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In this thesis, spectral homotopy analysis method (SHAM) is proposed for solv-
ing different type of second order integro-differential equations such as linear
and nonlinear Volterra, Fredholm and Volterra-Fredholm integrodifferential equa-
tions. Linear and nonlinear systems of second order Fredholm integro-differential
equations are solved using SHAM. In this method, the Chebyshev pseudo spectral
method is used to solve the linear high-order deformation equations. The con-
vergence analysis of the proposed method is proved, the error estimation of the
method is done and the rate of convergence is obtained. Many different examples
are solved using spectral homotopy analysis method to confirm the accuracy and
the efficiency of the introduced method.

An efficient and accurate method based on hybrid of block-pulse functions and
Chebyshev polynomials using Chebyshev-Gauss-Lobatto points is introduced for
solving linear and nonlinear Fredholm and system of Fredholm integro-differential
equations. The useful properties of Chebyshev polynomials and finite difference
method make it a computationally efficient method to approximate the solution
of Fredholm integro-differential equations. In this method, the given problem is
converted into a system of algebraic equations using collocation points. The error
bound of the method is estimated. Several numerical examples have been pro-
vided and compared with well-known approaches and exact solutions to confirm
that the introduced method is more accurate and efficient. For future studies,
some problems are proposed at the end of this thesis.© C
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Dalam tesis ini, kaedah anal isis homotopi spektrum (SHAM) dicadangkan bagi
menyelesaikan beberapa jenis berbeza persamaan-integro peringkat kedua seperti
persamaan linear dan tak linear Volterra, Fredholm dan persarnaan-integro Volterra-
Fredholm. Sistem linear dan tak linear persarnaan-integro Fredholm peringkat
kedua, diselesaikan menggunakan SHAM. Dalam kaedah ini, kaedah Chebyshev
pseudo spektrum telah digunakan untuk menyelesaikan persamaan linear berubah
bentuk peringkat tinggi. Analisis penumpuan kaedah yang dicadangkan telah
dibuktikan, anggaran ralat bagi kaedah ini telah dilakukan dan kadar penumpuan-
nya juga diperolehi. Banyak contoh yang berlainan telah disclcsaikan dengan
rnenggunakan kaedah hornotopi spektrum analisis untuk mernastikan kejituan
dan kecekapan kaedah yang telah diperkenalkan.

Satu keadah yang cekap dan tepat berdasarkan fungsi hibrid bagi blok-nadi dan
polinomial Chebyshev yang rnenggunakan titik Chebyshev-Causs-Lobato telah
diperkenalkan untuk menyelesaikan persamaan pernbezaan-integro linear dan tak
linear dan sistem Fredholm. Ciri-ciri berguna polinomial Chebyshev dan kaedah
beza terhingga membuatkan kaedah ini lebih cekap dari segi komputasi untuk
menganggarkan penyelesaian persamamaan pembezaan-integro Fredholm. Dalam
kaedah ini, masalah yang diberi ditukarkan kepada suatu sistem persarnaan al-
jabar menggunakan titik kolokasi. Batas ralat bagi kaedah ini dianggarkan. Be-
berapa contoh berangka telah diberikan dan dibandingkan dengan pendekatan
yang terkenal dan penyelesaian sebenar untuk rnemastikan kaedah yang diperke-
nalkan adalah lebih tepat dan cekap. Untuk kajian masa hadapan, bebcrapa
masalah telah dicadangkan di akhir tesis ini.
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CHAPTER 1

INTRODUCTION

1.1 Background

In the past two decades there was a strong interest among physicists, cllgjlH~ers
and mathematicians for the theory and numerical modeling of integral equations
(IEs). Integral equations can be generally classified into two types as follows:
1. Fredholm integral equations (FIEs)

s(x)y(x) = f(x) +,\ lb k(x,t)y(t)dt (1.1 )

where the kernel k(x. t) and the functions f(x) awl sex) are givr-n and ,\ is it

parameter. In terms of value of s(x) the following kinds of Fredholm intogrn]
equations can be defined. In particular

(i) If sex) = 0, then integral equations (1.1) becomes

f(x) + A lb ki», t)y(t)dt = 0, (1.2)

and is called Fredholm integral equations of the first kind.

(ii) If s(x) = 1, then integral equations (1.1) becomes

vex) == f(x) + A lb k(x, t)y(t)dl, (1.3)

and is called Fredholm integral equations of the second kind.

(iii) If s(x) -=I {O, constant} then integral Eqs. (1.1) is called Fredholm integral
equations of the third kind.

