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Ruthenium polypyridyl complexes (RPCs) have been clinically studied as 
promising anticancer agents in the last decades. The RPC, [Ru(dppz)2(PIP)]2+ or 
RuPIP where dppz = dipyrido[3,2-a:2’,3’-c]phenazine and PIP = 2-(pheny)-
imidazo[4,5-f][1,10]phenantroline has demonstrated anticancer properties where 
it was shown to stall DNA replication fork progression resulting in the initiation of 
DNA damage response (DDR) signaling which further lead to the inhibition of 
cell proliferation through G1/S-mediated cell cycle arrest. This has prompted us 
to study the rational combination of RuPIP alongside DDR inhibitors, particularly 
the inhibitors of poly (ADP-ribose) polymerase (PARP) to achieve synergistic 
effect in cancer cells. This is to enhance the therapeutic response to RuPIP in 
cancer cells while reducing the impact on normal cells. The cytotoxic effect of 
RuPIP and PARP inhibitors as single agents on several cancer cell lines (A549, 
MCF7, MDA-MB-231 and T24) were determined using MTT assay. RuPIP 
showed time-dependent reduction in the IC50 values meanwhile, both PARP 
inhibitors showed IC50 > 100 µM. All compounds showed IC50 > 100 µM on the 
normal NHDF cells. Drug combination study was carried out based on Chou and 
Talalay combination index (CI) method in which CI values were determined using 
Calcusyn and Compusyn software. Synergy (CI < 1) was observed with majority 
of RuPIP-olaparib combinations meanwhile, RuPIP-NU1025 resulted in a range 
of combination indices, ranging from synergism to antagonism. Importantly, the 
viability of normal cells observed for any combination tested was > 70%. Based 
on the average CI values, the synergistic combination (CI = 0.87) of 25 µM RuPIP 
alongside 25 µM NU1025 or 5 µM olaparib were chosen for further experiments. 
Cells ability to survive post-treatment and form colonies was investigated using 
clonogenic survival assay with single-agent treatments showed survival fractions 
(S.F) > 75%. Interestingly, combination treatments reduced cell survival with 
RuPIP-olaparib (S.F. < 2%) showed lower survival than RuPIP-NU1025 (S.F. < 
57%). Besides, treatments with 25 µM RuPIP sensitize cells to olaparib where 
60-fold reduction in IC50 value of olaparib was obtained for MCF7 (0.08 vs 4.75 
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µM) and 300-fold reduction was observed in MDA-MB-231 cells (0.06 vs 23.39 
µM). Next, cell migration ability was investigated using cell scratch assay which 
revealed that RuPIP-olaparib combination significantly (P < 0.001) reduced cell 
migration with 40% reduction in wound closure was observed compared to 
control. The flow cytometric analysis on cell cycle distribution revealed that the 
combination treatment resulted in enhanced cell cycle arrest at G1/S phase in 
A549 cells (17.1% increase compared to control). Whereas both MCF7 and 
MDA-MB-231 cells were arrested at G2/M phase (19.7% and 20.4% increase 
compared to control, respectively). Subsequently, Annexin V-FITC assay 
showed that the combination treatment significantly (P < 0.001) increased the 
percentage of apoptotic cells with 25%, 30% and 31% increase compared to 
control in A549, MCF7 and MDA-MB-231 cells, respectively. These resultant cell 
deaths are associated with significant (P < 0.001) increase in the accumulation 
of double-strand breaks (DBSs) DNA damage with 45% increase in the 
percentage of cells with γH2AX foci compared to control. These findings 
established that RuPIP showed synergy with PARP inhibitors in several cancer 
cell lines with reduced impact on normal cells. 
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Kompleks rutenium yang berasaskan ligan polipiridil (RPCs) mempunyai potensi 
sebagai ubat antikanser dan telah dikaji secara klinikal sejak sedekad yang lalu. 
Peranan RPC, [Ru(dppz)2(PIP)]2+ atau RuPIP di mana dppz = dipirido[3,2-
a:2’,3’-c]fenazin dan PIP = 2-fenilimidazo[4,5-f][1,10]fenantrolin) dalam terapi 
