungan yang mendalam melalui grid dan teknik 
pengoptimuman carian rawak untuk meningkatkan prestasi model gabungan. 
Kajian ini telah membangunkan dua kaedah pengesanan bangunan 
berdasarkan teknik-teknik pembelajaran mendalam (cth., autoencoders, CNN) 
dan penggabungan data. Kaedah pertama merupakan kaedah untuk LiDAR 
DSM dan Ortofoto, dan kaedah kedua adalah untuk LiDAR DSM dan imej WV3. 
Dua set data telah digunakan: data LiDAR untuk pesawat, termasuk orthophotos 
dan imej WV3. Di samping itu, tiga kawasan bandar telah digunakan bagi 
menguji kaedah yang dicadangkan. Secara keseluruhan, hasil kajian 
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menunjukkan prestasi memberangsangkan berbanding kaedah lain. Kaedah 
pengabungan berasaskan pelajaran mendalam (DF) mencapai ketepatan yang 
paling tinggi iaitu sebanyak 97.34%, 94.48% dan 94.37% dalam tiga kawasan 
subset. Kajian medapati kaedah pembelajaran mendalam adalah lebih baik 
daripada kaedah tradisional, support vector machine (SVM), random forest (RF) 
dan K-nearest neighbour (KNN). Ketepatan paling tinggi dalam antara kaedah 
tradisional adalah 89.04%, dengan menggunakan SVM. Walaupun KNN 
mencapai ketepatan latihan lebih baik (92.34%) daripada RF, RF mencapai 
pengesahan ketepatan yang lebih baik daripada KNN (86.17%). Selain itu, CNN 
yang biasa dan CNN optima dengan carian rawak telah digunakan untuk 
mengesan bangunan di dalam kawasan yang sama dengan hanya 
menggunakan data LiDAR dan Ortofoto. Keputusan eksperimen menunjukkan 
bahawa penggunaan ciri-ciri tambahan imej data WV3 boleh meningkatkan 
ketepatan pengesahan oleh hampir 11%. Pengesahan ketepatan model CNN 
yang telah dioptimumkan dengan hanya menggunakan data LiDAR dan Ortofoto 
adalah 86.19%, agak rendah berbanding SVM dan RF. Berdasarkan keputusan 
ini, kajian-kajian pada masa hadapan perlu memberi fokus kepada kaedah 
pengoptimuman lain, seperti kaedah pengoptimuman Bayesian, dan teknik-
teknik berasaskan pembelajaran gabungan yang lain menggunakan model yang 
lebih maju, seperti variational dan convolutional autoencoders. 
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CHAPTER 1 

1 INTRODUCTION 

This chapter first provides the background of study (Section 1.1). This section 
briefly explains the importance of buildings in modern cities and presents how 
spatial information is useful for applications require geo-data of buildings. Then, 
it states the research problem (Section 1.2) that this thesis solves and research 
objectives (Section 1.3), research questions (Section 1.4), and the main 
contributions of this thesis (Section 1.5). Finally, the significance of current 
research (Section 1.6), as well as thesis organization (Section 1.7), are 
presented. 

1.1 Introduction 

Buildings play an essential role in urban construction, planning, and climate.  
Extracting accurate information about the building such as value, usage, height, 
and size is critical for town planning, urban management, and Three-
Dimensional (3D) visualization.  With the advent of new remote sensing 
technologies such as LiDAR (Light Detection And Ranging), Very High 
Resolution (VHR) satellite imagery, building extraction is a major step in urban 
mapping, planning, and many other applications, such as land use, change 
detection analysis, disaster management, and site selection.  However, building 
detection with these technologies at pixel or object level is a challenging task, 
especially in complex urban areas (Xu et al., 2018).  This challenge is mainly 
because such areas are often characterized by complex structures, large intra-
class, and low inter-class variations.  These issues lead to inaccurate building 
detection with the existing methods.  The task can be further complicated by an 
increase in spatial resolution and multisource datasets used.  Several new 
techniques have been proposed to tackle some of these issues.  

LiDAR data provide additional features that can increase the accuracy and 
quality of building objects.  LiDAR offers an accurate and efficient approach to 
point cloud (elevation) data acquisition, which can be used to extract ground 
objects, such as buildings and trees.  Unlike traditional photogrammetry 
methods, LiDAR systems can collect dense point clouds within a relatively short 
time.  The additional advantages of these systems include high vertical accuracy 
and relatively low cost when used for the right projects.  Many methods have 
been proposed to extract building objects from LiDAR or fused data from 
multispectral and LiDAR. 
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In recent years, the advancement of artificial intelligence applications with 
remote sensing techniques has emerged new approached to extracted refined 
information, specifically deep learning. Deep learning-based methods, such as 
Convolutional Neural Networks (CNN), Autoencoders (AE), and ensemble 
models have gained much attention in remote sensing applications, especially 
for object detection (e.g., building extraction). The main concept of deep learning 
models is extracting abstract representations from data, thereby reducing the 
complexity and necessity of feature extraction. Zhang et al. (2016) presented a 
technical tutorial of deep learning for remote sensing data. They discussed the 
practical aspects of designing deep learning-based models for remote sensing 
and suggested that low-level features (e.g., spectral, spatial, and textural), 
output feature representations, and the entire network architecture should be 
carefully addressed to achieve better results than traditional machine-learning 
methods. Consequently, developing accurate techniques for extracting building 
objects from remote sensing data using advanced methods such as deep 
learning can help advance various geospatial applications as mentioned above. 