2.Volterra integral equations (VIEs)

s(x)y(x) = f(x) +.x lax k(x, t)y(t)dt (1.1 )

where the kernel k(x, t) and the fUIlction f(x) arc given and ..\ is a parameter and
x is in the domain of integration [a, bJ. Such as Fredholm integral equations, ill
terms of value of s(x) Volterra int.egral equations fall under two types as follows:

(i) If sex) == 0, then integral equations (1.1) becomes

I(x) -r x lx k(x. t)y(t)dt = 0, (1.5 )

and is called Volterra integral equations of the first kind.© C
OPYRIG

HT U
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(ii) If s(x) = 1, then integral equations (l.4) becomes

y(x) = f(x) +,\ r k(x, t)y(t)dt,ill (l.6)

and is called Volterra integral equations of the second kind.

(iii) If s(x) i {O,constant} then integral equations (1..1) is called Volterra into-
grul equations of the third kind.

1.1.1 Degenerate kernel methods

In Fredholm Alternative Theorem (Jerri, 1999), integral equation with a degener-
ate kernel function was proposed. The method can be used very easily for solving
Fredholm integral equations of the second kind (1.3).

Theorem 1.1 (Atkinson, 20GB) Consider

17Y(X) -1k(x, t)y(t)dt = f(x), tEA (1. 7)

with 17f 0 and A ~ IRm, for some Tn ~ 1. Also A is considered as a closed
bounded set, The integral operator P of (1.7) is defined by

P

P(y(x))

x -+X,L k(x, t)y(t)dt,

where P is a compact operator and X = C(A) with II.ILX) or X = L2(A). The
kernel function k can be approximated by a sequence of degenerate kernel

m

k(x, t) ;::;;km(x, t) =L aj,m(x)bj,m(t), m ~ 1.
j=1

(1.8)

If associated integral operators Pm satisfy the following condition

lim liP - Pmll = 0
m-too (1.9)

and suppose Xm is the solution of the following approximating equation

f(x) +1km(x, t)xm(t)dt = 17Xm(X), tEA, (1.10)

and let the convergence (l.9) be rapid then the solution llm converge to y mpidly.

Theorem 1.2 (Atkinson, 2008) Let 17- P is an one to one and onto operator
and X is a Banach space and P is bounded. In addition, if Pm is a sequence of

2
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bounded linear operators and satisfies the following propcriu:

lim liP - Pmll = 0,rn-too

then the operators
-1 1-1(7] - Pm) : X -----+ X

onto

exist for m 2': 1'1, and

Assume
(7]-P)x=f

and

JOT m 2': N then

(1.11)

An important consequence of the above convergence theorem is that the 51)('('<\

of convergence does not depend on the differentiability of the unknown x, since
(1.11) implies,

(1.12)

Independent of the differentiability of x , IIx - x1ll11converges to 0 if liP - Pmll
converges rapidly to o. But other types of numerical methods that. used for solving
(1.1) do not have this properties.
If X = C(A) the degenerate kernel (1.8) can he chosen such that the functions
ai(t) are all continuous and the functions bj(s) are all absolutely integrable.
To use the above convergence theorem notice that:

liP - Pmll = max r Ik(x, t) - km(x, t)1 dt.
xEA lA

If X = L2(A), it is necessary that all ai and bj belong to L2(A). To apply the
convergence theorem, we use:

1

liP - Pmll ~ [lllk(x, t) - km{x,t)12 dXdt] 2 .

If this is not sufficient, then other bounds arc often possible. TIIP kernels km{x, t)
should be chosen to make liP - Pmll convergent to zero n...,rapidly as pract.icnhle.

Solution of degenerate kernel integral equations:
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If the Eq.(1.8) is substituted int.o Eq. (l.7), this equation can be rewritten as
follows:

7]Ym(X) - t aj(x) j bj(t)Ym(t)dt = f(x), tEA.
j=l A

Then the solut.iou Ym call be represented by

(1.13)

Ym(X) = ..!.. [f(X) +t Cjaj(X)] ,
7] . 1J=

(1.11)

where

(1.15)

If multiply (1.13) by bi(x) and then integrate over A the coefficient {Cj} can be
found by the following system

n

7]ci - L Cj (aj, bi) = (J, bi), i = 1,2, ..., n,
j=1

(1.16)

with

(aj, bi) = l aj(x)bi(X)dx.

I3y solving the system (1.1G), Yrn can be obtained from (1.14).

(1.17)

1.1.2 Projection methods

The integral equation (1. 7) eau be solved approximately by choosing a finite
dimensional family of functions which contains a function fi(t) close to exact
solution y(t). It is supposed that the obtained numerical solution fi(t) satisfies
(1. 7) approximately. fi( t) can be said to satisfy (1.7) approximately in various
concepts which leads to different types of methods, such as collocation method
(Atkinson, 2008).