antikanser telah terbukti di mana ianya dapat melengahkan perkembangan 
cabang pereplikaan sewaktu replikasi DNA serta mengakibatkan pengaktifan 
tindak balas kerosakan DNA (DDR) yang kemudiannya merencatkan 
pertumbuhan sel melalui penangkapan kitaran sel pada fasa G1/S. Perkara ini 
telah mendorong kami untuk membuat kajian secara rasional dengan 
menggunakan gabungan RuPIP dan perencat DDR, terutamanya perencat 
polimerase poli (ADP-ribosa) (PARP) untuk menghasilkan kesan sinergistik bagi 
memperluas kesan terapeutik RuPIP serta mengurangkan kesan sitotoksik 
terhadap sel normal. Kesan sitotoksik yang dihasilkan oleh RuPIP dan perencat 
PARP sebagai agen tunggal terhadap beberapa jenis sel kanser (A549, MCF7, 
MDA-MB-231, dan T24) telah dikaji menggunakan ujian MTT. RuPIP 
menunjukkan penurunan nilai IC50 yang bergantung pada tempoh inkubasi, 
manakala kedua-dua perencat PARP menunjukkan IC50 > 100 µM. Semua 
sebatian menunjukkan IC50 > 100 µM terhadap sel normal NHDF. Seterusnya, 
kajian gabungan ubat-ubatan telah dinilai dengan menggunakan kaedah Chou 
dan Talalay kombinasi indeks (CI) dan pengiraan nilai CI telah ditentukan 
dengan menggunakan perisian Calcusyn dan Compusyn. Majoriti daripada 
gabungan RuPIP dan olaparib menghasilkan kesan sinergistik (CI < 1) terhadap 
semua jenis sel-sel kanser yang diuji, manakala gabungan RuPIP-NU1025 
menghasilkan pelbagai kombinasi indeks; menunjukkan nilai CI antara 
sinergistik hingga antagonistik. Pertama sekali, daya hidup sel normal bagi 
semua gabungan ubat-ubatan yang dikaji adalah > 70%. Berdasarkan pengiraan 
purata nilai CI, gabungan sinergi (CI = 0.87) antara 25 μM RuPIP beserta 25 μM 
NU1025 atau 5 µM olaparib telah dipilih untuk ujian yang selanjutnya. 
Keupayaan sel untuk pulih dan membahagi dengan cepat untuk membentuk 
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koloni telah dikaji dengan menggunakan ujian klonogenik di mana rawatan 
sebatian sebagai agen tunggal menunjukkan kelangsungan hidup sel (S.F.) > 
75%. Pertama sekali, gabungan RuPIP dan perencat PARP mengurangkan 
kelangsungan hidup sel di mana gabungan RuPIP-olaparib (S.F. < 2%) 
menunjukkan kesan pengurangan yang lebih ketara berbading RuPIP-NU1025 
(S.F. < 57%). Di samping itu, rawatan tambahan dengan 25 µM RuPIP 
menyebabkan sel kanser menjadi sensitif terhadap rawatan olaparib di mana 
pengurangan nilai IC50 untuk olaparib bagi sel MCF7 adalah sebanyak 60 kali 
ganda (0.08 vs 4.75 µM), dan pengurangan nilai IC50 sebanyak > 300 kali ganda 
bagi sel MDA-MB-231 (0.06 vs 23.39 µM). Berikutnya, keupayaan sel untuk 
berhijrah telah dikaji dengan menggunakan ujian mimik luka yang menunjukkan 
bahawa rawatan dengan gabungan RuPIP-olaparib menyebabkan pengurangan 
keupayaan sel kanser untuk berhijrah yang ketara (P < 0.001) dengan 
pengurangan sebanyak 40% berbanding rawatan kawalan. Seterusnya, analsis 
aliran sitometri untuk menganalisis kitaran sel menunjukkan bahawa rawatan 
gabungan menyebabkan penangkapan kitaran sel pada fasa G1/S bagi sel A549  
(17.1% pertambahan berbanding rawatan kawalan). Selain itu, kedua-dua sel 
MCF7 dan MDA-MB-231 menyebabkan penangkapan kitaran sel pada fasa 
G2/M (19.7% dan 20.4% pertambahan berbanding rawatan kawalan). 
Selanjutnya, ujian Annexin V-FITC menunjukkan bahawa rawatan gabungan 
menyebabkan peningkatan kematian sel yang ketara (P < 0.001) melalui 
mekanisme apotosis (25%, 30% and 31% pertambahan berbanding rawatan 
kawalan masing-masing bagi sel A549, MCF7 and MDA-MB-231) . Dan dapatan 
ini turut dikaitkan dengan peningkatan kerosakan DNA yang ketara (P < 0.001) 
apabila sel kanser dirawat dengan rawatan gabungan di mana terdapat 
pertambahan sel yang menghasilkan fokus γH2AX sebanyak 45% berbanding 
rawatan kawalan. Hasil dapatan kajian ini membuktikan bahawa RuPIP bersama 
perencat PARP dapat menghasilkan kesan sinergistik dalam pelbagai jenis sel 
kanser dengan kesan yang minimum terhadap sel normal. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

