PREPARATION AND CHARACTERISATION OF NEW OXIDE ION CONDUCTORS IN THE Bi2-(W, Mo)-O6 SYSTEM

SIM LENG TZE

FSAS 2000 37
PREPARATION AND CHARACTERISATION OF NEW OXIDE ION CONDUCTORS IN THE Bi$_2$-(W, Mo)-O$_6$ SYSTEM

By

SIM LENG TZE

Thesis Submitted in Fulfilment of the Requirements for the Degree of Master of Science in the Faculty of Science and Environmental Studies
Universiti Putra Malaysia

December 2000
For my parents, with love
Bi₂WO₆, Bi₂MoO₆ and their related materials were prepared by solid state reactions. The phase purity of the materials was determined by X-ray diffraction (XRD). Further characterisation using Fourier-transform infrared (FT-IR) spectroscopy, differential thermal analysis (DTA) and impedance spectroscopy were carried out on single phase materials. Thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were also performed on selected samples.

Only Nb and Ta could be introduced as dopant into Bi₂WO₆ with rather limited solid solution formation while introduction of dopants other than W into γ-Bi₂MoO₆ was unsuccessful. From results obtained in IR and DTA studies, it appears that the metal-oxygen bondings in Nb- and Ta-doped materials are weaker as compared to those in the parent material, Bi₂WO₆. The conductivity of these materials was about two orders of magnitude higher than that of Bi₂WO₆. Introduction of lower valency cation results in the creation of oxygen vacancies resulting in higher conductivity.
The IR and XRD patterns of both γ-Bi_2WO_6 and γ-Bi_2MoO_6 are very similar since the materials are isostructural.

Complete solid solutions in the γ-Bi_2WO_6 - γ-Bi_2MoO_6 system were obtained when prepared via low temperature route. This was made possible since the Hume-Rothery rules were fully obeyed by these materials. However, some of these materials were metastable and decomposed into mixed phases upon heating at higher temperatures. Generally, the conductivity in the system was comparable.

The conductivity of γ'-Bi_2MoO_6 is very dependent on sintering temperature and time. It is possible that loss of oxygen occurs upon sintering at elevated temperatures leading to the formation of non-stoichiometric γ'-Bi_2MoO_6. From ac impedance studies, oxide ions appear to be the main charge carriers in this material.

Phase diagram in the Bi_2WO_6 - Bi_2MoO_6 system was constructed based on results obtained from different heating experiments, XRD and DTA results.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENYEDIAAN AND PENCIRIAN KONDUKTOR ION OKSIDA BARU DALAM SISTEM Bi₂-(W, Mo)-O₆

Oleh

SIM LENG TZE

Disember 2000

Pengerusi: Professor Lee Chnoong Kheng, Ph.D.

Fakulti: Sains dan Pengajian Alam Sekitar

Hanya Nb dan Ta dapat diperkenalkan sebagai dopan ke dalam Bi₂WO₆ dengan pembentukan larutan pepejal yang agak terhad manakala dopan selain daripada W gagal diperkenalkan ke dalam γ-Bi₂MoO₆. Keputusan yang diperolehi daripada IR dan DTA menunjukkan bahawa ikatan logam-oksigen adalah lebih lemah dalam bahan-bahan yang didopkan dengan Nb dan Ta berbanding dengan dalam Bi₂WO₆. Kekonduksian bahan tersebut adalah lebih kurang dua tertib magnitud lebih tinggi
Pengenalan kation bervalensi lebih rendah membawa kepada penghasilan kekosongan tapak oksigen yang membawa kepada kekonduksian yang lebih tinggi.

Pola spektrum IR dan XRD bagi kedua-dua γ-Bi$_2$WO$_6$ dan γ-Bi$_2$MoO$_6$ adalah serupa kerana kedua-duanya memiliki struktur yang serupa.

Larutan pepejal yang lengkap diperolehi dalam sistem γ-Bi$_2$WO$_6$ - γ-Bi$_2$MoO$_6$ apabila disediakan pada suhu rendah. Ini adalah mungkin memandangkan kesemua petua Hume-Rothery dipatuhi oleh bahan tersebut. Akan tetapi, sesetengah bahan tersebut adalah metastabil dan terurai kepada fasa tercampur apabila dipanaskan pada suhu yang lebih tinggi. Secara amnya, kekonduksian bahan dalam sistem tersebut adalah lebih kurang sama.

Kekonduksian γ'-Bi$_2$MoO$_6$ adalah sangat bergantung kepada suhu dan jangka masa pemanasan. Ada kemungkinan bahawa kehilangan oksigen berlaku semasa pemanasan pada suhu yang tinggi dan membawa kepada bahan tidak stoikiometri, γ-Bi$_2$MoO$_{6.8}$. Daripada ujikaji dengan impedans ac, ion oksida merupakan pembawa cas yang utama bagi bahan tersebut.