1.1.3 Collocation method

A collocation method is a approximation method for solving ordinary differential
equations, partial differential equations and integral equations numerically. In
this method, we need to choose basis functions which are usually polynomials up
to certain degree and collocation points as well. Finally, we select an approxi-
mation expansion function which satisfies the given problem at the collocation
points (Mchrzad et al., 2013).

1.2 Adomian Decomposition Method (ADM)

Adornian decomposition method or Decomposition method (OM) was proposed
by a development Adomian method. This method was proposed by Adomian in
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his book (Adomian, 1991) and other authors have then mentioned this method
in their works (Yousif, 2008; Meyers, 2011). The efficiency and validity of this
method have been proved for a wide class of equations. In this pruccdur«, the
solution y(x) is determined in a series form defined by

00

y(x) = L Yn(x).
n=O

(LIS)

The method is a powerful semi analytic technique which can be used for solving
problems with strong nonlinearity. This method ha...s some advantages. \V(~cal!
apply ADM to solve ordinary and partial differential equations even if they do
not contain small or large parameters. The rate of convergence in the met.hod is
high and the convergence of the solution obtained by the method was proved in
(Abbaoni and Cherruault, 1994). However, Adoinian decomposition method has
also some constraints. In this method approximate solutions usually contain poly-
nomials. In general, power series can not be considered as an efficient set of base
functions to approximate a nonlinear problem since power series have small <:011-

vergence intervals thus acceleration methods should usually enlarge convergence
regions. In the Adomains decomposition method, we do not have freedom to use
different base functions. Like the artificial small parameter method and the 8-
expansion method, Adornians decomposition method itself also does not provide
us with a convenient way to adjust convergence region and rate of convergence.

1.3 Artifficial Small Parameter Method (ASPM)

The artificial small parameter method was presented by Lyapunov (1992). In this
method Lyapunov considered the equation

dxdi = B(t)x (1.19)

where B(t) is a time periodic matrix. Lyapunov (1992) defined an artificial
parameter E and then replaced (1.19) with the equation

dxdi = EB(t)x. (1.20)

In this method, power series expansions are calculated over E for the solutions.
In many cases the convergence of the series was proved for e = 1 by Lyapunov,
Thus in the final expression we put f = 1.

1.4 Homotopy Analysis Method (HAM)

Suppose Cl nonlinear equation

get) = o. (1.21)
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The so-called homotopy can be constructed by

H[t;p] = (1 - p)[g(t) - g(to)] + pg(t), (1.22)

where an initial approximation of t is shown by to and p E [0, 1J denotes an
embedding parameter or homotopy parameter. It is clear that,

H[t;p]lp=o = g(t) - g(tO), H[t;p]!P=l = g(t). (1.23)

So when the embedding parameter p E [0,1], H[t;p] changes continuously from
g(t) - g(to) to g(t). In topology, this kind of continuous variation is known as
deformation. Let

H[t;pJ = 0, ( 1.24)
i.e.

(1 - p)[g(t) - g(lO)] + pg(l) = O. (1.25)

Eq, (1.25) is a family of algebraic equations and the solution depends upon the
embedding parameter p. Further (1.25) can be represented as

(1 - p)[g(1,b(p)) - g(to)J + pg(1,b(p)) = o. ( 1.26)

Eq .. (1.26), is the same as the original equation (1.25), when the embedding
parameter p alters from 0 to 1, 1/;(p) changes from the initial approximation to to
the solution t of g(t) = O. The family of equations (1.26) is called the zeroth-order
deformation equation. Now 1/;(p) as a function of the embedding parameter p can
be expanded into Maclaurin series.

+00
'lj;(p) = to +L tnpn.

n=l
(1.27)

where 1/;(0)= to and
1 an'lj;(p) I

tn= 1~ = Dn(1/;).n. up p=o (1.28)

The series (1.27) is named homotopy series and Dn( 1/;) is called the nth-order
homotopy-derivative of 1/;. Suppose the homotopy series (1.27) is convergent at
p = 1. Assuming 1/;(1) = t in Eq. (1.27), the so-called homotopy series solution
can be defined as follows:

+00

t = to +L tn.
n=l

However, many functions have Maclaurin series with radius of convergence less
than 1. In this method, it is considered t.hat the homotopy-series is convergent at
p = 1 . An auxiliary parameter is introduced to solve this limitation. In view of
the basic theorem regarding Taylor series, the homotopy-series (1.27) has unique
coefficient tn· So, the unique governing equation of tn can be derived from the
zeroth-order deformation equation (1.26). If the Ist-order homotopy-derivative is
taken on both sides of the zeroth-order deformation equation (1.26), the so-called

