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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Doctor of Philosophy

THEORETICAL ADVANCEMENT IN DENGUE TRANSMISSION MODEL
IN MALAYSIA USING FRACTIONAL ORDER DIFFERENTIAL

EQUATIONS

By

NUR IZZATI BINTI HAMDAN

July 2020

Chairman: Adem Kilicman, PhD
Faculty: Science

This thesis aims to deploy and develop fractional-order differential equations that
possess hereditary properties in modelling the dengue transmission dynamics.
Dengue models are generally of integer-order derivative systems, that cannot fully
explain the behaviour of dengue transmission, which involves memory effect. In
this study, three different deterministic fractional-order models are constructed, in-
cluding the basic framework model, temperature-driven model, and dengue con-
trol model, using Caputo’s derivative definition. The susceptible-infected-recovered
(SIR) model is considered in the formulation. The significant differences between
the integer-order model and the fractional-order model, and the relation of the or-
der of the derivative with the dynamical behaviour of the dengue epidemic are ad-
dressed. Furthermore, this thesis discusses the effect of the temperature in the dengue
transmission, and the efficacy of current dengue control measures, particularly in
Malaysia. The theoretical analysis of the existence and stability of the equilibrium
point is presented in detail. Additionally, sensitivity analysis is performed to assess
the importance of model parameters in disease transmission and disease prevalence.
The recorded dengue cases in Malaysia are used in numerical simulations. Numeri-
cal results reveal that the convergence rate of fractional-order models is more gradual
compared to the integer-order model. A lower value of the order corresponds to a
slower decaying time and reduction in the size of epidemics. The temperature-driven
models show that the fractional-order model is more stable since there is no oscil-
latory behaviour observed in the solutions, unlike in the integer-order model. These
models also predict that dengue can be persisted even in the non-optimal temper-
ature condition. The dengue control model shows that vector control tools are the
most efficient way to combat the spread of dengue viruses, and the combination of
them with individual protection makes it more effective. In fact, with the massive
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application of individual protection only, the number of cases can be reduced. Con-
versely, mechanical control alone cannot suppress the excessive number of cases in
the population, although it can significantly reduce the number of Aedes mosquitoes.
Overall, these findings have significant implications in understanding the transmis-
sion dynamics of dengue, and the proposed fractional-order models are found to be
a great alternative in describing the real epidemic of dengue transmission.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

