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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfillment of the requirement for the degree of Master of Science

NUMERICAL SOLUTIONS OF SINGLE DELAY DIFFERENTIAL

EQUATIONS AND SPECIAL SECOND ORDER OSCILLATORY INITIAL
VALUE PROBLEMS USING RUNGE-KUTTA AND HYBRID METHODS

By
SUFIA ZULFA BINTI AHMAD

June 2013

Chairman : Professor Fudziah Bt Ismail, PhD

Faculty g Science

The first part of the thesis focuses on adapting existing methods for solving
first and second order delay differential equations (DDEs). The methods are
Improved Runge-Kutta (IRK) and Runge-Kutta (RK) methods which are
adapted for solving first order DDEs. The accuracy and stability of the
methods when applied to linear first order DDEs are looked into. Next we
adapt the existing hybrid methods for solving special second order DDEs.
Numerical results are compared in terms of accuracy and computational time
with the Runge-Kutta Nystrom (RKN) method. Stability of the methods when

applied to linear second order DDEs are presented.

The new Semi-Implicit Hybrid methods (SIHMs) are derived for solving

system of oscillatory problems. The methods have highest possible order of



dissipation and dispersion with small error coefficients. The periodicity
intervals of the methods are also given. Numerical results indicate that SIHMs

are more efficient compare to the existing methods.

Then the zero-dissipative Phase-Fitted Hybrid methods (PFHMs) are
constructed based on the existing explicit hybrid methods. The dispersion
relations are developed in order to obtain methods with phase-lag of order
infinity. Numerical illustrations indicate that PFHMs are much more efficient

than the existing methods.

Finally, we constructed Optimized Hybrid methods (OPHMs) based on the
existing non-zero-dissipative hybrid methods. To develop OPHMs; dissipative,
dispersive and first derivatives of dispersive relations are required. We found
that the non-zero-dissipative hybrid methods are more suitable to be
optimized than phase-fitted. Numerical results are also given to prove the

claim.

In conclusion, the IRK methods and hybrid methods are more efficient in
solving first and second order DDEs respectively. The new methods
constructed in this thesis are suitable for solving second-order ODEs and they

are more efficient compared to the existing methods.
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PENYELESAIAN BERANGKA BAGI PERSAMAAN PEMBEZAAN
TUNDA TUNGGAL DAN PERSAMAAN PEMBEZAAN BIASA
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Bahagian pertama tesis memberi tumpuan terutamanya untuk penyesuaian
kaedah sedia ada bagi penyelesaian persamaan pembezaan tunda (PPT) untuk
peringkat pertama dan kedua. Kaedah Runge-Kutta tertambah baik (RKT)
dan Runge-Kutta (RK) disesuaikan untuk menyelesaikan PPT peringkat
pertama. Kejituan dan kestabilan kaedah yang diterapkan kepada PPT
peringkat pertama juga diteliti. Seterusnya kaedah sedia ada hibrid
disesuaikan bagi menyelesaikan PPT peringkat kedua. Keputusan berangka
dibandingkan dari segi ketepatan dan masa pengiraan dengan kaedah Runge-
Kutta Nystrom (RKN). Kestabilan kaedah apabila diterapkan kepada PPT

peringkat kedua juga dipersembahkan.



Kaedah Separa-Tersirat Hibrid (STH) dibina untuk penyelesaian sistem
masalah bentuk berayun. Kaedah ini mempunyai peringkat serakan dan
lesapan yang tertinggi serta ralat pekali yang kecil. Selang berkala bagi
kaedah turut diberikan. Keputusan berangka menunjukkan kaedah STH

adalah lebih efektif dari kaedah-kaedah sedia ada.

Kaedah Lesapan Sifar Suai Secara Fasa Hibrid (SSFH) dibina berdasarkan
kaedah sedia ada tak-tersirat hibrid. Hubungan secara serakan dibina untuk
mendapatkan kaedah yang mempunyai fasa-lag peringkat infiniti. [lustrasi
berangka menunjukkan bahawa kaedah baru adalah lebih berkesan daripada

kaedah-kaedah sedia ada.

