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The gene of a highly thermostable alkaline protease was amplified from 

Bacillus stearothermophilus F1 by polymerase chain reaction using 

consensus primers based on the sequences of serine protease genes from 

related species. Nucleotide sequence analysis of the gene revealed an open 

reading frame containing 1 ,206 bp which encodes for a polypeptide of 401 

amino acid residues. The polypeptide composed of a signal peptide (25 

amino acid residues), a prosequence (97 amino acid residues) ,  and a 

mature protein of 279 amino acid residues. Amino acid sequence 

comparison revealed that it shared high homology with those of other serine 

proteases from a number of Bacillus spp. The recombinant F1 protease was 

efficiently excreted into culture medium using E. coli XL 1 -Blue harbouring 

two vectors: pTrcHis bearing the protease gene and pJL3 containing the 

bacteriocin-release-protein (BRP). Both vectors contain the E. coli lac 

promoter-operator system. In the presence of 40 IlM isopropyl-�-D-



thiogalactopyranoside (IPTG), the recombinant F 1  protease and the BRP 

were expressed and the mature F1  protease was released into the culture 

medium. The enzyme was purified through a one-step heat treatment at 

70°C for 3 h, and this method purified the protease to near homogeneity. 

The purified enzyme showed a pH optimum of 9.0, temperature optimum of 

80°C, and was stable at 70°C for 24 h in pH ranges from 8.0 to 1 0.0. The 

enzyme exhibited a high degree of thermostabi l ity with half-lives of 3.5 h at 

85°C, 25 min at 90°C, and was inhibited by the serine protease inhibitor, 

phenylmethanesulfonyl fluoride (PMSF). 
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Gen protease alkali yang termostabi l daripada Bacillus 

stearothermophilus F1 telah digandakan dengen tindak balas berantai 

polimerase dengen kehadiran primer; primer yang berdasarkan jujukan gen 

protease serine daripada spesis berkaitan. Analisis jujukan menunjukkan 

rangka bacaan terbuka bersaiz 1 206 bp yang mengkodkan pol ipeptida yang 

terdiri daripada 401 residu asid amino. Polipeptida tersebut terdiri daripada 

peptida isyarat (25 residu asid amino), satu pro-jujukan (97 residu asid 

amino) dan satu protein matang yang terdiri daripada 279 residu asid amino. 

Perbandingan asid amino menunjukkan homology yang tinggi dengan 

protease serina daripada beberapa spesis Bacillus. Protease daripada F1  

rekombinan telah berjaya dirembeskan secara efisien ke dalam medium 

kultur menggunakan E. coli XL1 -Blue yang membawa dua vector: pTrcHis 

yang mengandungi gen protease dan vektor pJL3 yang membawa gen 

protein-pembebasan-bakteriosin (BRP). Kedua-dua vektor mengandungi 

sistem operator promoter lac E. coli. Dengan kehadiran 40 �M IPTG, 
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protease F1  rekombinan dan BRP diekspres dan protease matang F1  

dirembeskan ke dalam medium kultur. Enzim ditulenkan melalui kaedah 

pemanasan satu langkah pada 700e selama 3 jam, kaedah ini  berjaya 

menulenkan protease hampir mencapai homogeneiti . Enzim tulen 

menunjukkan pH optimum pad a 9.0, suhu optimum pada 800e dan stabil 

pada 700e selama 24 jam di dalam pH antara 8.0 hingga 1 0.0. Enzim ini 

menunjukkan darjah kestabilan yang tinggi dengan hayat separuh 3.5 jam 

dan 25 minit pad a suhu 85°C dan 900e masing-masing. Enzim ini  direncat 

oleh perencat protease serina, peni lmetanasulfonil florida (PMSF). 
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CHAPTER I 

INTRODUCTION 

Proteases are important group of enzymes both academically and 

commercially. M icrobial proteases dominate the commercial appl ications, 

with a large market share taken by subti l isin proteases from Bacillus spp. for 

laundry detergent applications (Ward, 1 983). A major requirement for 

commercial applications of enzyme is thermal stability, because thermal 

denaturation is a common cause of enzyme inactivation. And there have 

been a number of recent efforts to improve the thermostabil ity of the 

enzymes on the basis of the currently l imited knowledge of protein 

engineering (Suzuki et al., 1 989). 