KEMAJUAN TEORI DALAM MODEL PENYEBARAN DENGGI DI
MALAYSIA MENGGUNAKAN PERSAMAAN KEBEZAAN TERTIB

PECAHAN

Oleh

NUR IZZATI BINTI HAMDAN

Julai 2020

Pengerusi: Adem Kilicman, PhD
Fakulti: Sains

Tesis ini bertujuan untuk menggunakan dan mengembangkan persamaan kebezaan
tertib pecahan yang mempunyai sifat keturunan dalam memodelkan dinamika penu-
laran denggi. Model denggi umumnya terdiri daripada sistem terbitan tertib inte-
ger, yang tidak dapat menjelaskan sepenuhnya tentang penularan denggi, yang meli-
batkan kesan ingatan. Dalam kajian ini, tiga model tertib pecahan deterministik yang
berbeza dibina, termasuk model kerangka asas, model berdasarkan suhu, dan model
kawalan denggi, menggunakan definisi terbitan Caputo. Model rentan-dijangkiti-
pulih (SIR) dipertimbangkan dalam formulasi. Perbezaan yang signifikan antara
model tertib integer dan model tertib pecahan, dan hubungan tertib terbitan den-
gan tingkah laku dinamik wabak denggi dibahaskan. Selanjutnya, tesis ini membin-
cangkan pengaruh suhu pada penularan denggi, dan keberkesanan langkah-langkah
kawalan denggi semasa, khususnya di Malaysia. Analisis teori mengenai kewujudan
dan kestabilan titik keseimbangan dikemukakan secara terperinci. Selain itu, anal-
isis kepekaan dilakukan untuk menilai kepentingan parameter model dalam penu-
laran penyakit dan kelaziman penyakit. Kes denggi yang direkodkan di Malaysia
digunakan dalam simulasi berangka. Hasil berangka menunjukkan bahawa kadar
penumpuan model tertib pecahan lebih beransur-ansur dibandingkan dengan model
tertib integer. Nilai tertib yang lebih rendah sepadan dengan masa pereputan yang
lebih perlahan dan pengurangan saiz wabak. Model-model yang didorong oleh suhu
menunjukkan bahawa model tertib pecahan lebih stabil kerana tidak ada tingkah laku
berayun yang diperhatikan dalam penyelesaian, tidak seperti pada model tertib inte-
ger. Model-model ini juga meramalkan bahawa denggi dapat bertahan walaupun
dalam keadaan suhu yang tidak optimum. Model kawalan denggi menunjukkan ba-
hawa alat kawalan vektor adalah kaedah paling berkesan untuk memerangi penye-
baran virus denggi, dan gabungannya dengan perlindungan individu menjadikan-
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nya lebih berkesan. Sebenarnya, dengan penggunaan perlindungan individu secara
besar-besaran sahaja, jumlah kes dapat dikurangkan. Sebaliknya, kawalan mekanikal
sahaja tidak dapat menekan jumlah kes yang berlebihan dalam populasi, walaupun
secara signifikan dapat mengurangkan jumlah nyamuk Aedes. Secara keseluruhan,
penemuan ini mempunyai implikasi yang signifikan dalam memahami dinamika
penularan denggi, dan model tertib pecahan yang dicadangkan didapati menjadi al-
ternatif yang baik dalam menggambarkan wabak sebenar penularan denggi.
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CHAPTER 1

INTRODUCTION

”I simply wish that, in a matter which
closely concerns the wellbeing of the
human race, no decision shall be made
without all the knowledge which a little
analysis and calculation can provide ”.

by Daniel Bernoullli, 1760

The modern period features a plethora of social, technological, and biological
epidemic phenomena. The spread of such epidemic is rapidly increasing each
year due to the advances in technology, transportation and lifestyle. One of the
crucial tools in understanding the epidemic is by formulating a mathematical model.
Mathematical modelling plays a significant role in effective real-time decision
making and management of the epidemic outbreaks. This research is motivated by
the dengue outbreak in Malaysia, that has now become the most prevalent disease
in the country. Currently, dengue is listed second after malaria, as the most severe
vector-borne disease around the globe and about half of the people in this planet are
in danger of the dengue viruses [161].

This study is focusing on the modelling of the dengue transmission disease using the
approach of the fractional-order differential equation and comparing it with the clas-
sical integer order differential equation. The relationship between environmental fac-
tors, entomological factors, and epidemiological factors is explored in the modelling,
to gain more insight on the transmission, and to assist in providing information in
designing proper dengue control programs. The first chapter of this thesis begins
by laying out the general knowledge on the epidemiology of dengue, specifically in
Malaysia, the fundamental of modelling infectious disease and background on frac-
tional calculus. It then goes on to specify the research objectives and concludes by
introducing the structures for the next chapters of the thesis.

1.1 Dengue and its history

Dengue fever (DF) or acknowledged as dengue is a very well-known vector-borne
disease that exists for more than 20 decades. The initially reported epidemics of
dengue fever happened between the year of 1779-1780 in tropical regions, primarily
in Asia, Africa, and North America [69]. During the earliest period of the existence
of dengue, DF was regarded as a mild and non-fatal disease with low transmission
rates. It was not easy to achieve major epidemics because of new serotypes only
existed in a susceptible population when the mosquitoes and viruses can survive the
slow transportation between the population. A contagion of dengue commenced
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in Southeast Asia following World War 2 and spreading globally ever since [69].
The number of dengue incidents has risen rapidly since then to the latest value of
fifty to a hundred million cases yearly. The number of countries that get affected by
the viruses has also grown substantively, with at least 100 countries is considered
endemic, including in Americas and the Eastern Mediterranean [28] (see Figure 1.1).