1.1 Research background 
 
 
Cancer remains as one of the primary causes of death associated with a high 
number of reported global incidences annually. Particularly, in 2018, 18.1 million 
new cancer occurrences and 9.6 million cancer-related mortality were reported, 
and importantly, these numbers are expected to rise within the next two decades 
(Bray et al., 2018; Siegel et al., 2019).  Currently, the routine methods for cancer 
treatment are surgical resection or radiotherapy alongside periods of 
chemotherapy. However, the efficacy of these strategies is limited by various 
factors such as the mass of the tumor to be removed, the stage of tumor 
progression, the occurrence of metastatic tumors, the affordability of 
radiotherapy and the patient’s health status (Abbas et al., 2018). Although 
recently, treatments using molecular targeted therapy have brought new hope, 
they are still not effective against advanced cancer and cancer recurrence 
despite initial high response rates (Saijo, 2012). Therefore, chemotherapy 
remains as the most common and realistic option for cancer treatment.  
 
 
With the discovery of cisplatin (cis-diamminedichloroplatinum(II)), a platinum 
metal-based drug by Barnett Rosenberg in 1960, a milestone in the history of 
metal-based complexes in treating cancer was witnessed (Muggia et al., 2015). 
Cisplatin was the first metal-chemotherapeutic approved in 1978 by U.S. food 
and drug administration (FDA). Briefly, cisplatin induces inter- and intra-strands 
platinum-DNA crosslinks causing blockage of replication fork progression, 
leading to DNA damage in the form of cytotoxic DNA double-strand breaks 
(DSBs) (Deans, J. et al., 2013; Ndagi et al., 2017). However, cisplatin has limited 
clinical capability as it possesses inherent clinical drawbacks such as high 
general toxicity and less selectivity against healthy normal cells leading to severe 
adverse effects including myelosuppression, nephrotoxicity and neurotoxicity 
(Shaloam et al., 2014). Importantly, although effective in many other cases, the 
rapid occurrence of acquired or intrinsic resistance towards cisplatin presents as 
a well-established limit for its clinical application as these might significantly 
reduce their efficacy during treatment or even renders them ineffective leading 
to treatment failure and rapid progression of relapse (Eckstein, 2011; Amable, 
2016). As such, these have encouraged substantial efforts in finding alternative 
anticancer agents based on other transition metals to replace current platinum-
based drugs. Based on the success of cisplatin, inorganic medicinal chemists 
have since examined alternative transition metal centres such as ruthenium, 
palladium or rhodium, to design complexes which target highly proliferative 
cancerous cells with improved therapeutic windows compared to cisplatin (Ndagi 
et al., 2017). 
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Ruthenium metal-based complexes have attracted a great amount of interest in 
the last 20 years in combating cancer where majority of them owe their effects 
by forming coordinate interactions with DNA in a similar substitution kinetics to 
platinum complexes but differ in their reported biochemical properties and 
potency in vitro and in vivo (Ramadevi et al., 2015; Poynton et al., 2017). Within 
the last two decades, four ruthenium-based complexes have successfully 
entered clinical trials. The first ruthenium complex that entered clinical 
investigation was NAMI-A [ImH][trans-RuCl4(DMSO)(Im)] (Im = imidazole, 
DMSO = dimethyl sulfoxide), followed by KP1019 [indazolium trans-
tetrachlorobis(1H-indazole)ruthenate(III)] where both are proven to display 
anticancer properties with potent efficacy in clinics (Dyson et al., 2006). More 
recently, NKP1339, a derivative and more soluble sodium salt of KP1019 
complex has demonstrated effective results in disease stabilization in the phase 
I study against solid tumors (Alessio et al., 2019). Encouragingly, these clinical 
findings demonstrated that these ruthenium complexes showed various clinical 
benefits compared to platinum drugs, including low general toxicity, greater 
tumor selectivity and potent efficacy on platinum-resistant tumors (Lin et al., 2018 
a). Importantly, reduced severe adverse effects compared to platinum drugs 
were also noted.  
 
