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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfillmen t of the require men t for the degree of Master of Science

NUMERICAL SOLUTIONS OF SINGLE DELAY DIFFERENTIAL
EQUATIONS AND SPECIAL SECOND ORDER OSCILLATORY INITIAL
VALUE PROBLEMS USING RUNGE-KUTTA AND HYBRID METHODS

By
SUFIA ZULFA BINTI AHMAD

June 2013

Chairman Professor Fudziah Bt Ismail, PhD

Faculty Science

The first part of the thesis focuses on adapting existing methods for solving

first and second order delay differential equations (DOEs). The methods are

Improved Runge-Kutta (IRK) and Runge-Kutta (RK) methods which are

adapted for solving first order DDEs. The accuracy and stability of the

methods when applied to linear first order DDEs are looked into. Next we

adapt the existing hybrid methods for solving special second order DDEs.

Numerical results are compared in terms of accuracy and computational time

with the Runge-Kutta Nystrom (RKN) method. Stability of the methods when

applied to linear second order DDEs are presented.

The new Semi-Implicit Hybrid methods (SIHMs) are derived for solving

system of oscillatory problems. The methods have highest possible order of
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dissipation and dispersion with small error coefficients. The periodicity

intervals of the methods are also given. Numerical results indicate that SIHMs

are more efficient compare to the existing methods.

Then the zero-dissipative Phase-Fitted Hybrid methods (PFHMs) are

constructed based on the existing explicit hybrid methods. The dispersion

relations are developed in order to obtain methods with phase-lag of order

infinity. Numerical illustrations indicate that PFHMs are much more efficient

than the existing methods.

Finally, we constructed Optimized Hybrid methods (OPHMs) based on the

existing non-zero-dissipative hybrid methods. To develop OPHMs; dissipative,

dispersive and first derivatives of dispersive relations are required. We found

that the non-zero-dissipative hybrid methods are more suitable to be

optimized than phase-fitted. Numerical results are also given to prove the

claim.

In conclusion, the IRK methods and hybrid methods are more efficient in

solving first and second order DDEs respectively. The new methods

constructed in this thesis are suitable for solving second-order ODEs and they

are more efficient compared to the existing methods.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk ijazah Master Sains

PENYELESAIAN BERANGKA BAGI PERSAMAAN PEMBEZAAN
TUNDA TUNGGAL DAN PERSAMAAN PEMBEZAAN BIASA
PERINGKAT KEDUA BAGI MASALAH NILAI AWAL BENTUK

BERAYUN MENGGUNAKAN KAEDAH RUNGE-KUTTA DAN HIBRID

Olch

SUFIA ZULFA BINTI AHMAD

Jun 2013

Pengerusi Professor Fudziah Bt Ismail, PhD

Fakulti Sains

Bahagian pertama tesis memberi tumpuan terutamanya untuk penyesuaian

kaedah sedia ada bagi penyelesaian persamaan pembezaan tunda (PPT) untuk

peringkat pertama dan kedua. Kaedah Runge-Kutta tertambah baik (RKT)

dan Runge-Kutta (RK) disesuaikan untuk menyelesaikan PPT peringkat

pertama. Kejituan dan kestabilan kaedah yang diterapkan kepada PPT

peringkat pertama juga diteliti. Seterusnya kaedah sedia ada hibrid

disesuaikan bagi menyelesaikan PPT peringkat kedua. Keputusan bcrangka

dibandingkan dari segi ketepatan dan masa pengiraan dengan kaedah Runge-

Kutta Nystrom (RKN). Kestabilan kaedah apabila diterapkan kepada PPT

peringkat kedua juga dipersembahkan.
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Kaedah Separa-Tersirat Hibrid (5TH) dibina untuk penyelcsaian sistem

masalah bentuk berayun. Kaedah ini mempunyai peringkat serakan dan

lesapan yang tertinggi serta ralat pekali yang kecil. Selang berkala bagi

kaedah turut diberikan. Keputusan berangka menunjukkan kaedah 5TH

adalah lebih efektif dari kaedah-kaedah scdia ada.

Kaedah Lesapan Sifar Suai Secara Fasa Hibrid (SSFH) dibina berdasarkan

kaedah sedia ada tak-tersirat hibrid. Hubungan secara serakan dibina untuk

mendapatkan kaedah yang mempunyai fasa-Iag peringkat infiniti. Ilustrasi

berangka menunjukkan bahawa kaedah baru adalah lebih berkesan daripada

kaedah-kaedah sedia ada.

