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Abstract of thesis presented to the Senate ofUniversiti Putra Malaysia in fulfillment
of the requirement for the degree of Doctor of Philosophy

PREPARATION OF GRAPHENE-POL YPYRROLE AND GRAPH ENE-
POL YPYRROLE-MANGANESE OXIDE NANOCOMPOSITES AS

ELECTROCHEMICAL SUPERCAPACITOR ELECTRODE

By

LIMYEESENG

December 2013

Chair: Tan Yen Ping, PhD
Faculty: Science

Electrode material with high capacity performance is indispensable for realizing high
performance supercapacitors. Hence, the key aspect for improving the performance
of supercapacitors is to improve the capacity performance of the active materials.
The work present herein focuses on the synthesis, electrochemical capacity
performance of the graphene-based nanocomposite materials for supercapacitors, and
elucidation of the physical factors which contribute towards the observed capacity
performance. This research work was divided into four parts. An initial study was
focuses on synthesis of polypyrrole/graphene (PPy/GR) hybrid materials. A one-step
electrochemical deposition has been employed to synthesize binary nanocomposite
films of PPy/GR. The bulbous surface of polypyrrole (PPy) and the almost
transparent tissue-like GO nanosheets were replaced by new appearance of the
nanocomposite where the surface was flat but creased. The electrical conductivity of
the PPy/GR nanocomposite was higher than that of the pure PPy film, based on the
electrical conductivity study measured with a four point probe. The high electrical
conductivity ofPPy/GR nanocomposite film demonstrated its potential application as
supercapacitor electrode. The second part of the work was to evaluate the capacitive
performance of synthesize PPy/GR nanocomposite films. Studies showed that
PPy/GR electrode displayed better capacitive performance than that of pure PPy,
reflecting a synergistic effect between PPy and GR, as analysed by a three electrode
electrochemical experiment. The electrochemical results revealed that the capacitive
performance of PPy/GR nanocomposites depended on deposition parameters such as
concentration of pyrrole and GO, deposition time and deposition potential. The third
part of the work was investigated the integration of additional nanostructure metal
oxide, specifically manganese oxide into PPy/GR nanocomposite to maximise the
electro-active surface area accessible to electrolyte ions. An increase of capacity
performance (up to 320.6 Fig) was observed through the integration of manganese
oxide, which is attributed to the morphology of polypyrrole/graphene/manganese
oxide (PPy/GRIMnOx) ternary composite maximize the pseudocapacitive
contribution from redox-active Mnf), and PPy and EDLC contribution from
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individual GR sheets. The final studies sought to focuses on control of size,
morphology, quantity and distribution of PPy particles in the nanocomposite matrix,
aimed at fully harness the capacitive performance of functional components and
improving the pore accessibility of graphene. In this study, FeCb catalyst was used
to control the particle size of polypyrrole coated on GR aimed to avoid polymeric
agglomeration. The improved capacitive performance (797.6 Fig) was attributed to
the controlled particle size of polypyrrole growth on individual GR sheets and
overlap of GR sheets forming a highly open structure provides easier access of
electrolyte into composite film maximize the pseudocapacitive contribution from
redox-active polypyrrole and EDLC contribution from individual GR sheets.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