Figure 1.1: Distribution of dengue, worldwide, 2019. (Note: Reprinted from
“European Centre for Disease Prevention and Control (ECDC)” [55])

DF is an acute mosquito-borne illness transferred through the bite of an adult female
Aedes aegypti (primary vector) or Aedes albopictus (secondary vector) mosquitoes.
Female mosquitoes get the infection after receiving a blood meal of an infected
person, then transport the virus to the non-contagious individual through the blood
meal process as well. The infection rates can reach up to 90% between individuals
who have not yet been exposed or infected by the dengue virus [69]. There exist
four different dengue serotypes specified as DENV-I, DENV-II, DENV-III, and
DENV-IV. All serotypes come from the family Flaviviridae and genus Flavivirus
[110]. Individuals who recover from one of the dengue serotypes will gain a lifetime
resistance against the respective serotype but partly or momentary immunity to the
other serotypes [159].

The typical dengue fever causes mild morbidity and mortality, at which the patients
can recuperate within seven or fourteen days right after encountering the fever.
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However, some individuals can progress into a severe condition that is dengue
hemorrhagic fever (DHF) or dengue shock syndrome (DSS). DHF first emerged
in the Philippines between 1953 to 1954, and in the mid-1970s, DHF has been a
prominent cause of hospitalization and fatality, especially within children [69]. The
World Health Organization (WHO) has reported nearly hundreds of thousands of
DHF cases every year [159] worldwide.

Presently, no exclusive treatment or vaccine available for dengue. The standard
approach taken to treat dengue fever is simply keeping the patients hydrated by
drinking plenty of fluids, and they should be placed in a mosquitoes-free environ-
ment to prevent any transmission. For severe dengue-like DHF, maintaining the
patient’s body fluid volume is important, and at some stage, patients need to undergo
blood transfusions to control the bleeding [159]. The development of a dengue
vaccine is still in the stage of a clinical trial. According to WHO, at the clinical trial
stage, the live attenuated dengue vaccine (CYD-TDV) showed a positive outcome.
However, it is safe for the individual who had experienced dengue before but a
high risk to those contracting the dengue virus for the first time after vaccination.
Therefore, the vaccine has not yet be implemented and is considered as an imperfect
vaccine.

At present, the main approaches to manage and prevent the spread of the dengue in
the community is mostly through battling the vector mosquitoes by [159]:

• Preventing the adult female mosquitoes from having habitats to lay eggs by
strategic environmental administration.

• Getting rid of solid waste properly.
• Emptying and cleaning the domestic water storage containers and covering the

empty containers weekly.
• Using insecticides.
• Improving community participation and awareness.
• Active monitoring of Aedes mosquitoes to verify the efficiency of control mea-

sures.

Besides, rigorous clinical disclosure and supervision of dengue patients can signifi-
cantly decrease the incidence rates and the mortality rates from DHF and DSS.

In general, dengue fever is one of a type of self-limited disease. It has a very low
casualty with proper and prompt medical assessment (approximately less than 1%).
Meanwhile, for severe dengue, the mortality rate is between 2%-5% when treated.
However, the mortality rate can be as high as 20% when left untreated. According
to WHO, about five hundred thousand individual diagnosed with severe dengue is
required for hospitalization every year worldwide, and an estimated 2.5 percent of
fatality rate cases, annually [161].
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The first-ever dengue fever cases in Malaysia declared in 1902. Meanwhile, the
DHF and DSS epidemic began in 1962 in Penang [155]. However, the DF cases
only became notifiable in 1971 [126]. The first huge dengue outbreak in Malaysia
happened in 1974, and later, it consequently happened every four to five years [155].
In the beginning years of the outbreaks, dengue cases in Malaysia were still under
control and only occurred seasonally [150]. However, dengue cases have increased
beyond control in the 21st century, and the number of deaths has also risen. A
rapid increase in the incidents can be observed from 2012 onwards. An increment
of 47% is recorded in the number of dengue fever in Malaysia throughout 2012 to
2013, and roughly 62% increase is recorded in 2013 and 2014 [155] (see Figure 1.2).