Akhir sekali. kaedah Pengoptimuman Hibrid (PH) dibina berdasarkan kaedah

hibrid lesapan tidak sifar sedia ada. Bagi pembinaan kaedah PH; hubungan

antara lesapan, serakan dan pembezaan pertama serakan diperlukan.

Didapati bahawa kaedah hibrid lesapan tidak sifar lcbih sesuai untuk

dioptimumkan berbanding suai secara fasa. Keputusan berangka juga

diberikan untuk membuktikan dakwaan itu.

Kesimpulannya, kaedah- kaedah RKT dan hibrid adalah lebih efektif dalam

menyelesaikan PPT peringkat pertama dan kedua. Kaedah-kaedah baru yang

dibina di dalam tesis ini adalah sesuai untuk menyelesaikan Persamaan
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•

Pcrnbezaan Biasa (PPB) peringkat kedua dan kacdah tersebut Iebih cekap

berbanding dengan kaedah yang sedia ada.
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CHAPTER 1

INTRODUCTION

1.1 Literature Review

Differential equations have appeared in many practice originated in

engineering, physical, social sciences and recently also great approaches in

the field of biology and medicine. Some physical processes occur not only

depend on the current state of the system but also the past states.

Mathematical models of such process commonly result in differential

equations with a time delay. This type of equation is called delay differential

equations (DDEs) which the derivative at anytime depends on the solution at

prior times and also known as model that incorporating past history. A more

realistic model must include some of the past history of the system to

determine the future behavior. DDEs often appear in connection with

fundamental problems to analyze mathematical model in order to determine

U1efuture behavior.

There has been a growing interest in U1efield of DDEs, such as U1ework of

Kuang (1993), Ismail and Suleiman (2000), Bellen and Zennaro (2003), Taiwo

and Odetunde (2010) and many others. There are many applications which

are well-known related to DDEs such as population dynamics, epidemiology

and reforestation. For example, U1e process of reforestation involved
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replanting process will take at least 20 years before the tree reaching

maturity. Hence, mathematical model of forest harvesting and regeneration

must have time delay built into it.

In the first part of this study we are focusing on adapting existing methods

for solving first and second order DOEs. The general form of a single first

order delay differential equation with constant delay can be written as

y'(x) = t(x,y(x),y(x - r)), a:S; x:S; b, y(xo) = Yo, x E [-r,a] (1.1)

where r is the delay term. Many authors have attempted to increase the

efficiency of Runge-Kutta (RK) methods that required a lower number of

function evaluations to solve first order initial value problems (IVPs).

Consequently, Goeken et al (2000) proposed a class of RK method with

higher derivatives approximations for the third and fourth-order methods,

Phohomsiri and Udwadia (2004) constructed the accelerated Runge-Kutta

(ARK) integration schemes for the third-order using two functions

evaluations per step. Then, Udwadia and Farahani (2008) developed the

ARK method for higher orders. Rabiei et al (2011b) constructed the Improved

Runge-Kutta (IRK) method with reduced number of function evaluations

which proposed a method of order three with two stages. Rabiei et al (2011c)

then derived the order conditions and constructed the IRK method for

solving ordinary differential equations (ODEs). The convergence and

stability region of the methods were also discussed. Here, we use IRK and

2
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RK methods to solve (1.1) and compare the methods efficiency in terms of

accuracy. We use the same approaches as defined in Ismail and Suleiman

(2000) to find the stability region of IRK methods when applied to first order

DDEs.

The general form of the special second order delay differential equation with

constant delay can be written in the form of

y"(x) = t(x,y(x),y(x - r)), a :::;x:::; b,

y(xo) = Yo, y'(xo) = y~, x E [-r,a] } (1.2)

where r is the delay terms and first derivative does not appear explicitly.

Apparently, the most common methods used for solving second order ODEs

numerically is Runge-Kutta Nystrom (RKN) method and also Runge-Kutta

(RK) method after reducing the IVPs to first order ODEs. Franco (1995)

proposed that second order ODEs can be solved using particular explicit

hybrid algorithms or special multi-step methods. Coleman (2003) developed

the algebraic order conditions of hybrid method up to order nine. Later,

Franco (2006) constructed explicit two-step hybrid method of order four, five

and six using the algebraic order condition developed by Coleman (2003)

which have optimized error constant for solving second order IVPs. In this

thesis we adapt the hybrid and RKN methods in order to solve (1.2). The

RKN and hybrid methods are compared in terms of accuracy and stability

regions. We use the same approaches as defined in Ismail and Suleiman

3
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(2000) to find the stability region of hybrid methods. While, the stability

region for RKN method is defined using the way proposed by Kuang and

Cong (2005).