PENYEDIAAN GRAPHEN-POLYPYRROLE DAN GRAPHEN-
POLYPYRROLE-MANGAN OKSIDA NANOKOMPOSIT SEBAGAI

ELEKTROD ELEKTROKIMIA SUPERKAP ASITOR

Oleh

LIM YEE SENG

Disembcr 2013

Pengerusi: Tan Ycn Ping, PhD
Fakulti: Sains

Elektrod dengan keupayaan kapasitan yang tinggi adalah diperlukan untuk membina
superkapasitor yang berpretasi tinggi. Oleh itu, faktor utama untuk meningkatkan
prestasi superkapasitor adalah dengan meningkatkan prestasi keupayaan kapasitan
elektrod. Kajian ini memberi tumpuan kepada sintesis, penilaian prestasi keupayaan
kapasitas nanokomposit berasaskan graphen untuk superkapasitor, dan penerangan
tentang faktor-faktor fizikal yang menyumbang kepada kapasitan yang diperhatikan
sepanjang pengajian. Kajian ini dibahagikan kepada empat bahagian. Kajian pertama
akan memberi tumpuan kepada sintesis bahan hybrid polypyrrole/graphen (PPy/OR).
Proses eletrokimia telah digunakan untuk mensintesis filem binari nanokomposit
PPy/OR. Permukaan PPy yang bulat dan nanokepingan 00 yang telus seperti tisu
telah tukar penampilan barn kepada permukaan adalah rata dan berkedutan. PPy/OR
nanokomposit menunjukkan kekonduksian elektrik yang lebih tinggi daripada filem
PPy melalui kajian kekonduksian elektrik. Dengan mempunyai kekonduksian
elektrik yang tinggin, filem PPy/OR berpotensi digunakan sebagai elektrod
superkapasitor. Bahagian kedua dalam kajian ini adalah menilai prestasi keupayaan
kapasitan filem PPy/OR. Kajian ini menunjukkan bahawa PPy/OR elektrod
mempaparkan prestasi kapasitan yang lebih baik daripada PPy tulen. Ini adalah
disebabkan kesan sinergi antara PPy dan graphen. Di samping itu, penilaian
elektrokimia menunjukkan bahawa keupayaan kapasitan PPy/OR juga bergantung
kepada faktor seperti kepekatan pyrrole dan 00, masa pemendapan dan potensi yang
digunakan. Bahagian ketiga kajian ini adalah mensiasat kesan tambahan nanostruktur
logam oksida, khususnya mangan oksida ke dalam komposit PPy/OR untuk
meningkatkan kawasan permukaan elektroaktif yang diakses oleh ion electrolit.
Peningkatan prestasi kapasitan (sehingga 320.6 F/g) yang diperhatikan melalui kesan
tambahan mangan oksida boleh dikaitkan dengan morfologi ternary nanokomposit
polypyrrole/graphen/mangan oksida (PPy/ORIMnOx) yang akan meningkatkan
sumbangan pseudokapasitan dari redox-aktif MnOx, PPy dan sumbangan EDLC
daripada kepingan graphen. Bahagian akhir dalam kajian ini memberi tumpuan
kepada kawalan saiz, morfologi, kuantiti dan pengedaran komponen berfungsi (zarah
PPy) dalam matrik nanokomposit. Ini bertujuan memanfaatkan prestasi kapasitan
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komponen berfungsi dengan sepenuhnya dan meningkatkan liang akses graphen.
Dalam kajian ini, FeCh telah digunakan sebagai pemangkin untuk mengawal saiz
zarah polypyrrole bersalut pada graphen supaya mengelakkan penumpuan polimer.
Akhirnya, prestasi kapasitan telah dipertingkatkan (797.6 Fig). Ini adalah disebabkan
zarah polypyrrole terkawal pada permukaan kepingan graphen dan perbentukan
struktur yang terbuka akibat pertindihan kepingan graphen. Fenomena ini akan
menyenangkan akses elektrolit ke dalam filem komposit lantaran itu
menpertingkatkan sumbangan pseudokapasitif dari redok-aktif polypyrrole dan
sumbangan EDLC daripada kepingan graphen.
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CHAPTER I

INTRODUCTION

The energy sector has changed drastically over the few decades since the era of
industrialization. Since then, abundant and economical energy and developing a
modern civilization is inseparable. Moreover, the steady growth of human population,
as well as the significant improvement in the living quality, leads to an increase
energy consumption that will soon exceed the production capacity; the world energy
is facing unprecedented uncertainty.

From the reference scenario of World International Energy, the world primary
energy is expected to increase 40 % from the year of 2007-2030 (World Energy
Outlook, 2009), another main drivers of the growth is due to developing Asian
countries. Malaysia, being a fast developing country among Asian countries, it is
expected that its economic growth will affect on the increase in the growing of
energy consumption demand in the nation. However, heavily relying on the
combustion of fossil fuels and coal will lead to diminishing reserves of energy supply
since it is in the form of non-renewable energy and bring severe impact on the
environment such as global warming.

Recently, transforming natural energy, such as wind, hydro and solar energies is
under serious consideration as alternative energy and power source since it can
generate large amounts of clean and sustainable energy. In unison, the development
of energy storage devices is particularly vital to store the harvested energy for a wide
range of applications. Thus, the energy challenge is apparent; economic and
environmental reasons are driving a transition from the actual energy economy to a
cleaner and sustainable energy future. The development of energy sources and
energy storage system with lower environmental impact, with attention focusing on
renewable energies is indispensable.