Figure 1.2: Dengue cases recorded in Malaysia for year 2008 to 2017. (Note:
Reprinted from “Malaysia records three-year low with 11 dengue deaths in Jan-
uary”, by Malay Mail [101]).

All four serotypes of dengue viruses coexist in Malaysia. The DENV-I, DENV-
II, and DENV-III are the predominant virus in different periods in Malaysia, while
DENV-4 shows less influence [109]. According to a recent study, major dengue
outbreaks in Malaysia during the period of 2013 and 2014 were possibly caused
by changes in the predominant serotypes to 6 months before each outbreak [109].
Although the government of Malaysia managed to lower the number of dengue cases
and death nationwide, in two consecutive years, by 16% (17%) in cases and 29%
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(25%) in the number of deaths in 2016 (2017) (see Figure 1.3), dengue is still claimed
as the most prevalent disease in Malaysia.

Figure 1.3: Dengue cases in Malaysia January 2016-2018. (Note: Reprinted
from “Malaysia records three-year low with 11 dengue deaths in January”, by
Malay Mail [101]).

In Malaysia, it became public health practitioners responsibility to inform the Lo-
cal Health Office every case diagnosed with either dengue fever, DHF, or DSS
within 24 hours. Such increment in the dengue cases is related to many factors.
Among the general factors suggested globally are due to the high rates of popula-
tion growth and rapid and relatively unorganized urbanization. Besides, alteration
in public health, global warming, and the rise in global commerce and tourism con-
tribute to the dengue spread in the country [69]. As of now, there are no drugs or
vaccine available in Malaysia. There is no option other than vector control to re-
sist the spread of dengue. In controlling the larva population, the control tools taken
were focusing on environment administration, source reduction, usages of larvicides,
such as temephos (Abate), the house inspection, and enforcement of Destruction of
Disease-Bearing Insect Act 1975 [118]. Meanwhile, fogging was executed based on
the immediate viral cases reported, to control adult mosquitoes. The other alterna-
tives vector control are by using the microbes Bacillus thuringiensis H-14, attractant
trap, and genetic modified (GM) mosquito.
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1.2 Dengue epidemiology

1.2.1 Ecology of Aedes mosquito

Aedes aegypti is the primary vector of transmitting the dengue virus. They are prone
to the urban environment where human capacity is large. The life cycle of the Aedes
aegypti involves four distinct stages, namely eggs, larvae, pupa, and adult. The
mosquitoes lay their eggs in a wet environment, such as tree holes and redundant.
The eggs will then hatch into larva form after a rain takes place. Within a week, the
larvae will change into a pupa and become a mosquito in 2 days. Only the matures
adult female mosquito gets blood meals from humans or animals, while, the male
mosquito feeds on plants and flowers. On average Aedes mosquitoes can live up to
12 to 15 days [62]. Aedes aegypti mosquitoes have good adaptations to nature that
makes them capable of immediately recover to their original numbers following any
disruption occurring from a natural disaster such as droughts or human interferences.
One of the adaptations is the eggs can tolerate dryness. Aedes aegypti may continue
responding and adapting to the environmental change. For instance, in the recent
study, it was found that Aedes aegypti can undergo the immature stage in broken or
open septic tanks resulting in the formation of large amount of Aedes aegypti adult
per day [87].

Temperature is very significant in the survival of the larval population and the
competence of the Aedes aegypti. In a warmer climate with longer light exposure,
a shorter growth period is required from eggs hatch to the development of the
adult mosquito [32]. These explain the widespread distribution of Aedes aegypti
in tropical and subtropical regions, particularly in Malaysia. Moreover, the study
suggests that increasing the abundance of Aedes aegypti mosquito in urban areas
leading to outbreaks [87]. The developing countries, like Malaysia, are becoming
more citified. However, due to poor town planning and cleanliness, it leads to an
increase in mosquito breeding sites.