 
Recently, polypyridyl complexes of Ru(II) (RPCs), a class of ruthenium 
complexes have emerged as promising drug candidates due to their ability to 
form non-covalent (reversible) interactions with DNA through intercalation of its 
organic ligand(s) between DNA base pairs (Zeglis et al., 2007; Gill et al., 2012). 
Most promisingly, the RPC photosensitizer TLD1443 [Ru(dmb)2(LL’)]2+ where 
dmb = 4,4’-dimethyl-2,2’-bipyridine and LL’ = 2-((2’,2”:5”,2’”-terthiophene)-
imidazo[4,5-f][1,10]phenanthroline) is currently undergoing phase II trials for 
bladder cancer patients (Lin et al., 2018 a). Our group has previously reported 
that the RPC, [Ru(dppz)2(PIP)]2+ where dppz = dipyrido[3,2-a:2′,3′-c]phenazine 
and PIP = 2-(phenyl)imidazo[4,5-f][1,10]phenanthroline], or described as RuPIP 
hereafter binds to DNA through intercalation, leading to the stalling of DNA 
replication fork progression (Gill et al., 2016). In response to this DNA replication 
stress, the DNA damage response (DDR) signaling pathways are activated to 
counteract the effects of DNA damages and maintain the genomic integrity of 
cells.  
 
 
Although RuPIP shows great anticancer properties, however, as in the case for 
the majority of anticancer drugs, treatment with a single agent may not lead to 
sufficient tumor suppression to improve disease outcome or patient survival 
(Basourakos et al., 2016; Mokhtari et al., 2017). If doses required as single 
agents for cancer cell killing are very high, this may even lead to intolerable 
toxicity to normal cells. Besides, for DNA targeting molecules, genotoxicity and 
even the generation of secondary cancers as a result of treatment are additional 
factors that must be considered. Recently, due to the enhanced understanding 
of cancer disease biology where several interconnected molecular pathways are 
involved in the system, using rational combination therapies of several drugs 
acting simultaneously on multiple targets and pathways are being sought to 
overcome the limited clinical options available within conventional chemotherapy 
(Chou, 2010; Foucquier et al., 2015). Synergistic combination chemotherapies 
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can lead to better efficacy, reduce drug dosage, decrease toxicity, and minimize 
risk of development of drug resistance and chance of relapse (Chou, 2006). 
Nowadays, drug combination therapies are common in clinical practices, and 
thus, using these therapeutic strategies to improve response to RuPIP would be 
a promising line of research. 
 