Many differential equations which appear in practice are system of second

order IVP, in which the first derivative does not appear explicitly as

y" = {(x, y), y(xo) = Yo, y'(xo) = y~ (1.3)

We are focusing on solving (1.3) directly for which it is known in advance

that their solution is oscillating. While dealing with oscillatory problems, we

need to consider the algebraic order conditions, dispersion (phase-lag) and

dissipation (amplification error) properties when construction of a method.

Bursa and Nigro (1980) first introduced the phase-lag of a method. Van der

Houwen and Sommeijer (1987)proposed explicit RKN methods of order four,

five, and six with reduced phase-lag of order six, eight, and 10 respectively.

Senu et al (2010a) developed diagonally implicit RKN (DIRKN) method with

dispersion of higher order for solving oscillatory problems. There are also

some studies such as Samat et al (2012) in which they developed higher

order explicit hybrid methods of order seven with phase-lag order eight and

dissipation of order nine. In order to solve (1.3), semi implicit hybrid

methods (SIHMs) are developed using the necessary algebraic condition,

dispersion and dissipation relation. To implement the methods, accuracy and

stability are two further factors for judging the efficiency of a method.

4
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Some au thors have developed hybrid methods with the purpose of making

the phase-lag of the method smaller. For example, Van de Vyver (2007)

provided a theoretical framework for a new type of phase-fitted and

amplification-fitted of two-step hybrid methods for solving special second

ODEs. Papadopoulos et al (2009) constructed phase fitted RKN (PFRKN)

method using the dispersion relation in order to get method with phase lag

of order infinity. 111e method is developed based on the Runge-Kutta-

Nystrom method of algebraic order four with four (three effective) stages by

Dormand, El-Mikkawy and Prince (1987). In the literature, zero-dissipative

phase-fitted two-step hybrid methods are developed using the same

approaches as in Papadopoulos et al (2009) for solving second order ODEs.

In this thesis, the phase-fitted hybrid methods (PFHMs) are constructed

based on the existing zero-dissipative explicit hybrid methods originally

developed by Franco (2006).

Lastly, we investigate effect of optimized and phase-fitted method for the

modification of the existing non-zero dissipative hybrid methods. Simas

(2012) developed the methodology of optimization of the efficiency of a

hybrid two-step method for the numerical solution of the radial Schrodinger

equation. The study is to focus on the vanishing of the phase-lag and its

derivatives optimize the efficiency of the hybrid two-step method. Kosti et al

5
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(2012) constructed an explicit RKN method with four stages and fifth

algebraic order conditions. The variable coefficients of the preserved method

result after nullifying the phase lag, the dissipative error and the first

derivative of the phase-lag. In this study, both phase-fitted hybrid methods

(PFHMs) and optimized hybrid methods (OPHMs) are develop based on the

same non-zero-dissipative explicit methods originally by Franco (2006) for

solving the second order ODEs. The OPHMs and PFHMs are constructed

using the same approaches used by Kosti et al (2012) and Papadopoulos et al

(2009) respectively. Therefore, the investigation of whether optimize

methods or phase-fitted improve the accuracy of non-zero-dissipative

methods are discussed in the research.

1.2 The Objective of the Thesis

The main objectives of this thesis can be summarized as follows:

1. To compare the efficiency of IRK with RK method, hybrid method

with RKN method for solving first and second order DDEs

respectively.

2. To construct Semi-Implicit Hybrid methods (SIHMs) using phase-lag

and dissipative properties for solving oscillating problems.

3. To develop Phase-Fitted Hybrid methods (PFHMs) from existing

zero-dissipative methods for solving second order ODEs.

6
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4. To derive Optimize Hybrid methods (OPHMs) and PFHMs from

existing non-zero-dissipative methods and investigate the effect of

nullifying the properties of phase-lag, amplification error, and first

derivative of phase-lag when designing the methods.

1.3 Outline of the Thesis

In Chapter 1, basic theory of numerical method and analysis of dispersion

and dissipation of hybrid methods are discussed. In Chapter two, a brief

explanation is given on DDEs and how the numerical methods are

adapted for solving DDEs. Comparison of efficiency of the methods and

their stability are also given. In Chapter three, we derived SIHMs of order

four and two methods of order five. The dispersion and dissipation

relations are applied in the derivation of the methods. The stability

properties of the methods are also determined. Numerical results are

presented and comparisons of the methods with some other implicit and

explicit existing methods are given.

In Chapter four, we derive zero-dissipative explicit PFHMs of three-and

four-stage fourth-order and five-stage sixth-order which based on the

hybrid methods which were originally developed by Franco (2006). To

get methods of phase-lag of order infinity, the dispersion properties are

7
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imposed for each of the hybrid methods using the same way as proposed

in Papadopoulos et al (2009). Numerical results and comparison of the

methods with the original hybrid methods and other methods in

literature for solving special second order ODEs which have oscillating

solutions are also included.