Aedes albopictus referred to as the Asian tiger mosquito is a type of mosquito that
innate to the tropical and subtropical zones in Southeast Asia. Their eggs are very
much resistant to dryness, which develops their durability in inhospitable habitats
[83]. This type of Aedes mosquito is among the competitive species, and they bite in
the daylight by attacking not only humans but also livestock, amphibians, reptiles,
and birds [51]. They have a high biting rate level that could go up to 30 to 48 bites
per hour, and they can survive in a broad array of temperatures [17, 35]. Aedes al-
bopictus is a tree hole mosquito, and thus, the reproduction process normally takes
place in natural or suburban forested regions. However, their ecological adaptability
enables them to lay eggs in various types of man-made water-holding containers,
particularly discarded tires, flowerpots, and abandoned containers [87]. Aedes al-
bopictus can also produce and survive in urban regions, where artificial containers
are rarely found, thus, raising an additional public-health concern, especially in rural
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districts [51].

1.2.2 Dengue transmission

There are three types of dengue virus transmission cycle, specifically, enzootic,
epizootic, and epidemic [87]. The enzootic cycle includes transmission between
mosquito and monkey (monkey-Aedes-monkey). This cycle is primeval and can be
found in Africa and South Asia [69]. Meanwhile, the epizootic cycle includes the
transmission from non-human primates to the subsequent human in the epidemic
cycles by the Aedes mosquito [87]. The last cycle, which is the epidemic, involves
the transmission among humans and Aedes mosquito. Here, we will only discuss
the transmission in the epidemic cycle.

In the epidemic cycle, the transmission of the dengue virus happens if the uninfected
female mosquito gets the virus from an infected individual during the blood-feeding
activity or if the infected mosquito has contact with susceptible individuals at the
time of the blood meal. Once the mosquito gets infected by the virus, the extrinsic
incubation period is within 14 days, and the infected mosquito will remain infected
and dies [69]. Dengue virus cannot spread directly from human to another human.
The incubation period varies from one virus to another, but in general, the dengue
virus appears between two to fifteen days from inoculation to the development of
clinical symptoms [87]. At this stage, an uninfected mosquito can get the virus once
she feeds on this individual.

The biological studies on the vector-borne disease like dengue and malaria showed
that memory and associative learning behaviour of the vectors (mosquitoes), in gen-
eral, are important in the disease transmission process [24, 104, 148]. Recent studies
revealed that the behaviour during oviposition site-selection, host location, and host
selection are dependent not only on the environment but also in the experience after
eclosion [104]. Thus, it is significant to consider modelling the dengue transmission
using a system that passes the information of its former state.

1.2.3 Seasonality and intensity of transmission

The ongoing risk of dengue virus is caused by the growth of geographical distribu-
tion, including climate shift and the evolution of the epidemic cycle to endemic with
seasonal patterns [90]. Climate variability has a significant contribution to the devel-
opment of the mosquito population, both in immature and mature stages. Environ-
mental factors like precipitation, temperature, and humidity could affect the growth
and survivability of the mosquitoes as well as their behaviour and habitats [73, 129].
The former study showed that temperature and precipitation have significant rela-
tionships in the transmission of dengue virus. However, such associations have not
consistently described [30, 39, 91]. In general, dengue transmission takes place dur-
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ing rainy seasons with proper temperature and humidity to make sure that adult and
larval mosquito can survive in that environment. In dry areas, where rainfall is insuf-
ficient, Aedes mosquito opted for the man-made containers as their breeding sites,
thus, can also increase the transmission rate.

1.3 Mathematical deterministic models

Mathematical modelling has been gradually recognized in the public health com-
munity as one of the important research tools in understanding the epidemiology
of an infectious disease [6]. The main purpose of the mathematical modelling of
infectious disease including the vector-borne disease is to identify mechanisms that
cause the outbreaks as well as to evaluate the effectiveness of control strategies.
There are two approaches in mathematical modelling that is widely used in infec-
tious disease epidemiology namely deterministic model and stochastic model. The
deterministic models involve models based on the differential equation, integral, or
functional differential equations. The deterministic model of an infectious disease
was discovered in the 20th century by the work of Bailey [12], Hamer [75], Kermack
and McKendrick [84], and Ross [135]. Since then, deterministic models have had
an important role in the description of the spread of disease. In the deterministic
model, the outcomes of the model are determined from the parameter values and the
initial conditions, and it is possible to obtain a unique solution. On the other hand,
stochastic models possess random characteristics, where the same set of parameter
values and initial conditions can result in different output values.