1.1 Energy Storage System

A technological advance society extensively relies on large and small energy storage
system in the major scale to satisfy all purposes. From a hydroelectric system that
stored energy in the form of potential energy through the use of the gravitational
force of falling water to potential energy that stored in fuel and oil becomes available
through combustion. However, the hydroelectric system required large reservoir of
land for operation, this will result in significant physical, chemical and biological
transformation for local ecosystem (Gleick, 1992). In the case of a fuel combustion
system that require energy transduction devices such as steam-turbine, steam-piston
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and internal combustion engines, will suffer from poor efficiency which are limited
by thermodynamic Carnot cycle.

A cleaner energy conversion and storage system is important to ensure the energy
sustainability and to reduce the environmental impact. Recently, electrochemical
energy storage system is under serious consideration as an alternative energy and
power source, as long as this energy consumption is designed to be more sustainable
and more environmentally friendly. Moreover, electrochemical energy storage
system is not thermal machines, so their performance is not limited by Camot cycle,
being able to approach 100% efficiency theoretically. Devices that rely on
electrochemical energy storage and conversion system include batteries. fuel cells,
and supercapacitors (also known ~s electrochemical supercapacitor or ultracapacitor).

10'
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Fig. 1.1 Ragone plot of various energy devices (Winter and Brodd, 2004)

Supercapacitors appear to be devices that had received considerable attention due to
its superior characteristic, these include large power density than batteries (Portet et
al., 2005), longer life cycle (Ruiz et al., 2008), and their higher energy density (Hu et
al., 2009) compared to conventional electric double layer capacitor (Yang et al.,
2008). Supercapacitors function mainly as backup energy sources for the memories,
system boards, and clocks. In case of power outages of primary power sources,
supercapacitors will supply the critical power. Recently, the application of
supercapacitors has expanded into portable electronics due to the development of
advanced supercapacitors device with increase in energy and power density. On the
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other hand, supercapacitors also becoming attractive energy storage system particular
involving high power requirements due to its high specific power especially with the
emerging technologies of hybrid vehicles or hybrid electric vehicle to suit the varied
energy demand (Bentley et aI., 2005; Yu et al., 2011).

The performance of energy storage devices based on the power and energy density
can be expressed by Ragone plot as shown in Fig. 1.1. It can be noted that no single
energy device can match all power and energy region. From the Ragone plot,
batteries and fuel cells can deliver high-energy, whereas supercapacitors are
considered to be a high power system. However, supercapacitors, being the device
that fills up the gap between the conventional capacitors and batteries, are ideal
electrochemical energy· storage system. Although the mechanism involves for these
systems is different, there are "electrochemical similarities" of these three systems.
The common features are that batteries, fuel cells and supercapacitors all comprises
two electrodes in contact with an electrolyte solution and the energy converting
process take place at the phase boundary of electrode/electrolyte interface and the
electron and ion transport are separated (Winter and Brodd, 2004).

Electrical energy is generated by conversion of chemical energy via Faradaic
reactions at the electrodes (anode and cathode) in batteries and fuel cells. The
difference between batteries and fuel cells is related to the location of energy storage
and conversion. Batteries rely on Faradaic reactions taking place in the electrode
material itself, being as "active mass", for the charge storage mechanism, the
conversion occur in the same compartment (closed system). Thus, the generation of
electrical energy is via electrochemical reactions of electrode materials with ions in
an electrolyte (Winter and Brodd, 2004). The discharge rates of batteries are solely
determined by the reaction kinetics as well as mass transport of active materials,
therefore, generally yield high energy densities, but rather low power densities and
suffer from low cycle life.

Battery
o +'e--x-o·-y

Separator

Anode Electrolyto
Se parator

Cathode

Fig. 1.2 Representation of a battery showing the key features of battery
operation (Winter and Brodd, 2004)
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h ;;'._~eJjs are open systems where the electrodes are just charge transfer media and
Sl"ply of "active mass" (hydrogen, methanol etc.) and an oxidant (oxygen or air) are
d -cred from outside the cell, either from the environment, for example oxygen
I'll the air, or from a tank, for example, fuel such as hydrogen and methanol.
Energy storage and energy conversion are thus locally separated (Winter and Brodd,
20(H )_ A Ithough the fuel cell can be considered as a power source with near!y
unlimited energy with almost zero impact on environment, there are obstacles such
as to meet the cost performance barrier and it poor transient performance.