Akhir sekali, kaedah Pengoptimuman Hibrid (PH) dibina berdasarkan kaedah
hibrid lesapan tidak sifar sedia ada. Bagi pembinaan kaedah PH; hubungan
antara lesapan, serakan dan pembezaan pertama serakan diperlukan.
Didapati bahawa kaedah hibrid lesapan tidak sifar lebih sesuai untuk
dioptimumkan berbanding suai secara fasa. Keputusan berangka juga

diberikan untuk membuktikan dakwaan itu.

Kesimpulannya, kaedah- kaedah RKT dan hibrid adalah lebih efektif dalam
menyelesaikan PPT peringkat pertama dan kedua. Kaedah-kaedah baru yang

dibina di dalam tesis ini adalah sesuai untuk menyelesaikan Persamaan



Pembezaan Biasa (PPB) peringkat kedua dan kaedah tersebut lebih cekap

berbanding dengan kaedah yang sedia ada.
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CHAPTER 1
INTRODUCTION

11 Literature Review

Differential equations have appeared in many practice originated in
engineering, physical, social sciences and recently also great approaches in
the field of biology and medicine. Some physical processes occur not only
depend on the current state of the system but also the past states.
Mathematical models of such process commonly result in differential
equations with a time delay. This type of equation is called delay differential
equations (DDEs) which the derivative at anytime depends on the solution at
prior times and also known as model that incorporating past history. A more
realistic model must include some of the past history of the system to
determine the future behavior. DDEs often appear in connection with

fundamental problems to analyze mathematical model in order to determine

the future behavior.

There has been a growing interest in the field of DDEs, such as the work of
Kuang (1993), Ismail and Suleiman (2000), Bellen and Zennaro (2003), Taiwo
and Odetunde (2010) and many others. There are many applications which
are well-known related to DDEs such as population dynamics, epidemiology

and reforestation. For example, the process of reforestation involved



replanting process will take at least 20 years before the tree reaching
maturity. Hence, mathematical model of forest harvesting and regeneration

must have time delay built into it.

In the first part of this study we are focusing on adapting existing methods
for solving first and second order DDEs. The gencral form of a single first
order delay differential equation with constant delay can be written as

y'(x) = fxy@),y(x—1)),a<x< b y(x) =y, x € [-r,a]  (L1)
where 7 is the delay term. Many authors have attempted to increase the
efficiency of Runge-Kutta (RK) methods that required a lower number of
function evaluations to solve first order initial value problems (IVDPs).
Consequently, Goeken et al (2000) proposed a class of RK method with
higher derivatives approximations for the third and fourth-order methods.
Phohomsiri and Udwadia (2004) constructed the accelerated Runge-Kutta
(ARK) integration schemes for the third-order using two functions
evaluations per step. Then, Udwadia and Farahani (2008) developed the
ARK method for higher orders. Rabiei et al (2011b) constructed the Improved
Runge-Kutta (IRK) method with reduced number of function evaluations
which proposed a method of order three with two stages. Rabiei et al (2011c)
then derived the order conditions and constructed the IRK method for
solving ordinary differential equations (ODEs). The convergence and

stability region of the methods were also discussed. Here, we use IRK and



RK methods to solve (1.1) and compare the methods efficiency in terms of
accuracy. We use the same approaches as defined in Ismail and Suleiman
(2000) to find the stability region of IRK methods when applied to first order

DDEs.

The general form of the special second order delay differential equation with
constant delay can be written in the form of

y' () = f(xy(),y(x—1)) ,a<x < b,

(o) = Yo, ¥'(%0) = yo, x € [~7,0] (1.2)
where 7 is the delay terms and first derivative does not appear explicitly.
Apparently, the most common methods used for solving second order ODEs
numerically is Runge-Kutta Nystrom (RKN) method and also Runge-Kutta
(RK) method after reducing the IVPs to first order ODEs. Franco (1995)

proposed that second order ODEs can be solved using particular explicit
hybrid algorithms or special multi-step methods. Coleman (2003) developed
the algebraic order conditions of hybrid method up to order nine. Later,
Franco (2006) constructed explicit two-step hybrid method of order four, five
and six using the algebraic order condition developed by Coleman (2003)
which have optimized error constant for solving second order IVPs. In this
thesis we adapt the hybrid and RKN methods in order to solve (1.2). The
RKN and hybrid methods are compared in terms of accuracy and stability

regions. We use the same approaches as defined in Ismail and Suleiman



(2000) to find the stability region of hybrid methods. While, the stability
region for RKN method is defined using the way proposed by Kuang and

Cong (2005).