(1.29)
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Ist-ordcr deformation equation is given by

(UO)

with solution
t __ g(to)
1 - g'(to)"

Similarly, taking the 2nd-order homotopy-derivative results in the 2nd-onl('r d(~-
formation equation as follows:

(l.31 )

with the solution
tlg" (to) g2( to)g" (to)

t2 = - = -=--~:..::._~:..;_

2g'(t0) 2[g'(tO)rl

Following the same procedure, one gets tn for n = 1,2,3, .... Obviously, these
high-order deformation equations are linear, and so they are easy to solve. The
Ist-order homotopy-series approximation can be presented by

~ _ g(to)
t ~ to + t1 - to - -,-( )'

9 to
(1.32)

and also the 2nd-order homotopy-series approximation is shown as follows:

(1.33)

The disadvantage of the homotopy-series (1.27) is that the series is not always
convergent at p = 1, so the homotopy-series solution (1.2!J) will he divergent.
A nonzero auxiliary parameter h was introduced by Liao (1!J!J7) to solve this
limitation of the early HAt\t. Lino (1!J!J7) proposed a zeroth-order deformation
equation using the auxiliary parameter h i= 0 as follows,

(1 - p)[g(1j;(p)) - g(to)] = phg(1j;(p)). (1.31 )

Obviously, when p = 1 it holds hg( 1j;(1)) = O. Since h i= 0 so g( 1j;(1)) = O. In
the new homotopy, all other formulas such as Eqs (1.27) and (1.2!J) are the same,
but the high-order deformation equation is different. In the same way, if the Ist-
order homotopy-derivative operators on both sides of (1.31), the corresponding
lst-order deformation equation is obtained as

(1.35 )

with solution

(1.3G)

By taking the 2nd-order homotopy-derivative on both sides of (1.3,1) gives the
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2nd-order deformation equation:

(1.37)

then we have

t2 "(t ) (t ) "(t )t2 = (1 + h)tl - I
g

0 = h(1 + h)g(to) _ gl 0 9 0
29' (to) 2 [g' (to) J3 (1.38)

The corresponding first-order and second-order homotopy-series approximation
can be presented as follows,

~ _ g(to)
t ~ to + t 1 - to + h,-( )'

9 to
(1.39)

t';::j t + t + t = (1 + h + h2)t + h 9(tO) _ g2(tO)9"(tO)
o 1 2 0 9'(tO) 2[g'(to)]3' (1.40)

respectively. It is clear that when h = -1, Eqs. (1.39) and (1.40) are the same
as (1.32) and (1.33), respectively. In Eq.(1.34), the auxiliary-parameter h is con-
sidered as a iteration factor and if it is chosen properly then the convergence of
iteration can be ensured. Also, (Liao (1999), Liao and Sherif (2004), Liao and
l\1agyari (2006), Lino and Tan (2007), Liao (2009)) found that the convergence
of the homotopy-series like (1.27) dependent upon the value of h. The auxil-
iary parameter h provides us with a simple way to ensure the convergence of
series solution. Because of this reason, h was renamed to the convergence-control
parameter.

1.4.1 Some characteristics of homotopy-derivative

Definition 1.1 (Liao, 2009) Suppose 1/; is a junction oj the hornotopy-pammeter
p, so the nth-order homotopy-derivative of 1/; can be considered as follows:

(1.41 )

uihere n is an positive integer.

Definition 1.2 (Liao, 2009) Consider the general nonlinear problem as,

N[x(t)] = o. (1A2)

Ij 1/; is a function of p, whose Maclaurin series is

+00
1/;(p) = L xnpn,

n=O

(1.43)

then the zeroth-order deformation equation of Eq. (1.42) is the family of equations

(1- p)L[x(t;p) - xo(t)] = ph(N[x(t;p)]), pE [0,1]. (1.44 )
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Eq. (1.1<1) is equivalent to the original Eq. (lA2) ut p = 1 so that

+00
x = 1/)(p) I = """ .Tn:

p=! Z::
n=(J

(lAS)

and it is also equal to initial guess at p = O. The Eq. (I.'):n is (:allcd/w1II.oto]!y
series solution of (1.42), and Eq. (1.,1-1) is called tJ/C Tt th-cniicr tlefo17lwtio'/l,
equation.

Theorem 1.3 Suppose 9 and k be two independent. functions of cmllCrlli'i7l!l IJIl-
rameier p and 'Ij; and ¢ be homotopy series. Then the [ollouruu; relation

(lAG)

is true.