Gambarajah fasa dalam sistem Bi$_2$WO$_6$ - Bi$_2$MoO$_6$ telah dibina berdasarkan kepada keputusan yang diperolehi daripada ujikaji pemanasan yang berbeza, XRD dan DTA.
ACKNOWLEDGEMENTS

The author would like to express her deepest appreciation to Professor Dr Lee Chnoong Kheng for her invaluable assistance, dedication, guidance, patience, understanding and support throughout the project.

The author would also like to extend her gratitude to Professor Dr Abdul Halim Shaari and Associate Professor Dr Mansor Hashim of UPM for their invaluable suggestion, advice and fruitful discussion for without which, this thesis would not be completed.

In addition, the author would also like to thank the laboratory assistants and technicians, Mr Nordin Ismail, Mdm Rusnani Amirudin (FT-IR), Mr Kamal Margona (TGA, DTA) of Chemistry department, Mr Ho Oi Kuan, Ms Azilah Ab. Jalil, Mdm Faridah Akmal Ismail and Cik Sulaika (SEM) of Institute Bioscience, UPM who had assisted the author in the respective analytical area, for without them, this project would not be completed.

The author would also like to give her heart-felt thanks to her parents, her brother and sisters as well as her eldest brother-in-law for their continuous support and encouragement.
I certify that an Examination Committee met on 19th December 2000 to conduct the final examination of Sim Leng Tze on her Master of Science thesis entitled “Preparation and Characterisation of New Oxide Ion Conductors in the Bi₂-(W, Mo)-O₆ System” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Mohd. Zobir Hussien, Ph.D
Associate Professor,
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Chairman)

Lee Chnoong Kheng, Ph.D
Professor,
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Abdul Halim Shaari, Ph.D
Professor,
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

Mansor Hashim, Ph.D
Associate Professor,
Institute of Advanced Technology
Universiti Putra Malaysia
(Member)

MOHD. GHAZALI MOHAYIDIN, Ph.D
Professor/Deputy Dean of Graduate School,
Universiti Putra Malaysia

Date: 19 DEC 2000
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Master of Science.

KAMIS AWANG, Ph.D
Associate Professor
Dean of Graduate School,
Universiti Putra Malaysia

Date: 11 JAN 2001
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

SIM LENG TZEN

Date: 21 December 2000
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL SHEETS</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION FORM</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Solid Electrolytes and Oxide Ion Conductors 1.1