Many differential equations which appear in practice are system of second
order IVP, in which the first derivative does not appear explicitly as

Y= f(y), y(x0) = yo, ¥'(x) = ¥ (1.3)
We are focusing on solving (1.3) directly for which it is known in advance
that their solution is oscillating. While dealing with oscillatory problems, we
need to consider the algebraic order conditions, dispersion (phase-lag) and
dissipation (amplification error) properties when construction of a method.
Bursa and Nigro (1980) first introduced the phase-lag of a method. Van der
Houwen and Sommeijer (1987) proposed explicit RKN methods of order four,
five, and six with reduced phase-lag of order six, eight, and 10 respectively.
Senu et al (2010a) developed diagonally implicit RKN (DIRKN) method with
dispersion of higher order for solving oscillatory problems. There are also
some studies such as Samat et al (2012) in which they developed higher
order explicit hybrid methods of order seven with phase-lag order eight and
dissipation of order nine. In order to solve (1.3), semi implicit hybrid
methods (SIHMs) are developed using the necessary algebraic condition,
dispersion and dissipation relation. To implement the methods, accuracy and

stability are two further factors for judging the efficiency of a method.



Some authors have developed hybrid methods with the purpose of making
the phase-lag of the method smaller. For example, Van de Vyver (2007)
provided a theoretical framework for a new type of phase-fitted and
amplification-fitted of two-step hybrid methods for solving special second
ODEs. Papadopoulos et al (2009) constructed phase fitted RKN (PFRKN)
method using the dispersion relation in order to get method with phase lag
of order infinity. The method is developed based on the Runge-Kutta-
Nystrom method of algebraic order four with four (three effective) stages by
Dormand, El-Mikkawy and Prince (1987). In the literature, zero-dissipative
phase-fitted two-step hybrid methods are developed using the same
approaches as in Papadopoulos et al (2009) for solving second order ODEs.
In this thesis, the phase-fitted hybrid methods (PFHMs) are constructed

based on the existing zero-dissipative explicit hybrid methods originally

developed by Franco (2006).

Lastly, we investigate effect of optimized and phase-fitted method for the
modification of the existing non-zero dissipative hybrid methods. Simos
(2012) developed the methodology of optimization of the efficiency of a
hybrid two-step method for the numerical solution of the radial Schrédinger
equation. The study is to focus on the vanishing of the phase-lag and its

derivatives optimize the efficiency of the hybrid two-step method. Kosti et al



(2012) constructed an explicit RKN method with four stages and fifth
algebraic order conditions. The variable coefficients of the preserved method
result after nullifying the phase lag, the dissipative error and the first
derivative of the phase-lag. In this study, both phase-fitted hybrid methods
(PFHMs) and optimized hybrid methods (OPHMs) are develop based on the
same non-zero-dissipative explicit methods originally by Franco (2006) for
solving the second order ODEs. The OPHMs and PFHMs are constructed
using the same approaches used by Kosti et al (2012) and Papadopoulos et al
(2009) respectively. Therefore, the investigation of whether optimize
methods or phase-fitted improve the accuracy of non-zero-dissipative

methods are discussed in the research.

1.2  The Objective of the Thesis

The main objectives of this thesis can be summarized as follows:

1. To compare the efficiency of IRK with RK method, hybrid method
with RKN method for solving first and second order DDEs
respectively.

2. To construct Semi-Implicit Hybrid methods (SIHMs) using phase-lag
and dissipative properties for solving oscillating problems.

3. To develop Phase-Fitted Hybrid methods (PFHMs) from existing

zero-dissipative methods for solving second order ODEs.



1.3

4. To derive Optimize Hybrid methods (OPHMs) and PFHMs from
existing non-zero-dissipative methods and investigate the effect of
nullifying the properties of phase-lag, amplification error, and first

derivative of phase-lag when designing the methods.