Proof. To see the proof of this theorem, interested readers are referred to (Liao,
2009)

Theorem 1.4 If 1/) and ¢ be two homotopy series,

00 00

'Ij;(p) = LXkpk, ¢(p) = LYj]),
k=O j~O

(1A7)

then it can be concluded that

(i) Dn(¢) = Yn,

(ii) Dn(pk¢) = Dn-k(1),

n n
(iii) Dn('Ij;¢) = L Dj('lj;)Dn_j(¢) = L Dj(1)IJn-j('Ij;),

j=O j=()

n n
(iv) Dn('lj;r ¢S) = L Dj('Ij;r)Dn_j(¢S) = L Dj(¢S)Dn_j(1jJr),

j~ j~

where n, r, s :::::0 and 0 ~ k ~ n are integer.

Proof. To sec the proof of this theorem, interested readers are referred to (Liao,
2009)

Theorem 1.5 Suppose L is a linear independent operator of cm[wdding param-
eter p. If'lj; is a homotopy series

00

'Ij; = LXipi,
i=()

( 1.18)

then the following equality can be resulted

(1.49)
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1000786224
Proof. To sec t he proof of this theorem, interested readers are referred to (Liao,
20(9)

1.4.2 Some properties of the high-order deformation equations

Lemma 1.1 Suppose homotopy series 1j; is defined as

oo

1j;(x) = LYn(X)pn,
n=O

(1.50)

uhere p E [0,1] is the embedding parameter, Yn(x) is a junction oj variable x.
Consider L as an aux'iliar-y linear' operator' with respect to x, and vo(x) is an
initial guess. We have

Dn {(I - p)L[1,b(x) - yo(·r)]} = L[Yn(.r) - XnYn-1 (x)], (1.51 )

where the operator Dn is given by (1.28) and Xn is defined as

{
o, n ~ 1

Xn =
1, otherwise,

(1.52)

Proof. To see the proof of this lemma, interest.ed readers are referred to (Liao,
2009)

Theorem 1.6 Suppose homotopy series 1j; is defined as

00

1j;(x) = LYn(X)pn,
n=O

(1.53)

where p E [0, 1] is the embedding pauuneter. Consider L as an auxiliary lin-
ear operator N is a nonlinear operator, yo(x) is an initial guess h is a nonzero
auxiliar-y parameter and 1I (x) a nonzero auxiliary junction. Ij the zeroth-order
dcjormoiion equation is given by

(1 - p)L[1j;(x) - yo(x)] = phH(x)N[1j;(x)J, (1.54)

then nth order deformation equation can be defined as follows:

L[Yn(x) - XnVn-I(X)] = hII(x)Dn_r{N[1j;(x)]), n:::: 1. (1.55)

Proof. To see the proof of this theorem, interested readers arc referred to (Liao,
2009) In view of Definition 1.1 and Theorem 1.6, the so-called higher-order de-
formation equation (1.55) can be defined as follows (Liao, 2009),

L[Yn(x) - XnYn-I(X)] = hH(x)Rn_(Yn_r}, (1.56)

where

(1.57)

10

© C
OPYRIG

HT U
PM



Theorem 1.7 (Convergence theorem]
If the following series

+00

yo(x) +L Yn(x),
n=l

is obtained from Eqs (1.5G) and (1.57) is conucrqcui then it couucrqcs to tlu: CJ:IJ.cl

solution of the problem.

( 1.58)

Proof. To see the proof of this theorem, iutert-sted readers are wf('rn~d to (Liao
and Sherif, 2Of}!).

Theorem 1.8 If the series

+00
yo(x) + L Yn(x),

n=l
(1.5~))

is obtained from Eqs (1.5G) and (1.57) is C07!Vc7'!Je7IJ, 'it must be (l soluiioii of

+00

L 1?n(Yn-l,X) = O.
n=l

Proof. To see the proof of this theorem, interested readers are referred to (Liao
and Sherif, 200,1).

(1.GO)

1.4.3 Convergence control parameter h

Suppose that we obtain a family of solution series in tenus of the auxiliary par.uu-
eter h by employing homotopy analysis method. The main question that arises
here is the way of choosing the value of h such that the solution sorics converges
as fast as possible in a large region. One way to choose a suitable value of It is
to obtain the exact square residual error integrated in the whole region T which
is defined as following:

(1.(1)

where N is a nonlinear operator and rn is the order of approximation. It is obvious
that the more quickly R{h) decreases to zero, the faster the corresponding series
solution converges. Therefore, at the given order of approximation rn, the corre-
sponding optimal value of the h is given by the minimum of R(h), corresponding
to a nonlinear algebraic equation of the form

dR(h) = 0
dh .

