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Study on the optical properties of ZnS, SnS and Se thin films in polycrystaUine 

and amorphous structure was carried out at room temperature. Double beam UV-

spectrophotometer was used to obtain the transmissions curve. The measurement of 

transmission for each sample was conducted in the range of 300 to 1100 nm, and the 

structures of samples were analyzed using X-ray diffraction spectrometer. Swanepoel 

(1983) method had been used in this study to detennine the optical properties of the 

ZnS, SnS and Se thin films. 

Data from theoretical calculation was also used to cross-.check the validity of the 

optical data of the samples. The results show that the refractive index of the samples 

decreases as wavelength increases. The energy band gaps of the samples are in good 

agreement with the data reported in the literature previously. The results also show that 

the refractive index of the samples is thickness dependent. However, the energy band 
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gaps for all the samples were found to be independent of film thickness in the range of 

370 up to 742 run. While the energy band gaps of the Se thin films decreases with 

increasing film thickness. 

Three procedures of measurement were investigated for the samples. First, 

measurements were done immediately on the samples after they were deposited. 

Second, the measurement of the samples was done after they were exposed to the air. 

Third, the effect of annealing at different times in addition to different temperatures in 

ranging from (40 - 120) °C in ambient atmospheric pressure was studied. The results 

indicated that, the refractive index decreased with increasing the wavelength in all cases. 

Other results in the present study indicate that the aging have more significant 

effect on the refractive index, plasma energy and energy band gap of the ZnS and Se 

samples. Furthennore the refractive index and the energy band gap of the a-ZnS were 

not affected with the annealing time, while the energy band gap of the SnS was affected 

with annealing temperature. 
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Kajian sifat optik filem nipis ZnS, SnS dan Se dalam bentuk struktur polihablur 

dan amorfosnya telah dilakukan pada suhu bilik. UV -spektrofotometer dua-alur 

digunakan untuk memperolehi taburan spektrum transmisi. Pengukuran ke atas filem-

filem nipis ini dibuat dalam julat jarak: gelombang 300 hingga 1100 nm. Struktur filem-

filem ini pula dikaji dengan menggunakan spektrometer pembiasan sinar-X Kaedah 

Swanepoel (1983) telah digunakan dalam kajian ini untuk menentukan sifat optik bagi 

filem-filem nipis ZnS, SnS dan Se. 

Pengiraan juga telah dibuat untuk menguji ketepatan data yang diperolehi. 

Keputusan menunjukkan bahawa indek pembiasan filem-filem berkurang apabila jarak 

gelombang bertambah. Data jalur tenaga terlarang yang diperolehi amat menyetujui 

dengan nilai yang telah dilaporkan oleh penyelidik-penyelidik lain. Keputusan juga 

menunjukkan bahawa nilai indek pembiasan bergantung kepada ketebalan sampel. 

Akan tetapi, tenaga jalur bagi filem-filem ini didapati tidak bergantung kepada ketebalan 
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sampel sehingga 742 nm. Bagi ketebalan sampel Se yang melebihi 742 nm, tenagajalur 

terlarang berkurang dengan penambahan ketebalan sampel. 

Tiga langkah pengukuran telah dilakukan untuk mengkaji filem-filem ini iaitu 

pertama, pengukuran dibuat sebaik sahaja siap disediakan. Kedua, pengukuran dibuat 

selepas filem-filem terdedah kepada udara. Ketiga, mengkaji kesan pemanasan pada 

tekanan atomosfera tetapi pada masa dan suhu (40 - 120) °C yang beriainan. Keputusan 

menunjukkan bahawa nilai indeks biasan berkurang dengan peningkatan jarak 

gelombang. 

Hasil keputusan yang lain menunjukkan bahawa kesan penuaan memberikan 

kesan yang lebih ketara pada indeks biasan, tenaga plasma dan tenaga jalur. Nilai indek 

biasan dan tenaga jalur pada sampel ZnS dan Se. Tambahan pula, indeks biasan dan 

tenaga jalur terlarang bagi a-ZnS menunjukkan ia tidak dipengauhi oleh masa 

pemanasan, manakala tenaga jalur bagi SnS dipengauhi oleh suhu pemanasan. 
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CHAPTER I 

INTRODUCTION 

The optical properties of the material are related to the characteristics of 

the electromagnetic wave absorption and emission. The optical properties are 

also play an important role in developing and understanding of the structural 

and electronic properties of semiconductors thin film. Nevertheless, the optical 

properties of thin film could be found from the amplitude and state of 

polarization of a light beam, in the form of the Fresnel coefficient of reflection 

and transmission. 

This study focuses on optical properties of Zinc sulfide (ZnS), Tin 

sulfide (SnS) and selenium (Se) semiconductor in thin film form. These 

materials attract much attention at different phase due to various physical 

applications. 