Fuel Cell

, ,,

Separator

Anode Electrolyte Cathode
Fig. 1.3 Representation of a fuel cell showing the continuous supply of reactants
and redox reactions in the cell (Winter and Brodd, 2004)

There is a general difference between the charge storage mechanisms of
supercapacitors than that of batteries and fuel cells. In supercapacitors, energy is
stored physically via non-Faradaic process through an electrostatic charging by the
orientation of electrolyte ions at the electrode/electrolyte interface, forming electrical
double layers (namely electrical double layer capacitors). This rendered
supercapacitor the ability to store/release energy in a short time scale (few seconds)
and the process is highly reversible. As a result, supercapacitors have higher power
density compare with batteries and higher energy density than that of conventional
capacitors. Furthermore, the electrode of supercapacitors does not undergo any
chemic.J phase and composition change during the charge/discharge processes, thus,
it shows higher cycle life when compared to batteries and fuel cells.
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Supercap

Separator

Negative Electrolyte
Electrode Separator

Positive
Electrode

Fig. 1.4 Representation of a supercapacitor, illustrating the energy storage in
the electric double layers at the electrode-electrolyte interfaces (Winter and
Brodd,2004)

In another type of system, an intermediate situation arises where Faradaic charge
transfer occurs, but there is some continuous dependence of charge, q, passed
Faradaically in oxidation or reduction, upon the electrode potential, V. Thus, a
derivative dq/dv can arise that corresponds to a pseudocapacitance that is measurable,
and utilizable as capacitance and designated as pseudocapacitance (Conway, 1999).
Hence, the materials for supercapacitors can be divided into two different types:
double layer capacitive materials and pseudocapacitive materials.

The key factor that restricts the supercapacitors to be used in market is its limited
energy density, meanwhile the rapid growth of clean and sustainable energy require
energy storage devices that able to offer high energy density, high power density and
long life cycle. The increase demand for energy devices greatly promoted the
searching for novel electrode materials and development of next generation
supercapacitors. The recent discovery of novel electrode materials, such as graphene
is breaking new ground for researchers to design and fabricate novel and advance
electrode materials for high performance supercapacitors.

1.2 Problem Statements

Fundamental issues such as low energy density of current supercapacitor must be
addressed to develop high performance supercapacitors as a new generation of
energy storage system. The energy density of activated carbon currently dominates
the market as an electrode material is generally less than 10 Whlkg (Simon and
Gogotsi, 2010), which much lower than that of batteries. Metal oxide or conducting
polymer electrodes may construct high energy density supercapacitors, but they
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suffer from poor cycling stability (Park et al., 2002). Thus, the improvement of
cycling stability of metal oxides and conducting polymers is crucial.

For supercapacitor to be utilizable in practical application, the choice of electrolyte
also is a decisive factor. The used of organic electrolytes and ionic liquids otTer
broad operating potential windows thus, higher energy density. However, organic
electrolyte suffers from poor electrical conductivity resulting in increased diffusion
resistance of electrolyte while ionic liquids are cost ineffective. Hence. both types of
electrolytes are undesirable in practical applications (Zhang et af.. 20 11).
Considering the environmental and cost, aqueous electrolytes are attractive
electrolytes if configured with appropriate electrode materials. Thus, novel and
advanced electrode materials are the key to develop high performance
supercapacitors (Zhang et al., 2011).

The progress in the development of novel material is continuing at a steady rate.
Since the isolation of graphene in 2004 (Brownson et al., 2011), it has received
attention among scientist due to its exceptional physical attribute. The graphene
holds considerable promise as a new electrode material in supercapacitor due to its
unique physical and chemical properties (high electrical conductivity and large
surface area). Hence, utilizing graphene as supercapacitor based on the existing
wealth of knowledge and current techniques available, ground breaking performance
is expected to surpass current supercapacitor devices at the same time proving to be
more energy efficient alternative. However, one of the intractable issues for the use
of graphene as supercapacitor electrode is that graphene suffers from serious
agglomeration and restacking after removal of dispersed solutions and drying due to
van der Waals interaction between graphene sheets, consequently crippling the
electrochemical performance of graphene (Liu et al., 2010).

To fully utilize the potential advantages of graphene, novel conducting
nanocomposites are the best way to achieve breakthrough. Fabrication of
graphene/conducting polymer or metal oxides nanocomposites is expected to
maximize the practical use of the combined advantages for both graphene and
pseudocapacitive materials as functional components for improving the
electrochemical energy storage, and solve the current electrode problems of the
individual components.