The main disadvantage of the way is being very time-consuming even if for low-
order approximation especially if the approximation include unknown converges-
control parameters and other physical quantities. On the other hand, many non-
linear problems include some important physical quantities which also depend
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OIl the converges-control parameter h. Liao and Sherif (2004) suggested to plot
the curves of these quantities verses h for example, we can plot y'(O) or y"(O) as
a function of h to determine the region of h in which homotopy series-solution
is convergent, Due to Theorems 1.7 and 1.8 all convergent scrips-solution given
by different values of h converge to its exact solution. Therefore, providing to
existence of unique solution, all approximations converge to the same value and
therefore the curve of that quantity verse h contains a horizontal line segment
R(h) which is called the valid region of h and the curve is called h-curve. Having
chosen the so called valid region of h, we make sure that the corresponding solu-
tion series converge. It should be mentioned that the more h-curves are graphed,
the easier it is to determine the value of h. Abbasbandy et al. (2011) proved
it mathematically that the horizontal line occurs in the plot. of homotopy series
solut.ion at some points corresponding to the convergence control parameter h.
However, it should be noted that h-curves can not provide us with the optimal
value of h. Yabushita et al. (2007) employed the so-called optimization method
to minimize the R(h) in Eq. (1.61). Marinca et al. (2008) established the optimal
homotopy-asymptotic method. They obt.ained a set of nonlinear algebraic equa-
tions about hl,h2, ... ,hm, by minimizing the R(h) in Eq, (1.61). In theory, if we
have the more convergence-control parameters, we get the better approximat.ion
by this optimal homotopy analysis method. However, for a complicated nonlinear
problem, it is time-consuming to obtain the corresponding square residual errors
as there are so many unknown parameters especially at high-order of approxima-
tions. It was stated that the optimal approach developed by Marinca et al. (2008)
often does not work in practice (Niu and Wang, 2010). In Liao (2010), a mod-
ification to the work of Marinca et al. (2008) is proposed. His method contains
at most three unknown convergence-control parameters hl, h2, h3 at any order of
approximations. He showed that even if h2 = h3 = 0 (means that R(h) in Eq.
(1.61) depends to hI only), it needs too much CPU time to calculate R(h) in Eq.
(1.61). It takes 68.138, 272.78 and 1089.58 to obtain the corresponding exact
residual error (1.61) for !II = 6,8 and 10, respectively. Therefore, to decrease the
CPU time, he considered the following so-called averaged residual error:

(1.62)

where 6.t = lj}, L = 20 for Blasius flow problem. It should be emphasized that
the determination of optimal convergence-control parameter h is suggested for a
given complicated physics problem.

1.4.4 Some basic rules in homotopy analysis method

Rule of solution expression
The main part of approximating a function is to choose an appropriate set of base
functions. The better approximation is achived by choosing the more suitable
basis functions. In order to solve a given nonlinear problem by using HAl\I, we
approximate the solution y(x) of the governing equat.ion in terms of a set of base
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functions as follows,
!If

vex) ;:::j L cm<Pm(x).
m=O

The rule of solution expression states that having been selected a set of ha..so fuuc-
tions, the auxiliary linear operator L, the initial approxuuatiou vo(x), awl t.li«
auxiliary function /lex) must be determined with the condition that all solutions
of the higher order deformation cquat.ions (l.55) exists and can he presented by
this set of base functions.

Rule of coefficient ergodicity
In order to have further restriction on the choosing of the auxiliary function lI(x),
it seems that we should consider another rule. The rule of coefficient ergodicity
expresses that all coefficients in Eq. (1.63) should be modified such that the sd
of base functions {¢m(x) I Tn = 0, 1,2, ... } is complete.

Rule of solution existence
The rule of solution existence states that the higher order deformation equation
should be closed and have solutions.

1.5 Motivation and problem statement

An integro-differential equation is an equation where both differential and integral
operator are included in the equation. In this kind of equations one or more
unknown functions y(x) and its nth order derivatives appear both outside and
under the integral operator. As a general form, the nth order non linear Fredholm
integro-differential equations can be considered as follows:

{
F(x, y(x), y' (x), y" (x), .... ,y(n) (x)) = f(x) + lb k(x, t )G(y(t) )dt,

Hr(y(TO), ... , y(n-l)(TO), ..... , Y(Tn}, ... , y(n-l)(Tn)) = 0, r = 0, ... ,n - 1,
(1.61 )

and also nth order non linear Volterra integro differential equations can be pre-
sented as follows,

{
F(X'Y(X)' y'(x), y"(x), ... , y(n)(x)) = f(x) + lX

k(x, t)G(y(l))dl,

Hr(y(TO),"'" y(n-l)(TO), .... , Y(Tn), ... , y(n-1)(Tn)) = 0, r = 0, .... , n - 1,
(1.61))

where k(x, t), f(x) and y(x) are analytic functions, x is a variable, Hr, r =
0, ... , n - 1, are linear functions, and the points TO, T1, ... , Tn lie in [a, bJ. Non
linear equations are much more difficult to solve than linear ones, especially by
means of analytic methods. In general, there are two standards for a satisfactory
analytic method of nonlinear equations:
(a) It should be able to provide efficient analytical approximations.
(b) It should guarantee the accuracy of analytic approximations for all physical
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parameters. These two standards call be used as criteria in order to compare
different analytical techniques for solving nonlinear problems.