Outline of the Thesis

In Chapter 1, basic theory of numerical method and analysis of dispersion
and dissipation of hybrid methods are discussed. In Chapter two, a brief
explanation is given on DDEs and how the numerical methods are
adapted for solving DDEs. Comparison of efficiency of the methods and
their stability are also given. In Chapter three, we derived SIHMs of order
four and two methods of order five. The dispersion and dissipation
relations are applied in the derivation of the methods. The stability
properties of the methods are also determined. Numerical results are
presented and comparisons of the methods with some other implicit and

explicit existing methods are given.

In Chapter four, we derive zero-dissipative explicit PFHMs of three-and
four-stage fourth-order and five-stage sixth-order which based on the
hybrid methods which were originally developed by Franco (2006). To

get methods of phase-lag of order infinity, the dispersion properties are



imposed for each of the hybrid methods using the same way as proposed
in Papadopoulos et al (2009). Numerical results and comparison of the
methods with the original hybrid methods and other methods in
literature for solving special second order ODEs which have oscillating

solutions are also included.

For non-zero-dissipative hybrid method, we construct four-stage fifth-
order and five-stage sixth-order OPHMs in Chapter five. The methods are
developed using the same approach introduced in Kosti et al (2012)
which optimized the methods by imposing the dispersion, dissipation
and first derivative of dispersion relation. The methods are based on the
non-zero-dissipative hybrid method developed by Franco (2006).
Numerical results and comparison on accuracy of the methods with the
original hybrid method and methods in literature are also discussed. In
addition, based on the same hybrid methods by Franco (2006) we also
developed the phase-fitted version of the methods. OPHMs and PFHMs
performance are compared to investigate which method improves the
explicit non-zero-dissipative hybrid methods in terms of accuracy. Finally,

the conclusion of the thesis is given in Chapter six.



1.4  Hybrid Method

An s -stage two-step hybrid method for numerical integration IVPs is in the
form
Yi= (14 ¢)yn — €Yot + 2 iy a; f (20 + ghY), (1.4)
Yn+1 = 2¥n = Yuo1 + h2 i1 by f(xy + iR, V), (1.5)
fori=1,..,s where the coefficients of b;, ¢;, and a;; can be represented in
Butcher tableau by the table of coefficients in Table 1.1.

Table 1.1: s-stage Hybrid methods

€| @1q0 - Qs

A, \ c : :
bT G| Q51 o Qg
N?. .

The methods are characterized by two s-dimensional vectors, b and ¢, with
elements b; and ¢;, respectively, and s X s matrix A with elements a;. In
vector notation, for an autonomous system of equations y" = f(y), (1.4) and
(1.5) can be written in the form of
Yn+1 = 2% — Yu-1 + R2(B"QD(Y),

Y = (e+ O)Qy, — cQyn_1 + R (AN f(Y), (1.6)
where e = (1, ...,1)".
The methods of the form (1.4) and (1.5) can be defined as

Yl = Ya-1, YZ = Yn, (17)



Yi= (14— Vnr + W i f (x, + ghY),i=3,..,s, (1.8)
Va1 = 29 = Ynoa + R2[bifuy + bafy + Eis bif (x, + cih, V)], (1.9)
where f,,_y = f(%,—1, Yn-1), f = f(x,, ) and the first two nodes are ¢; = —1
and ¢, = 0. This method is considered as two-step hybrid method because
we only require to evaluate f(t,,¥,), f(x, + c3h,Y3),..., f(x, + ¢;h Y,) for
each step after starting procedure. The general form of explicit hybrid
method can be written in Butcher tableau in Table 1.2,

Table 1.2: s-stage Explicit Hybrid methods

-1( 0
0 0 0
€3 |az; az; O
; 0
Cs as,l as,Z as,s—l 0
bl b2 bs—l bs

1.5 Local Truncation Error and Algebraic Condition of Hybrid Method

Algebraic order condition of hybrid method was developed by Coleman
(2003). The order conditions for two-step hybrid methods are derived by
considering them as one-step methods of the form

Uy = Up—1 + hP(un_1, B), (1.10)
where u, is an appropriately defined numerical solution vector, and some

starting procedure is used to generate u;.