In simple deterministic epidemic models, a threshold value is obtained that allows us
to determine whether the epidemic or outbreaks will occur or will not occur. How-
ever, a different approach is taken in the stochastic model, where the probability is
used to determine the visibility of epidemics. Clearly, the natural world is buffed by
stochasticity. However, modelling an infectious disease using a stochastic model can
be quite complicated and challenging. The deterministic model is relatively easy to
parametrize and rapid to simulate. They are useful for predictions in a large popula-
tion. A stochastic model, on the other hand, is more appropriate to model disease in
a small population.

Example 1.3.1 A simple susceptible-infected (SI) epidemic model. This model pre-
sumes that the host population is either susceptible or infectious. The infectious
hosts will never recover, and it is assumed to be a closed population. The SI com-
partmental model is expressed by the ordinary differential equations:

Ṡ =−λS

İ = λS (1.3.1)

where λ is the force of infection, that is, the rate where the susceptible population
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acquires the infection.

The force of infection relies on:

• The frequent contact between human and mosquito.
• The probability that a given contact is with infections individuals.
• The probability that a given contact leads to a transmission of the infection.

1.4 Fundamental concepts in epidemic models

1.4.1 Disease incidence

In the epidemiological model, the incidence of a disease is described in terms of the
rate when the new infection occurs or can be defined as the number of people acquire
the infection per time [93]. This quantity has a significant part in ensuring that the
proposed mathematical model is able to provide a realistic qualitative analysis of
the dynamic of a disease. There are few types of incidence rate that are commonly
used in the epidemic model, such as the standard incidence rate, bilinear incidence
rate (mass-action) and non-linear incidence rate with saturation [40, 59, 77, 84, 136].

Suppose that S(t), I(t), and N(t) represent the susceptible population, infectious pop-
ulation, and the total number of population at a given time t, sequentially. Assume
that β (N) represents the effective contact rate for each individual at time t. Then,
the mean of contacts a susceptible person does with an infectious person per unit of
time is equivalent to β (N) I

N . Therefore, the number of new incidents from suscep-
tible individuals (S) is presented by λS, where λ = β (N) I

N is the force of infection.
Then, we consider the following two cases:

1) If the effective contact rate β (N) = β , is a constant and independent of the
total population size, then, λS is considered to be a standard incidence form.

2) If the effective contact rate relies on the total population size, β (N) = βN,
then λS is known as the mass action incidence.

1.4.2 Basic reproduction number

The basic reproduction number generally expressed by R0, is also called the basic
reproductive number and the basic reproductive ratio. This parameter measures “the
average number of secondary infections given by an infected person in a susceptible
population during the infectious period” [93]. Generally, if R0 is lower than unity,
such that R0 < 1, then disease outbreaks or epidemic would not be occurring. Thus,
disease eradication in the population can be achieved in the long run. In such a case,
the associate’s disease-free equilibrium point (DFE) is said to be stable. Conversely,
if R0 is beyond unity (R0 > 1), then an epidemic will take place and leads to the
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disease persistence over time. Thus, a positive endemic equilibrium point (EE)
exists, and it is said to be stable if it satisfies the stability property. This is the
example of the forward bifurcation where DFE and EE shift their stability at R0 = 1.

The forward bifurcation was first discovered by Kermack and McKendrick [84] and
later can be seen in many infectious disease models. If the model exhibits forward
bifurcation, it is necessary and sufficient to have a condition of R0 < 1 for disease
elimination. However, this may not be required and adequate to eradicate the disease
if the model demonstrates the occurrence of backward bifurcation. This appears
when a stable DFE coincides with a stable EE whenever R0 < 1. This special case
has been discussed in great details in many epidemic model paper, see for instance
in [59, 70].