 
DDR signaling pathways reverse the effects of DNA damage and are important 
in maintaining the stability of the human genome (Lu et al., 2018). Hence, the 
activity of these intrinsic DDR pathways can further predict treatment resistance 
and clinical outcomes in cancer therapy. Poly (ADP-ribose) polymerases (PARP) 
are one of the key DNA repair enzymes in DDR signaling pathways.  Following 
DNA single-strand breaks (SSBs) or stalled replication forks, PARP mediates 
base excision repair (BER) pathway to prevent the generation of cytotoxic DSBs 
(Yang et al., 2004; Bryant et al., 2009; Beck et al., 2014). As PARP involves in 
DNA damage repair, the enzymatic inhibition of PARP leads to persistent stalling 
of replication fork progression and consequently, the formation of DSBs when 
fork collapse (Pascal, M., 2018). Therefore, PARPs have become the rational 
targets in anticancer drug research for the development of new drugs (Davar et 
al., 2012).  
 
 
Several PARP inhibitors have progressed to clinical trials, and the PARP 
inhibitors olaparib (Lynparza®), niraparib (Zejula®) and rucaparib (Rubraca®) 
have been approved by FDA for treating cancers with defective breast cancer 
susceptibility gene (BRCA). However, while improved therapeutic response to 
PARP inhibition in BRCA1/2 mutated-cancers has been shown, PARP inhibitor 
exerts limited efficacy in the treatment of other cancers without homologous 
recombination (HR) protein or gene defect (Basourakos et al., 2016). The role of 
the metallo-intercalator RuPIP in the activation of DDR signaling has attracted 
our interest in combining RuPIP with PARP inhibitors to effectively inhibit repair 
of damaged DNA and achieve synergism in cancer cells. This will enhance the 
efficacy of RuPIP and ultimately, improve cancer cell killing while reducing the 
cytotoxic effect on normal cells. In addition to this, examining the combination of 
PARP inhibitors alongside RuPIP will expand the use of PARP inhibitors to a 
wider cancer population including BRCA wild type cancer. 
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1.2 Problem statement 
 
 
As in the case for the majority of anticancer drugs, treatment with single agent 
or monotherapy may not lead to sufficient tumor suppression to improve disease 
outcome or patient survival. In addition to this, if doses required as single agents 
for cancer cell killing are very high, this may lead to intolerable toxicity to normal 
cells resulting in severe adverse effects. Typically, for DNA targeting molecules, 
genotoxicity and even the generation of secondary cancers as a result of 
treatment are additional factors that must be considered. Moreover, although 
BRCA1/2-deficient cancers demonstrate exquisite sensitivity to PARP inhibitors 
when used as single agents, they represent a relatively small subset of cancer 
patients which limits PARP inhibitors’ clinical capabilities. As such, this rational 
combination approach of RuPIP and PARP inhibitor will expand the clinical use 
of PARP inhibitors to a greater cancer population. The synergistic activities will 
result in better efficacy, decreased dosage, reduced toxicity, reduced severe 
adverse effects and are more effective in limiting the emergence of drug 
resistance. Consequently, this rational combination therapies have potential in 
achieving sufficient tumor suppression, and ultimately, improving disease 
outcomes and patient survival. 
 
 
1.3 Research objectives 
 
 
The aim of this study is to determine the effect of RuPIP in combination with 
PARP inhibitors NU1025 or olaparib in various human cancer cells as a new 
therapeutic strategy and explore the mechanistic basis of synergy. In this study, 
finding proof of significant superiority of the effect of combination treatment in 
comparison to single agent condition is of particular importance.  
 
 

i. To determine the cytotoxic effects of RuPIP or PARP inhibitors (NU1025, 
olaparib) as single agents on four different cancer cell lines (A549, MDA-
MB-231, MCF7 and T24) and on normal human fibroblast cell lines 
(NHDF, MRC5). 

ii. To determine the potential synergism of RuPIP in combination with 
PARP inhibitor against the cancer cell lines. 

iii. To determine the potential cytotoxicity mechanisms underlying the 
synergistic combination of RuPIP and PARP inhibitor using cell cycle 
analysis, Annexin V-FITC apoptosis assay and through quantification of 
double-strand break (DSB) DNA damage.  
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