10



This approach is prompted by the work of Hairer and Warner (2012) for a
class of two-step Runge-Kutta methods for differential equations of first
order. The first equation in (1.6) can be written as a pair of equations by
defining F, :== (¥,+1 — ¥»)/h so that
Ya=Yn-1t hE_q,
E, = Fy_y + h(B"@Df(Y).

These equations can be written as (1.10) with

u, = (%Z) and ¢(un—lrh) = ((nglI_);c(y));

where Y is defined by
Y = (e +0)Qy, — cQyy—1 + h*(ARI) f(Y)
= eQ®y,_1 + h(e + O)QF,_; + h2(AQI) f(Y). (1.11)
The vector u, is an approximation for z, = z(x,, h), where z is the exact-
value function defined by

y(x)
z(x,h) = (y(x+h)—y(x))- (1.12)

h

The local truncation error of the method at x,, is

dn =Zy—Zy1— h¢(zn—1» h)r (113)
with D (21, h) = ( h ) (1.14)
(B"RNf(Y)

where Y is now defined implicitly as (1.11).

11



The order conditions that developed by Coleman (2003) for a s-stage, up to

order seven for explicit hybrid methods are in Table 1.3.

Table 1.3: Order condition

Treet p(t) Order condition

S

tZl 2 bi =1
i=1
t 3 s
31 bicz —
i=1
S 1
tyy 4 Z bic? =~
i=1 6
t42 i 1
D, b =13
Y
tSl 5 tht3 =0
i=1
tsz > 1
Zizlbic‘a" I 12
ts3 1
bi ai}'Cj =0
i=1
ter 6 ZS i
bi¢c;* =—
Ay -
te2 1 1%
A i€ Ay = 0
1, T ic!
' . Lt & 60
tea 3 =t 7
Zl=1b1ai/aik = "“‘120
tes S 1
Z L T
t66 S _ 1
Zizl biaj G =365
S
ty 7 bic;> =0
i=1
b;c;’a
o1 iti Yij 30
t73 3 b 2
AYEATEY; 0
i=1
t74
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tss

t77

t7g

t7.10

s , 1
Zizlb[ cl-a[,-cj = ﬁ

s 1
zi=1bi C[al‘j ajk = _7_20'

s 1
Zi=1biaij Qi Cp = ~120
Z‘ bl'al'l'c]'B = 0

i=1

1
2. b = 35

s
Z. 1b,<al-j A Cp = 0
.

where value of i > j > k. The simplifying condition for hybrid method is

0,0 I
Siay =20 fori= 1,05,/ = i~ land k=) - 1

16  Analysis of the Periodicity, Absolute Stability, Dispersion and

Dissipation

Stability analysis of explicit hybrid method has been discussed in Franco

(2006). We apply the test equation y"(t) = (i1)?y(x) = —A2y(x), for A > 0 by

replacing f(x,y) = —A*y(x) to the equation (1.4) and (1.5) and gives

Y, = (1 + Ci)yn —CYn1 — h? ?:1 aij Az)’(x)r i=1.,s

Yn+1 = 2¥n — Yn-1— h? Z?:l b; AZY(x)r

Let H = h4, so equation (1.15) and (1.16) can be written as

Yi = (1 + Ci)yn —Ci¥n-1— HZ Z/S'=l aij y(x)' i=1,..,s,

Yn+1 = 2Yn — Vn-1 — H? Z?:l b; y(x),

and equation (1.17) will give

(1.15)

(1.16)

(1.17)

(1.18)

13



Yi = (14 )y, — a1¥nog — H2(ay Yy + ap ¥y + -+ aggYy)
Y2 = (1+ )y — Vo1 — HE(an Yy + agy Yy + - + ag,Yy)