Zinc sulfide is currently used in flat-screen solid state displays and can 

be employed in the new generation of visible light emitting laser diode. High 
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durability ZnS found useful in harsh commercial and military environment (Carl and 

Francis 1980). Studies on X-ray photoelectron spectroscopy by Olga et al. (1997), found 

that ZnS formed adherent film to glass substrate. The adherent process was further 

developed to produce the metal sulfide thin film photographic. However, ZnS compound 

was found to exhibit insulating behavior as well. This phenomenon could be due to an 

increase in the metallic component of binding and a decrease in the ionic component 

(Abrikosov et at. 1969). 

According to Mishra et al. (1989) and Zulkamain et al. (1997), even though SnS 

compound is relatively less studied, it is a promising material for the production of low cost 

material for solar energy conversion. The phase diagram of the SnS formed 

monochalcogenides in addition to more complex compounds comprised mainly of SnS2, 

Sn2S3 and Sn3S4 compositions, depending on the temperature and percentage of the 

constituents. Also SnS and SnS2 were found to be the most stable compound with regard to 

melting points of (855 ± 5) °C for the case of the sulfur atoms between 10 - 48 % and 68 -

95 % respectively (Abrikosov et al. 1969). 

Selenium is widely used in commercial applications for example xerography and 

image processing. Zishan et al. (1997) stated that pure selenium has short lifetime, however 

Kotkata and Abdel Wahab (1990) observed that light could enhanced the crystallization 

process of the amorphous Se, at low temperature. They also established that the increase of 

the crystal growth rate by light heating could be resulted from the reproduction of hole

electron pairs in the amorphous Se thin film. 
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Objective 

The aim of this study is to characterize the optical properties of ZnS, SnS and Se 

thin films. Double beam UV -spectrophotometer was used in this study to measure the 

transmission spectra. Also as the transmission curve for each sample was detennined, the 

samples were considered homogenous and isotropic with unifonn thickness. Studies on 

optical properties are limited to optical constants, plasma energy and band gap energy. The 

analyses were carried out based on transmission spectra. Therefore, the objectives of the 

present study were: 

1 - To characterize the optical properties ofZnS, SnS, and Se thin films. 

2 - To study aging effect and heat treatment on the optical properties of ZnS, 

SnS, and Se thin films. 

Thin film 

Thin film material can be either of crystalline or amorphous structures. A single 

crystal structure contains atoms that arranged in periodic arrays. Polycrystalline material 

consists of a matrix of crystallites, each crystal is essentially a single crystal with a different 

crystal axis orientation to its neighbor. It gives rise to the periodic potential within which 

the electrons exist. On other hand amorphous materials contain conveniently bonded atoms, 

which are arranged in an open network. The bonded atoms correlate with each other in 

order up to the third or fourth nearest neighbors. The short-range order is directly 

responsible for measurable semiconductor properties, such as optical and electrical. 
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Optical Constants 

The theoretical and experimental investigations on the optical behavior of thin films 

deal primarily with optical constants. The optical properties of the amorphous and 

crystalline semiconductor materials can be described by complex refraction index, N* = n

ik. The real and imaginary parts ofN* are termed as refractive index and absorption index. 

The n and k are referred to as the optical constants of the medium. Generally, the optical 

constants are photon energy dependent and exhibit in interband regions, where the electron 

transitions are dominant. The bound electrons, which are present in semiconductor 

compounds, can be described in terms of complex dielectric constant, as N*
2 = E]- iE2, 

were E] and E2, are the real and imaginary parts of dielectric. 

The Energy Band Gap 

Optical thin film theory is based on the Maxwell macroscopic theory of 

electromagnetic waves, as applied to the propagation of light across the thin films. The 

basic electronic band is mainly concerned with excitation of electrons above the band gap. 

In this process, holes are left behind in the valence band. The electrons and the holes can be 

treated as charged quasi-particles that move through periodic lattice with an effective mass. 

According to Nasser et at. (1993) the band gap of semiconductor gives a best understanding 

of fundamental electronic structure of solid, and can determine whether the band gap is a 

direct or an indirect allowed transition. The measurements of the optical band gap can be 



done in a simplest way by measuring the absorption edge. Generally, in the vanous 

absorption processes, the electrons and holes absorb both photons and phonons. The 

photons supply the required energy, while the phonons supply the required momentum. In 

such a situation, the lowest threshold of the band gap energy cannot be achieved for a 

process that involves only photon energy. However, in the direct transition, the photon

initiated transitions require a constant wave vector, k. On the other hand the indirect 

allowed transition in which the k vectors of initial and final states are different� the phonon

assisted transition can still conserve momentwu. 

Direct and Indirect Band Gap Semiconductors 

Semiconductor material can be divided into two main transition groups, namely 

direct and indirect gaps. When the vertical transitions between valence and conduction 

band are allowed, and the photons are only involved in this transition, the material is called 

direct band gap semiconductor. The direct transition occurred in ZnS, CdS, GaAs and InSb 

and many more compound III - V or II - V materials. On the other hand, when the 

transitions between the valence band and conduction band are not linear and the transition 

is associated with photon-phonon coupling, the materials are called indirect band gap 

semiconductors. This type is found in Si, Se, SnS and Ga semiconductor materials. This 

phenomenon is displayed in Figure 1.1. 