An alternative method for obtaining enzymes with improved 

thermostability is to isolate enzyme from naturally occurring thermophi l ic 

organisms. However, a disadvantage of this approach is that it is impractical 

to produce large quantities of enzymes from such organisms, as yield may 

be low because of imprecise growth conditions. Furthermore, high

temperature fermentations may require special equipment (Sonnleitner and 

Fiechter, 1 983). Therefore, the preferred method is to use gene technology 

to clone and express the thermophi l ic genes of interest into mesophi l ic 

organisms. 
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Microbial proteases have been divided into four groups based on their 

mechanisms of action. These groups are serine proteases, metal\o 

(neutral)-proteases, thiol (cysteine) proteases and acid (aspartic) proteases. 

Serine proteases are characterized by the presence of a serine group in 

their active site, and recognized by their irreversible inhibition by PMSF. 

Serine proteases are generally active at neutral and alkal ine pH, with 

optimum pH between 7 and 1 1 .  Metallo-proteases are characterized by the 

requirement for a divalent metal ion for their activity. They are inhibited by 

chelating agents such as EDTA but not by sulfhydryl agents or QFP. Thiol 

proteases depend on a catalytic triad conSisting of cysteine and histidine for 

their activity. They are susceptible to sulfhydryl agents such as PCMB, but 

are unaffected by DFP and metal-chelating agents. While aspartic 

proteases depend on aspartic acid residues for their catalytic activity, and 

show maximal activity at low pH 3 to 4 (Rao et al., 1 998). 

The extracellular proteases of the genus bacil lus are mainly either serine 

(alkaline) or metal (neutral) enzymes (Priest, 1 977) . Neutral and alkaline 

proteases from Bacillus spp. have been cloned and expressed in the 

mesophi l ic host, either Bacillus subtilis or E. coli. Metallo-(neutral )  proteases 

from Bacillus genus are widely distributed secretory enzymes, and the 

metallo-protease genes have been cloned and sequenced (Fuji et al., 1 983; 

Vasantha et al. , 1 984; Takagi et al., 1 985; Kubo and Imanaka, 1 988; Saul et 

al., 1 996). In  addition, Maciver et al. (1 994) and Takami et al. (1 992) have 

cloned thermostable alkaline proteases from Bacillus sp. Ak1 and Bacillus 

sp. no AH-1 01 into E. coli. The serine protease genes from B. 
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amyloliquefaciens, B. licheniformis, B. subtilis, and the alkalophi l ic Bacillus 

spp. strain YaB have also been cloned and sequenced (Stahl and Ferrari , 

1 984; Jacobs et aI. , 1 985; Yoshimoto et al. , 1 988; Kaneko et al., 1 989; ) . 

However, there have been fewer reports on the release of recombinant 

protease into the culture medium of E. coli. There are several advantages to 

a system that releases proteins in a regulated manner into the culture 

medium. Among them are, purification of the protein of interest is simplified, 

the culture medium provides a larger space for accumulation of the protein, 

and release of the protein will not result in cel l  death or lysis as often occurs 

in high-level cytoplasmic production of recombinant proteins (Hsiung et al., 

1 989). 

Current study focuses on the use of bacteriocin-release-protein (BRP) in  

the release of recombinant proteins. BRP is a small l ipoprotein with 28 

amino acid residues which is produced as a precursor with a signal peptide 

and then processed and translocated to the outside membrane of the cell 

(Luirink et al. , 1 986). Controlled expression of the BRP has been used for 

the release of heterologous proteins from E. coli into the culture medium. 

Examples of proteins released by this system are the human growth 

hormone (Kato et al. , 1 987), human immunoglobul in G-Fc (Kitai et al., 1 988) 

and the human growth hormone targeted by the OmpA Signal peptide 

(Hsiung et al. , 1 989). In this study, BRP system was used to release the 

recombinant protease from B. stearothermophilus F1  into the E. coli culture 

medium. 
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A wide variety of Bacillus species secrete serine proteases into the 

external medium. Bacillus serine proteases have their best-known 

appl ication in detergent powders. To best meet the alkaline conditions in 

detergents, serine proteases with a h ighly alkaline pH optimum are 

preferred. Rahman et al. (1 994) isolated an alkaline thermophi l ic Bacillus 

strain that produced a thermostable alkaline serine protease, with an 

optimal temperature at 85°C and an optimal pH value of 9.0. It has half

l ives of 3.5 h at 85°C ,  24 min at 90°C, and is stable between pH values 7.0 -

1 0  for 24 h at 70°C without loss of activity. 

Hence, this research was carried out with the fol lowing objectives: 

1 .  To clone the protease gene from B. stearothermophilus F 1 and 

determine its nucleotide sequence. 

2. To extracellularly express the alkaline protease from B. 

stearothermophilus F1 into a mesophi l ic host. 