In this work, graphene-based nanocomposite is developed with the aim of having
several benefits to the performance of the electrode:

(1) The synergistic effect of functional pseudocapacitive component (conducting
polymer or metal oxide) and graphene. Graphene provides chemical
functionality and compatibility to allow easy processing of nanocomposite.
Pseudocapacitive materials provide high capacitive performance depending
on its size and structure. The resultant nanocomposite is thus regarded as
material with new functionalities and properties.
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(2) Structural modification of nanocomposite. Functional component that
disperse on graphene suppress the agglomeration and restacking of graphene
and increase the available surface area of graphene alone, leading to
improved electrochemical capacitive performance. On the other hand,
graphene acts as a support or template induce the nucleation, growth and
formation of nano-microstructures with uniform dispersion and controlled
morphology on the surface of graphene.

(3) The nanocomposite will form the integrated conductive structure and shorten
the diffusion length of ions.

Therefore, it is well worth investigating how the functional components and
graphene influence the electrochemical capacitive performance of the potential
supercapacitor electrode material. Due to increasing interest in developing energy
storage devices for portable electronics, it is important to synthesize potential
supercapacitors electrode that is small, lightweight and flexible. Hence, in this aspect,
a flexible nanocomposite film is favorable. Furthermore, the rational design and
control of the morphology of the nanocomposite film is essential. This will ensure
reproducibility and better understanding of the relationship between morphology of
nanocomposite to its electrochemical performance.

1.3 Scope of Research

This thesis aims to design and prepare novel graphene-based nanocomposite with
enhanced electrochemical capacitive performance as well as good cycling stability.
The driving question behind this doctoral work is identifying green approaches to
produce graphene from graphene oxide. Moreover, keeping graphene from
restacking also plays a key role in improving the electrochemical performance of
graphene-based materials in supercapacitors.

Therefore the overall scope of this doctoral work is to synthesize graphene-based
nanocomposite, since the restacking and agglomeration of graphene can inhibit or
decrease through incorporating of conducting polymer/metal oxide. Studies also
include innovative approaches to fabricate graphene-based nanocomposite to involve
a combined focus on new chemistry, controlled synthesis and device performance of
novel nanocomposite materials with optimized properties and functionalities, which
is essential to improve the performance of graphene-based nanocomposite as
electrode for supercapacitors.
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].4 Research Objectives

(1) To develope nanocomposite materials consisting of graphene and
conducting polymer/metal oxide as supercapacitor electrode.

(2) To measure the intrinsic electrical and capacitive properties of the
nanocomposite by preparing graphene-based nanocomposite using the
electrochemical deposition method.

(3) To optimize the capacitive properties of graphene-based nanocomposite
by varying the synthesis parameters.

(4) To improve the electrochemical performance of the graphene-based
nanocomposite with new approaches with controllable morphology and
structure.

1.5 Outline of Thesis

Chapter II presented a comprehensive literature review on the background and
working principles of supercapacitors. This chapter also discussed a thorough
literature review on the current state-of-art electrode supercapacitors technologies,
especially with the materials used and possible technologies utilized to synthesize
a variety of composites.

Chapter III presented the chemicals, reagents, characterization techniques and
experimental method used in this thesis.

Chapter IV presented the method of preparation of polypyrrole/graphene
(PPy/OR) nanocomposite via electrodeposition techniques and its
characterization. Instrumental analysis including X-ray photoelectron
spectroscopy (XPS), X-ray diffraction (XRD), Field-emission scanning electron
microscopy (FESEM), Raman spectroscopy, Thermal gravimetric analysis
(TGA), Fourier transform infrared spectroscopy (FT-IR) and four point probe
conductivity measurement. A plausible mechanism for the formation of PPy/GR
nanocomposite was postulated schematically.

Chapter V discussed the application of synthesized nanocomposite as electrode
materials for use in supercapacitors via cyclic voltammetry (CV), galvanostatic
charge/discharge and also electrochemical impedance spectroscopy (EIS).
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Chapter VI discusses the preparation, characterization and electrochemical
capacitive performance of polypyrrole/graphene/manganese oxide
(PPy/GR/MnOx) nanocomposite with an emphasis on the relationship between
morphology and electrochemical performance.

Chapter VII presented the experimental setup of preparation and characterization
of catalyst assisted polypyrrole/graphene (C-PPy/GR). The formation of nano-
particles PPy with respect to the catalyst amount was investigated and the
plausible mechanism for the formation of nano-particles PPy was postulated.

Chapter VIn summarizes the whole work and suggestion on further research
work.
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