For non-zero-dissipative hybrid method, we construct four-stage fifth-

order and five-stage sixth-order OPHMs in Chapter five. The methods are

developed using the same approach introduced in Kosti et al (2012)

which optimized the methods by imposing the dispersion, dissipation

and first derivative of dispersion relation. The methods are based on the

non-zero-dissipative hybrid method developed by Franco (2006).

Numerical results and comparison on accuracy of the methods with the

original hybrid method and methods in literature are also discussed. In

addition, based on the same hybrid methods by Franco (2006) we also

developed the phase-fitted version of the methods. OPHMs and PFHMs

performance are compared to investigate which method improves the

explicit non-zero-dissipative hybrid methods in terms of accuracy. Finally,

the conclusion of the thesis is given in Chapter six.

8
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1.4 Hybrid Method

An s -stage two-step hybrid method for numerical integration IVPs is in the

form

(1.4)

(1.5)

for i = 1, ..., s, where the coefficients of hi! c, ,and aij can be represented in

Butcher tableau by the table of coefficients in Table 1.1.

Table 1.1: s-stage Hybrid methods

Cl al,l ... aI,s+tr =T Cs as,l as,s

hI hs

The methods are characterized by two s-dimensional vectors, band c, with

elements hi and c., respectively, and s x s matrix A with elements au' In

vector notation, for an autonomous system of equations y" = fey), (1.4) and

(1.5)can be written in the form of

(1.6)

where e = (1, ...,l)T.

The methods of the form (1.4) and (1.5) can be defined as

(1.7)

9
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(1.8)

(1.9)

and Cz = O.This method is considered as two-step hybrid method because

each step after starting procedure. TIle general form of explicit hybrid

method can be written in Butcher tableau in Table 1.2.

Table 1.2: s-stage Explicit Hybrid methods

-1 0
0 0 0
C3 a3,1 a3,Z 0

0
Cs a~,l a~,z a~,s-l 0

bi bz bS-1 bs

1.5 Local Truncation Error and Algebraic Condition of Hybrid Method

Algebraic order condition of hybrid method was developed by Coleman

(2003). The order conditions for two-step hybrid methods are derived by

considering them as one-step methods of the form

(1.10)

where Un is an appropriately defined numerical solution vector, and some

starting procedure is used to generate uo.

10
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This approach is prompted by the work of Hairer and Warner (2012) for a

class of two-step Runge-Kutta methods for differential equations of first

order. The first equation in (1.6) can be written as a pair of equations by

defining f~l:= (Yn+1 - Yn)/h so that

RI= Fn-1 + h(bT 0J)f(Y).

These equations can be written as (1.10)with

(Yn) ( Fn-1 )Un = RI and ¢(Un-l, h) = (bT 0I)f(Y) I

where Y is defined by

= e0Yn-l + h(e + c)0f~l_l + h2(A0I) fey). (1.11)

The vector un is an approximation for Zn = Z(X11I h) I where Z is the exact-

value function defined by

(
y(x) )

z(x, h) = Y(X+hty(X) . (1.12)

The local truncation error of the method at Xn is

(1.13)

with (1.14)

where Y is now defined implicitly as (1.11).

11
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The order conditions that developed by Coleman (2003) for a s-stage, up to

order seven for explicit hybrid methods are in Table 1.3.

Table 1.3: Order condition

Tree t pet) Order condition
t21 2 IS bi = 1

i=1

t31 3 IS b.c, = 0
i=1

t41 4 S 1I bic/ =-
i=1 6

t42 S 1I
i
=1 b.a., = 12

tS1 5 IS biCi
3 = 0

i=1

tS2 IS 1
i=1 biCiaij = 12

tS3 IS bi aij9 = 0
i=1

t61 6 S 1I biCi
4 =-

i=1 15
t62 IS b.c.t a., =~

i=1 !! !) 30

t63 S 1I
i
=1 biCiaij Cj = - 60

t64 IS 7
i=1 biaijaik = 120

t6S IS 1
i=1 biaijC/ = 180

t66 IS 1
i=1 biaij ajk = 360

t71 7 IS biCiS = 0
i=1

t72 S 1Ii=1 biCi
3a

ij = 30

t73 IS bic/aij Cj = 0
i=1

t74 IS 1
i=1 biCiaij aik = 30

12
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where value of i > j > k . TIle simplifying condition for hybrid method is

,\,S - (c/+c;) f . - 1 . -' 1 i k -' 1L...i aij - 2 ,or l - , ... , S ,J - l - anl - J - .