1.2 The Problem Statement 

Buildings are fundamental elements in forming a city and essential for urban 
mapping.  The extraction of accurate building objects from remote sensing data 
has become an interesting topic and has received increasing attention in recent 
years.  Building extraction from remote sensing data is one of the long-standing 
and open research problems. Many methods have been developed for this 
purpose.  Among the data sources, LiDAR and VHR aerial/satellite images have 
been found to be more efficient than other data sources due to the additional 
height features in LiDAR and fine spatial resolution of aerial and some satellite 
images.  

In this context, the advantages of using LiDAR over traditional photogrammetry 
include the capability to collect dense point clouds at a relatively short time, high 
vertical accuracy, and low cost.  However, the accurate extraction of buildings 
in urban areas with precise boundaries is a difficult task due to the presence of 
nearby objects, such as trees, which frequently have similar elevations as 
buildings (Sameen and Pradhan 2017).  It was found that the fusion of LiDAR 
and aerial/satellite images has the potential to improve the quality of detecting 
overlapping objects.  Therefore, it is suggested to use this approach for buildings 
detection. 

Traditional methods of extracting buildings from remote sensing data include 
pixel-based supervised, unsupervised methods and OBIA have been found 
efficient for some cases (Alshehhi et al. 2017; Ji et al. 2018; Zhao et al. 2018).  
However, they often fail due to the complex and heterogeneous urban areas 
(Guo and Du 2017).  Pixel-based methods result in salt and pepper effect like 
noise in the final maps; while OBIA based methods require careful handcrafting 
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features and optimizing the segmentation process.  Other problems of these 
classical methods include poor generalization, transferability to other 
environments, scale dependency, and the good quality training samples.  

In contrast, previous studies (Yuan 2017; Bischke et al. 2017; Maltezos et al. 
2017; Xu et al. 2018; Yang et al. 2018) have indicated the advantages of deep 
learning methods over traditional techniques for building detection.  However, 
limited studies have investigated the power of deep learning for building 
detection from the fused of LiDAR and optical remote sensing images.  Such 
concepts as AE and CNN in Deep Learning require optimization to exploit the 
advantages of both data sources for building identification.  The optimization 
touches the hyperparameters of a designed model to reduce its sensitivity and 
the computing complexity.  Therefore, careful designing for deep learning model 
and its optimization is required to extract fine buildings footprint. 

1.3 Research Goal and Objectives  

The main goal of this research is to develop an approach for deep learning based 
fusion techniques for integrating LiDAR point clouds and optical remote sensing 
data specifically Worldview-3 (WV3) and aerial orthophoto data, for building 
extraction.  The specific objectives are as follows:  

1. To design and develop fusion techniques using deep AEs and CNN 
for building extraction from LiDAR, orthophoto, and WV3 data.  

2. To optimize the fusion methods via grid and random search 
techniques to improve the performance of the fusion models. 

3. To assess and validate the developed fusion model and compare them 
to other benchmark methods. 

 
 

1.4 Research Questions 

This thesis attempts to find answers with experimental evidence for the following 
questions: 

1. What are the advantages of fusing LiDAR data with very high-
resolution satellite images instead of fusing LiDAR with orthophoto for 
building detection using deep learning methods? 

2. What are the advantages and classification power of using deep 
learning methods over traditional machine learning techniques (e.g., 
support vector machine, random forest) for building detection? © C
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3. Does AEs, as a dimensionality reduction technique, can improve the 
classification accuracy of building detection when used with the CNN 
model?  

4. Which method between the grid and random search is superior to use 
for optimizing deep learning models for building detection from LiDAR 
and aerial/satellite image data?  

 
 
1.5 Research Contributions 

This thesis contributes to improving building detection from LiDAR, orthophoto, 
and VHR satellite image data. It contributes to the following research aspects: 

 A design of a fusion technique based on deep learning models (i.e. 
CNN, AE) for building detection from LiDAR and orthophoto.  

 The design of a deep fusion model integrates LiDAR and WV3 data for 
building detection with the new architecture.  

 The evaluation of grid and random search optimization methods for fine-
tuning deep learning models for building detection.  

 
 

1.6 Significance of Research  

Buildings are essential elements in cities, thus creating new building databases 
or updating old ones is an important task for city planners and managers.  
Building extraction from remote sensing data plays a major role in providing 
information for analysts and planners to generate useful data and enrich 
databases.  

This research addresses several important points regarding building extraction 
such as data suitability and advanced fusion and detection methods as well as 
optimization techniques that can improve the overall performance of building 
detection workflows.  It compares very high-resolution satellite images with 
aerial orthophoto for building detection, which provides information about how 
other researchers can advance the workflows in future upon the results from the 
current study.  It develops and explains in details new deep learning based 
fusion methods for building detection from LiDAR and WV3 data.  These new 
models can be a useful tool for updating existing databases in different 
organizations, thus making their data processing workflows more efficient.  
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1.7 Thesis Organization  

This thesis is divided into five chapters as follow: 

1. Introduction provides information about the background of the study, 
the statement of the problem, research goal and objectives, research 
questions, research contributions and significance of the research. 

2. Literature Review explains the theory of methods used in this 
research and provides an overview, summary, and discussions on 
previous studies on building detection from remote sensing data.  

3. Methods and Materials describe the overall methodology flowchart 
used in the current study, study area, datasets, a description of the 
proposed models with their processing details, and evaluation 
methods used to validate the results obtained from this research.  

4. Results and Discussion describes the results obtained from this 
research; also, it provides detailed discussions on the experiments 
conducted on several datasets.  

5. Conclusion and Recommendations summarize the major findings 
of this study and it offers recommendations for future works after 
explaining the limitations of the current work. 
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