In Perturbation techniques small or large parameters called perturbation quanti-
ties which appear in governing equations or initial or boundary conditions playa
main role, Perturbation approximations can be generally represented in a series
of perturbation quantities, and the main nonlinear equations are altered by some
linear or nonlinear sub-problems. The sub-problems arc specified by the main
governing equation ami also by the place where perturbation quantities appear.
Perturbation methods are simple and easy to understand. Especially, based on
small physical parameters, perturbation approximations oftell have clear physi-
cal meanings. There is not such kind of perturbation quantity in every nonlinear
problem. In addition, although a small parameter can exist in the problem, the
sub-problem might have no solutions, or might he rather complicated so that only
a few of the sub-problems can be solved. Thus, there is no guarantee that any
nonlinear problem can always get perturbation approximations efficiently. Also
most perturbation approximations are accurate only for small physical parame-
ters. In general, a perturbation result is not always credible in the whole region
of all physical parameters (Liao and Sherif, 2004).

Some traditional non perturbation methods have been developed to improve the
restrictions of perturbation techniques. For example, Lyapunovs artificial small
parameter method, the t5-expansion method, Adornian decomposition method,
and so 011. In these methods, the solution of a given problem is approximated
as a series of a so-called artificial parameter. One of the drawbacks of non-
perturbation techniques is that there is no instruction to determine a suitable
place for the artificial small parameter to get a better approximation. Another
disadvantage of these methods is that there is not guarantee that the approxi-
mation series will converge to the exact solution. For example in Adornian de-
composition method, we employ the linear operator P in most cases, where k is
considered as the highest order of derivative of governing equations, and so it is
quiet simple to get solutions of the related sub-problems using integration k times
with regard to x. However, using such simple linear operator we get approximate
solutions as a power-series with a finite radius of convergence. Therefore it is
not guaranteed the approximation solution converges to the exact solution for all
physical parameter.

Homotopy analysis method (HAM) is proposed in Liao (1992). In recent years,
many authors have considered this method for solving different type of integral
and integro- differential equations. Unlike the traditional non perturbation meth-
ods such as Adornian decomposition method, and the t5-expansion method, which
are the special cases of HA1'vI, this scheme does not need a small perturbation
parameter. In the HAM, the original nonlinear problem is converted to infinite
number of linear problems without using the perturbation techniques. Homotopy
analysis method is powerful than traditional perturbation methods since it is ap-
plicable for solving problems with strong nonlinearity even if they do not have
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any small or large parameters. This method can help to adjust the COllVl'lw'nce
region and the rate of approximation series solution awl allow us to dlllose dif-
ferent base functions to approximate a nonlinear problem.

In using the HAt\l, and in order to effectively control the region and the rate of
convergence of the HAt\1 series solution, one has to caw fully sdpc:t, an initial ap-
proximation, an auxiliary linear operator, an auxiliary function and a ("onV('I"g(~ll("e
controlling auxiliary parameter. (Shidfar et al., 2(10)
One of the main limitation of the homotopy analysis ruet.hod is !lIP ll(~("('ssit.Yt.hnt.
the solution we are looking for needs to comply with the so-called rule of solu-
tion expression and the rule of coefficient ergodicity that lead us in sded.illg the
appropriate initial approximations, the auxiliary linear oporntors and the aux-
iliary functions. These parameters arc chosen in such a way that the obtained
higher order deformation equations can be simply solved using high-performance
computers and symbolic computation software, Convenient initial approximat.ion
may indeed not be a good guess of the solution. On the other hand, cOIllplicat.('d
initial approximations and linear operators might result in the higher ()J"(I(~rde-
formation equations that are not easy or even possible to integrate.

Spectral homotopy analysis method is a combination of the IIAM with t.he Cheby-
shev spectral method so in this method we have larger freedom to choose auxiliary
linear operators. In theory, any continuous function in a bounded interval can be
best approximated using Chebyshev polynomial. So, the SHAM provides larger
freedom to choose the auxiliary linear operator and initial guess.