' (1.19)
Vo= (L4 €3 — o — H2@a Yy + @l + oo+ 0, 1,)
Then, (1.19) and (1.18) can be written in vector form respectively as
Y = (e+c)y, —cy,_; — H*AY, (1.20)
Yn+1 = 2¥n — Y1 — H?DTY, (1.21)
Y; Cy 1 ayp .. Qg b,
whereY=(3>,c=(5>,e=(i),.4=(5 5>,andb=(5).
Ys Cs 1 s o Ggs by
By rearranging (1.20) we obtain
Y=(+HA) e+ )y, — U+ H*A) cy,_, (1.22)
where (I + H2A)™! # 0. We substitute (1.22) into (1.21) and we get
Yner = (2= H2BTU + H20) ™ e+ ©)) yo = (1 = H2B™U + H2M) )y, (1.23)
Then we can rewrite (1.23) as
Yne1 —S(HD)y, + P(HY)y,_, = 0. (1.24)
From (1.24) we obtain the following recursion
P, H)=¢*—S(H?)E+P(HH) =0 (1.25)
where S(H®) =2-H*b"(I1+ H*A) (e + ¢)
and P(H?) =1-H*b"(I + H?A) 'c. (1.26)

The characteristic polynomial (1.25) represents the stability polynomial of
hybrid method. The numerical solution defined by the difference (1.24)

should be periodic therefore the necessary conditions are

14



P(H) =1, and I|S(H®)|<2, VHe(0, H,) (1.27)
and interval (0, H, ) is known as the periodicity interval of the method. The
method is called zero dissipative (d(H) = 0) if it satisfied conditions in (1.27).
Otherwise, as the method possesses a finite order of dissipation, the
integration process is stable if the coefficients of polynomial in (1.27) satisfy
the conditions

P(H*) <1, and |[S(H?)| <1+ P(H?), VHe(0, H,) (1.28)
And interval (0, H) is known as the interval of absolute stability of the

method.

The first analysis of phase-lag was carried out by Bursa and Nigro (1980).
Phase analysis can be divided into two parts. First is inhomogeneous which
phase error is constant in time and second is homogeneous which the phase
error are accumulated as n increases. As proposed by Franco (2006), the
phase analysis is investigated using the second order homogeneous linear
test model, y"(x) = —A%y(x). The steps to define phase analysis of hybrid
method are the same from equation (1.15) to (1.26). Given that the exact
solution for the homogeneous test y" = (i1)?y(x) is

y(x,) = 2|w|cos(X + nH). (1.29)
The numerical solution of (1.5) is in the form of

v, = 2|cl]p|*cos(w + ng). (1.30)

15



Definition1 (Apply the hybrid method (1.29) and (1.30)) We define the
phase-lag ¢p(H) = H — ¢. If $(H) = O(H9*!), then the hybrid method is said
to be dispersive of order q. While, the quantity d(H) =1 — |p| is called as
amplification error and if d(H) = O(H"*!), then the hybrid method is said to
have dissipation order r. According to Definition 1, if at a point /1, d(H) = 0,
then the hybrid method has zero dissipation at this point and it is dissipative
otherwise. The error ¢(H) and d(H) are accumulated in the numerical
process and therefore a cause of inaccuracy which leads to many integration
steps to be performed. Hence, in this study we will focus on increasing the
order of dispersion q (defined by ¢(H) = 0(H9*!)) and the order of
dissipation r (defined by d(H) = O(H"*!)). Dispersion (phase-lag) is the
angle between the true and the approximated solution, whereas dissipation

is the distance from a standard cyclic solution.

The following nomenclature given by Van der Houwen and Sommeijer (1987)

2
¢(H) = H —cos™! (%) (1.31)
d(H) =1 —./P(H?) (1.32)

are called the dispersion error and the dissipation error, respectively. The

general form of S(H?) and P(H?) for explicit hybrid methods in Franco (2006)

is in the form of

16



S(H*) =2 —aH* + a,H* — azsH® + -+ aqH?*, o, = O for i > s. (1.33)

P(H*) =1—pH? + p,H* = BsH® + -+ BH?, B, = 0 fori > s. (1.34)

At the beginning of Chapter 2, we will discuss the stability of Improved
Runge-Kutta (IRK) method when applied to first order DDE. The
comparison of accuracy in terms of absolute error between IRK and Runge-
Kutta (RK) method are also presented. Then, comparison between stability
regions and accuracy of hybrid method and RKN method when applied to
second order DDE are also discussed. The stability properties of the methods

are defined using particular linear test model which will be discussed in

detail in the next chapter.
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