3. To partially characterize the recombinant protease. 
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CHAPTER II 

LI TERATURE REVI EW 

Proteases 

Introduction 

Proteases are degradative enzymes, which catalyze the total hydrolysis 

of proteins. They are an important group of enzymes both physiologically 

and commercial ly. The vast diversity of proteases, in contrast to the 

specificity of the action, has attracted more and more attention in attempts 

to exploit thei r  physiological and biotechnological applications (Rao et a/. , 

1 998).  

Classification of Proteases 

Currently, proteases are classified on the basis of three major criteria: ( 1 ) 

type of reaction catalyzed, (2) chemical nature of the catalytic site, and (3) 

evolutionary relationship with reference to structure (Barett, 1 994). 

Proteases are grossly subdivided into two major groups, i .e .  exopeptidases 

and endopeptidases, depending on their site of action. Based on the 

functional group present at the active site, proteases are further classified 

into four prominent groups; serine proteases, aspartic proteases, cysteine 

proteases, and metal lo-proteases (Hartley, 1 960). 
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Serine Proteases Serine proteases are characterized by the presence of 

a serine group site in their active site, usually a Ser-His-Asp catalytic triad. 

Serine proteases usually fol low a two-step reaction for hydrolysis in which a 

covalently l inked enzyme-peptide intermediate is formed with the loss of the 

amino acid or peptide fragment (Fastrez and Fersht, 1 973). Based on their 

structure similarities, serine proteases have been grouped into 20 famil ies, 

which have been further subdivided into about six clans with common 

ancestors (BareU, 1 994). Another interesting feature of the serine proteases 

is the conservation of glycine residues in  the vicinity of the catalytic serine 

residue to form the motif Gly-Xaa-Ser-Yaa-Gly (Brenner, 1 988). 

Serine proteases are recognized by their irreversible inhibition by 3,4-

dich loroisocoumarin (3,4-0CI) ,  L -3-carboxytrans 2,3-epoxypropyl-

leucylamido (4-guanidine) butane (E.64), di isopropylfluorophosphate (OFP), 

phenylmethylsulfonyl fluoride (PMSF) and tosyl-L-Iysine chloromethyl 

ketone (TLCK). Some of the serine proteases are inhibited by thiol reagents 

such as p-chloromercuribenzoate (PCMB) due to the presence of a cysteine 

residue near the active site. Serine proteases are generally active at neutral 

and alkaline pH, with an optimum pH value between 7 and 1 1 .  They have 

broad substrate specificities including esterolytic and amidase activity. Their 

molecular masses range between 1 8  and 35 kOa, while the serine protease 

from Blakeslea trispora has a molecular mass of 1 26 kOa (Govind et al. , 

1 981 ). The isoelectric points of serine proteases are general ly between pH 4 

and 6. Serine alkal ine proteases that are active at highly alkal ine pH 

represent the largest subgroup of serine proteases. The alkaline serine 
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proteases possess wide specificity to the type of peptide bond, and 

hydrolyse a wide range of proteins. The enzyme hydrolysed more than 70% 

of peptide bonds in the substrate molecule (Barett, 1 994). 

The optimal pH of serine alkaline proteases is around pH 1 0, and their 

isoelectric point is around pH 9. Their molecular masses are in the range of 

15 to 30 kOa. Although alkaline serine proteases are produced by several 

bacteria such as Arthrobacter, Streptomyces, and Flavobacterium spp. 

(Boguslawski et al., 1 983),  subtil isins produced by Bacillus spp remain the 

best known. Tvvo different types of alkaline proteases, subtil isin Carlsberg 

and subtil isin Novo, have been identified (Rao et a/., 1 998). Both subtilisins 

have a molecular mass of 27.5 k Da, but d iffer from each other by 58 amino 

acids. They have similar properties such as an optimal temperature of SO°C 

and an optimal pH of 1 0. Both enzymes exhibit a broad substrate specificity 

and have an active site triad made up of Ser21 , HisS4, and Asp32. 

Cysteine Proteases About 20 families of cysteine proteases have been 

recognized. The activity of all cysteine proteases depends on a catalytic 

triad consisting of cysteine and histidine. The order of Cys and His (Cys-His 

or His-Cys) residues differs among the famil ies (Barett, 1 994). Generally, 

cysteine proteases are active only in the presence of reducing agents such 

as cysteine. 

Cysteine proteases catalyze the hydrolysis of carboxylic acid derivatives 

through a double-displacement pathway involving general acid-base 

7 