1.5 Fractional calculus

The differentiation operator d
dx is a fundamental form of derivative in the calculus

subject. For a proper function denoted by f , the nth derivative of such function can
be written as dn f (x)

dxn where n is a positive integer. However, this is not the case in
the fractional calculus. Fractional calculus involves integrals and derivatives of an
arbitrary real number or even complex order. It can be seen as a generalization of
classical calculus. Hence, it preserves many of the classical basic properties.

1.5.1 Historical background of fractional calculus

The beginning of the fractional calculus theory dates to Leibniz’s note in his let-
ter to L’Hospital in 1695 [43]. Leibniz presented a symbol dn

dxn f (x) to express the
nth derivative of a function of f with the assumption that n ∈ N. L’Hospital then
answered back his letter by a question of “What does dn

dxn f (x) mean if n = 1/2
?” This letter is commonly accepted as the first appearance of a fractional deriva-
tive in a mathematics world. Nowadays, the order of the fractional operator is not
restricted to only fractions but also arbitrary real numbers and even complex num-
bers. Nonetheless, the name ‘fractional calculus’ is kept for historical reasons. Sev-
eral leading mathematicians have contributed to the advancement of the theory of
fractional calculus, for instance, Laplace (1812), Fourier (1822), Abel (1823-1826),
Liouville (1832-1837), Riemann (1847), Grunwald (1867-1872), Letnikov (1868-
1872), Heaviside (1892-1912), and many others [67].
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1.5.2 Geometric and physical interpretation

In the classical calculus, integer-order integrals and derivatives have a clear geomet-
ric and physical interpretation, which can describe different concepts in the various
field of science. For instance, a distance can be expressed as a function of time,
the first derivative can be associated with the velocity, and the second derivative
represents the acceleration. Even though fractional integrals and derivatives are the
generalizations of the classical integrals and derivatives, up until today, there is still
no definite physical interpretation of the fractional cases. Since the appearance of
the idea of fractional calculus, there was not any satisfactory geometric and physical
explanation of these operations for over 30 decades [124]. This problem has been
widely acknowledged and has been listed as an open problem [134].

Several authors attempted to provide a general physical and geometric interpre-
tation of the fractional operators [13, 108, 115, 124]. For example, in [108], the
interpretation is based upon the fractal geometry, linear filters, Cantor set, and
physical realization of fractional operators. It has been presumed that fractional
operators can be classified as filters with partial memory that includes in between
complete memory and no memory. However, Podlubny in [124] claimed that such
consideration is only small portions of chosen examples of applications of fractional
operators. Thus, it cannot be recognized as a certain answer to the posed ques-
tion. He then gave a physical description of the fractional integrals in terms of two
different time scales, i.e., the homogeneous and the inhomogeneous time scale [124].

Du et al. discovered that in modelling different types of memory problems, the
memory process normally consists of two stages, and one of them is governed by
a simple fractional-order derivative model [47]. The numerical results indicate that
the fractional model perfectly fits the test data represent the memory phenomena, not
only in mechanics but also in biology and psychology. The authors conclude that the
fractional-order can be physically associated with an index of memory. In this study,
we will associate the fractional-order operator with the index of memory following
the results by Du et al.

1.5.3 Application

The first application of a fractional derivative is found in the work of Abel in
1823, where the order of the derivative is chosen to be half (1/2) and related to the
tautochrone problem [117]. The interest in applications of the fractional calculus,
particularly fractional derivatives in modelling various engineering systems, diffu-
sion phenomena including heat transfer, viscoelasticity, and in many other physic
systems, has widely increased in recent decades [96, 99] and has found to be a
great success. This results in a growing interest in the mathematical biology field,
especially in the subject of infectious diseases. Area et al. in [9] have shown that
the proposed fractional model fits the considered real data accurately. In [66], a
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fractional-order dynamic of influenza A (H1N1) is analyzed numerically. In 2013,
Diethelm [44] developed a fractional-order system for the dengue outbreak, and the
simulation results agreed with the actual dengue data in Cape Verde Island in 2009.