The useful properties of Chebyshev polynomials and block-pulse functions make
it a computationally efficient method to approximate the solution of Fredholm
integro-differential equations. In composite Chebyshev finite difference method,
the given problem is converted to a system of algebraic equations by using colloca-
tion points. The main advantage of the present method is the ability to represent
smooth and especially piecewise smooth functions properly. In this approach the
accuracy can be improved either by increasing the number of subintervals or by
increasing the number of collocation points in subintervals.

1.6 Objectives of the Research

In this thesis the following integral equations, are considered

1. Second order linear Fredholm integro- differential equation:

{

2 b

_f;aj(x)y(j)(X) = g(x) +1k(x,t)y(t)dt,

y(a) = a, y(b) = /3.
(l.fjG)
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2. Second order nonlinear Fredholm integro- differential equation:

{

2 bf;Qj(X)y(j)(X) = g(x) +1k(x, t)f(y(t))dt,

y(a) = a, y(b) = /3.
(1.67)

3. Second order linear Volterra integro- differential equation:

{t.aj(x )ylii(x) ~ g(x) +1"k(x, t)y(t)dt, (1.68)

y(a) = a, y(b) = /3.

4. Second order nonlinear Volterra integro- differential equation:

{taj(x )ylii (x) ~ g(x) +l'k(x, t)f(y(tlldt,

y(a) = a, y(b) = {3.

(1.69)

5. Second order linear Volterra-Fredholm integro- differential equation:

{t.aj (x )ylji(x) ~ g(x) +l'kIix, t)y(t)dt +l'k2(X, t)y(t)dt,

y(a) = a, y(b) = /3.
(1.70)

6. Second order linear and nonlinear system of Fredholm integro- differential
equation:

1l1(x,v, Vi, c", W, Wi, w") = 91(X) + lb kl(x,t,v(t),w(t))dt,
ab

1l2(X, v, Vi, v", W, Wi, w") = 92(X) +1k2(X, t, v(t), w(t))dl,

v(a) = aI, v(b) = a2, w(a) = (31, w(b) = {32.

(1.71)

The specific objectives of the research are addressed as follows:

1. To combine the homotopy analysis method and Chebyshev pseudo spectral
transformation to solve linear Fredholm (1.66) and Volterra integro- differ-
ential equations (1.68) and comparing the obtained results with homotopy
analysis method.

2. To apply spectral homotopy analysis method to solve nonlinear Fredholm
(1.67) and Volterra integro- differential equations (1.69).
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3. To use spectral homotopy analysis method to solve Volt.orra-Frcdhohu intpgro .
differential equations (1. 70).

·1. To prove the convergence of spectral homotopy analysis method and t.o
investigate the error analysis and the rate of couvergcnc-c of t.hc met.hod.

5. To apply spectral homotopy analysis method to solve linear and nonlinear
system of Fredholm integro- differential equations (1.71).

6. Solving linear and nonlinear Fredholm integro- differential ('!pwti()ns (1.f;(j)-
(1.67) using composite Chebyshev finite difference method, compare the re-
suIts with some other methods such as Chebyshev finite difference mel.hod.

7. Applying composite Chebyshev finite difference method to solve linear and
nonlinear system of Fredholm integro- differential equations (1.71).

1.7 Outline of the Thesis

This thesis is structured as follows. In Chapter 1, a brief introduction to t.hu
research topic is given. The problems under consideration for solving in the suc-
ceeding chapters are stated and the main objectives of the thesis are summarized.
Chapter 2 includes some notations, definitions and preliminary facts t.liat will h!~
used further in this research work. Some main concepts like approximation t.heory,
orthogonal polynomials and numerical integration are explained in this chapter.

In Chapter 3, spectral homotopy analysis method (SHAM) is employed to gd an
accurate and efficient solution to linear Fredholm, Volterra and Volterra- Fred-
holm integro-differential equations. The convergence of Spectral homotopy anal-
ysis method is proved for solving linear integra differential equations, the rate of
convergence is obtained and the error estimation is done.

In Chapter ti, the spectral homotopy analysis method is used to solve nonlin-
ear Volterra and Fredholm integro-differential equations. Convergence of SjWC-

tral homotopy analysis method is proved for solving nonlinear integro-differential
equations and the error estimation is done.

In Chapter 5, t.he spectral homotopy analysis method is used to solve liucar and
nonlinear system of Fredholm integro-differential equations.

In Chapter 6, we employ Composite Chebyshev Finite Difference Method for
solving linear and nonlinear Fredholm and linear and nonlinear system of Fred-
holm integra-differential equations and the error bound of solution is obtained
for composite Chebyshev finite difference method.

Finally, in Chapter 7, a short analysis of the work done in t.his research is made.
There are some suggestions for possible extensions to this work to he carried in
future studies.
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