1.6 Analysis of the Periodicity, Absolute Stability, Dispersion and
Dissipation

Stability analysis of explicit hybrid method has been discussed in Franco

(2006). We apply the test equation y"et) = eiAYyeX) = -A2yex), for A> 0 by

replacing {ex, y) = -A2yex) to the equation (1.4) and (1.5) and gives

Let H = hA, so equation (1.15) and (1.16)can be written as

(1.17)

(1.18)

and equation (1.17)will give

13
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YI = (1+ CI)Yn - CIYn-1 - H2(all YI + aI2Y2 + + aISYS)

Y2 = (1+ C2)Yn - C2Yn-1 - H2(a2l Yl + a22YZ + + a2sYs) (1.19)

111en,(1.19) and (1.18) can be written in vector form respectively as

Y = (e + C)Yn - CYn-l - H2 AY, (1.20)

(1.21)

... alS) (hl)
: , and b = : .

ass hs

By rearranging (1.20) we obtain

(1.22)

where (I + H2A)-1 =f. o. We substitute (1.22) into (1.21) and we get

Then we can rewrite (1.23) as

(1.24)

From (1.24) we obtain the following recursion

(1.25)

where

and (1.26)

The characteristic polynomial (1.25) represents the stability polynomial of

hybrid method. 111e numerical solution defined by the difference (1.24)

should be periodic therefore the necessary conditions are

14
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(1.27)

and interval (0, Hp) is known as the periodicity interval of the method. The

method is called zero dissipative (dCH) = 0) if it satisfied conditions in (1.27).

Otherwise, as the method possesses a finite order of dissipation, the

integration process is stable if the coefficients of polynomial in (1.27) satisfy

the conditions

(1.28)

And interval CO, H.J is known as the interval of absolute stability of the

method.

The first analysis of phase-lag was carried out by Bursa and Nigro (1980).

Phase analysis can be divided into two parts. First is inhomogeneous which

phase error is constant in time and second is homogeneous which the phase

error are accumulated as n increases. As proposed by Franco (2006), the

phase analysis is investigated using the second order homogeneous linear

test model, y"(X) = -A2y(X). The steps to define phase analysis of hybrid

method are the same from equation (1.15) to (1.26). Given that the exact

solution for the homogeneous test y" = (iA)2y(X) is

Y(Xn) = 2lwlcos(X + nH).

The numerical solution of (1.5) is in the form of

Yn = 21c1lpllIcos(w + rup),

(1.29)

(1.30)
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•

Definition 1 (Apply the hybrid method (1.29) and (1.30)) We define the

phase-lag ¢(H) = H - <po If ¢(H) = O(Hq+l), then the hybrid method is said

to be dispersive of order q. While, the quantity d(H) = 1 - Ipi is called as

amplification error and if d(H) = O(Hr+1
), then the hybrid method is said to

have dissipation order r. According to Definition 1, if at a point li, d(H) = 0,

then the hybrid method has zero dissipation at this point and it is dissipative

otherwise. The error ¢(H) and d(H) are accumulated in the numerical

process and therefore a cause of inaccuracy which leads to many integration

steps to be performed. Hence, in this study we will focus on increasing the

order of dispersion q (defined by ¢(H) = O(Hq+!)) and the order of

dissipation r (defined by d(H) = O(Hr+1)). Dispersion (phase-lag) is the

angle between the true and the approximated solution, whereas dissipation

is the distance from a standard cyclic solution.

The following nomenclature given by Van der Houwen and Sommeijer (1987)

¢(H) = H _ cos"! ( S(H2) )
2~ P(H2)

d(H) = 1- ~P(H2)

(1.31)

(1.32)

are called the dispersion error and the dissipation error, respectively. TIle

general form of S(H2) and P(H2) for explicit hybrid methods in Franco (2006)

is in the form of

16

© C
OPYRIG

HT U
PM



S(HZ) = 2 - a1HZ + aZH4 - a3H6 + '" + a.H?', a, = 0 for i > s.

P(HZ) = 1 - P1Hz + PZH4 - P3H6 + '" + PiHZi, Pi = 0 for i > s.

(1.33)

(1.34)

At the beginning of Chapter 2, we will discuss the stability of Improved

Runge-Kutta (IRK) method when applied to first order DDE. The

comparison of accuracy in terms of absolute error between IRK and Runge-

Kutta (RK) method are also presented. Then, comparison between stability

regions and accuracy of hybrid method and RKN method when applied to

second order DDE are also discussed. The stability properties of the methods

are defined using particular linear test model which will be discussed in

detail in the next chapter.
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