The purpose of the application of the fractional derivative in the literature is to obtain
comprehensive knowledge and understanding of the complex behavioural pattern of
the biological systems [19]. The memory feature in the fractional-order systems
enables the integration of the previous state, that gives more realistic and accurate
prognostications of the models, that cannot be done by the classical integer order
model. Moreover, these have found to benefit the public health authorities by pro-
viding data in terms of the behaviour predictions of the model to suit their patient’s
data with the most suitable order index.

1.6 Research objectives

The majority of the epidemic models are developed using the classical integer-order
differential equation (Markovian system), where the current state of the systems
not in any way affected by their former state. However, in reality, once the disease
circulates in the human community, people’s experience and knowledge of the state
of the disease will eventually affect their response. This tells us that memory has a
major contribution in the evolution of the epidemic process. Therefore, researchers
suggest that models based on the fractional-order derivative (non-Markovian
system) are more realistic and suitable to study the dynamics of the epidemiological
system or any system with memory. This is our main motivation in setting up the
goals for this research.

The main objectives of the study are summarized as follows:

1) To develop and analyze various deterministic mathematical models of dengue
transmission dynamics with the approach of the fractional-order differential
equation.

2) To examine significance differences between modelling the dengue transmis-
sion dynamics by the fractional-order differential equation as compared to the
classical integer-order differential equation.

3) To study the significance of the order of the derivative with the dynamical
behaviour of the dengue epidemic that interprets the consequence of memory
in the dengue transmission dynamics. .

These include the following:

(i) a basic deterministic dengue model using the approach of the fractional-
order differential equation will be developed. This model will be constructed
based on the susceptible-infected-recovered (SIR) model for humans and the
susceptible-infected (SI) model for vectors. This model will include the
aquatic stages of the vector population that has not been considered in any of
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the related literature of the fractional-order dengue model. The model will be
categorized into two order dynamics, i.e., similar order dynamics and different
order dynamics on the humans and vectors. Stability and sensitivity analysis
will be conducted for the model. A suitable range of fractional order values
for the dengue transmission model is examined so that the models provide a
realistic and useful approximation with the real data.

(ii) a new dengue transmission model will be first developed using the classical
integer-order differential equation. This model will consider the existence of
a relationship among the entomological (immature phase of vector popula-
tion), epidemiological (notified data cases), and environmental factors (tem-
perature). Phenomena, like the backward bifurcation, will be further investi-
gated. Then, this model will be fractionalized, and the numerical results of the
ODE and the fractional-order model will be compared.

(iii) a fractional-order dengue model with control measures will be formulated and
analyzed. In this model, we consider additional parameters for the vector com-
partments related to the mortality rate due to the mosquito control action taken
and the common-practice of individual protections.

1.7 The structure of the thesis

This thesis contains seven chapters in total. The first chapter of the thesis begins by
emphasizing the fundamental background of the study and its objectives. In Chapter
2, we present the literature reviews of the previous related studies on the dengue
transmission dynamics, both for the classical integer-order and the fractional-order
model. Under Chapter 3, we provide some of the required basic mathematical
properties. In the next three chapters, different chapters present distinct models but
constructed on the same themes as the previous chapters.

In Chapter 4, we present a basic dengue transmission model that incorporates
the immature stage of the Aedes mosquito population using the fractional-order
differential equation approach. The main focus of this chapter is to introduce the
fractional-order derivative in modelling the dengue transmission disease. We study
the significance of the order to the dynamical behaviour of the dengue transmission.
In Chapter 5, we extend the basic model in the previous chapter by incorporating the
temperature effect into the modelling of the transmission of the dengue virus and
introducing a new infectious class known as the notified infected human population.
We begin this chapter by formulating and analyze the new dengue model in the sense
of integer-order differential equation, and later we fractionalize the integer-order
model using the Caputo definition. We then compare the numerical results of the
integer-order model and the fractional-order model.

In Chapter 6, we present and analyze a fractional-order dengue model that incor-
porates vector control tools and an individual protection tool. The effectiveness of
different control tools is analyzed, and the effect of the order is studied. In Chapter
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7, we summarize the main mathematical and epidemiological contributions of the
thesis. We also provide relevant suggestions for future works. Chapters 4, 5, and 6
of this thesis represent a study that may stand on its own.
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