1.1.1 Ionic Conduction 1.3

1.1.2 Oxygen Sensors 1.4

1.1.3 Solid Oxide Fuel Cells (SOFC’s) 1.6

1.2 Objectives 1.9

2 LITERATURE REVIEW

2.1 Oxide Ion Conductors 2.1

2.2 Bi$_2$WO$_6$ 2.4

2.2.1 Synthesis Conditions 2.4

2.2.2 Polymorphism 2.5

2.2.3 Structure of Bi$_2$WO$_6$ 2.7

2.2.4 Introduction of Dopant 2.12

2.3 Bi$_2$MoO$_6$ 2.14

2.3.1 Synthesis Conditions 2.14

2.3.2 Polymorphism 2.16

2.3.3 Structure of Bi$_2$MoO$_6$ 2.19

3 MATERIALS AND METHODS

3.1 Synthesis 3.1

3.1.1 Bi$_2$WO$_6$ Solid Solutions 3.1

3.1.2 γ'-Bi$_2$MoO$_6$ Solid Solutions 3.3

3.1.3 γ-Bi$_2$MoO$_6$ Solid Solutions 3.3

3.2 Analysis and Characterisation 3.4

3.2.1 Phase Purity – X-ray Diffraction (XRD) 3.4

3.2.2 Electrical Properties 3.4

3.2.3 Scanning Electron Microscopy (SEM) 3.15

3.2.4 Fourier-transform Infrared Spectroscopy (FT-IR) 3.15
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>A summary of the three major displacive modes (Withers et al., 1991)</td>
</tr>
<tr>
<td>3.1</td>
<td>Capacitance values and their possible interpretation</td>
</tr>
<tr>
<td>3.2</td>
<td>Error estimate on experimental parameters</td>
</tr>
<tr>
<td>4.1</td>
<td>Results of doping experiments on phase purity of Bi₂W₁₋ₓMₓO₆</td>
</tr>
<tr>
<td>4.2</td>
<td>Vibrational spectra of Bi₂WO₆ (values in cm⁻¹) and assignment of the internal modes</td>
</tr>
<tr>
<td>4.3</td>
<td>Phase transition temperatures of Bi₂W₁₋ₓMₓO₆₋ₓ/2 solid solutions</td>
</tr>
<tr>
<td>4.4</td>
<td>Activation energy (Eₗ) and conductivity, σ of Bi₂W₁₋ₓMₓO₆₋ₓ/2 solid solutions (1st cooling cycle)</td>
</tr>
<tr>
<td>4.5</td>
<td>Results of doping experiments on phase purity of Bi₂Mo₁₋ₓMₓO₆</td>
</tr>
<tr>
<td>4.6</td>
<td>Weight loss of γ'-Bi₂MoO₆ (prepared at 680°C) corresponding to prolonged heat treatment</td>
</tr>
<tr>
<td>4.7</td>
<td>Weight loss of γ'-Bi₂MoO₆ (prepared at 680°C) corresponding to prolonged heat treatment at 800°C</td>
</tr>
<tr>
<td>4.8</td>
<td>Effect of cooling process on weight loss of γ'-Bi₂MoO₆ (prepared at 680°C)</td>
</tr>
<tr>
<td>4.9</td>
<td>Activation energy of γ'-Bi₂MoO₆ calculated from the slope of the Arrhenius plots</td>
</tr>
<tr>
<td>4.10</td>
<td>Capacitance at Z''ₘₐₓ of the 1st heating and the subsequent cooling cycles of γ'-Bi₂MoO₆ (1st pellet) at 550°C and 800°C</td>
</tr>
<tr>
<td>4.11</td>
<td>Capacitance and the permittivity at Z''ₘₐₓ of γ'-Bi₂MoO₆ (1st pellet) taken at the 11th cooling cycle</td>
</tr>
<tr>
<td>4.12a</td>
<td>Impedance data of γ-Bi₂MoO₆ in the 1st heating cycle</td>
</tr>
<tr>
<td>4.12b</td>
<td>Impedance data of γ-Bi₂MoO₆ in the 2nd heating cycle</td>
</tr>
<tr>
<td>4.13</td>
<td>Synthesis temperatures of γ-Bi₂W₁₋ₓMoₓO₆ solid solutions</td>
</tr>
<tr>
<td>4.14</td>
<td>Thermal analysis of Bi₂W₁₋ₓMoₓO₆ solid solutions</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Electrical conductivities of selected common substances and representative solid electrolytes (Greenblatt, 1994)</td>
<td>1.2</td>
</tr>
<tr>
<td>1.2</td>
<td>Schematic diagram showing main elements of a solid electrolyte oxygen concentration cell (Kocache, 1987)</td>
<td>1.5</td>
</tr>
<tr>
<td>1.3</td>
<td>Concept diagram of SOFC (Fisher, 1999)</td>
<td>1.7</td>
</tr>
<tr>
<td>2.1</td>
<td>Summary of phase transitions (Watanabe, 1982)</td>
<td>2.6</td>
</tr>
<tr>
<td>2.2</td>
<td>(a) Prototype structure of Bi$_2$WO$_6$ (Yonovskii and Voronkova, 1986) and (b) structure of Bi$_2$WO$_6$ (Islam et al., 1998)</td>
<td>2.8</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic representation of the atomic displacement patterns for the major displacive modes having (a) $F2mm$, (b) $Bmab$ and (c) $Abam$ symmetry (Thompson et al., 1992)</td>
<td>2.11</td>
</tr>
<tr>
<td>2.4</td>
<td>Phase transitions observed by Erman and Gal’perin (1971)</td>
<td>2.16</td>
</tr>
<tr>
<td>2.5</td>
<td>Phase transitions of Bi$_2$MoO$_6$ (Watanabe and Kodama, 1980)</td>
<td>2.17</td>
</tr>
<tr>
<td>2.6</td>
<td>Phase transitions of Bi$_2$MoO$_6$ (Kodama and Watanabe, 1985)</td>
<td>2.18</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow chart for the preparation of bismuth tungstate solid solutions</td>
<td>3.2</td>
</tr>
<tr>
<td>3.2</td>
<td>Flow chart for the preparation of high temperature form of bimuth molybdate solid solutions</td>
<td>3.3</td>
</tr>
<tr>
<td>3.3</td>
<td>Admittance bridge</td>
<td>3.5</td>
</tr>
<tr>
<td>3.4</td>
<td>Impedance bridge</td>
<td>3.5</td>
</tr>
<tr>
<td>3.5</td>
<td>Semi-circle and spike in a complex Z^* plot</td>
<td>3.8</td>
</tr>
<tr>
<td>3.6</td>
<td>Semi-circles in a complex Z^* plot</td>
<td>3.9</td>
</tr>
<tr>
<td>3.7</td>
<td>Brickwork model of grain and grain boundary regions in a ceramic placed between metal electrodes (Irvine et al., 1990)</td>
<td>3.9</td>
</tr>
<tr>
<td>3.8</td>
<td>Impedance diagram due to a blocking interface: (a) a perfectly smooth interface; (b) rough electrode or due to Warburg impedance (Armstrong and Todd, 1995)</td>
<td>3.12</td>
</tr>
</tbody>
</table>
3.9 (a) A complex Z^* plot and (b) the respective Z'' and M'' spectroscopic plots 3.13

4.1 XRD pattern of Bi$_2$WO$_6$ 4.2

4.2 Comparison of XRD pattern with JCPDS using μPDSM: (a) Bi$_2$WO$_6$ and (b) JCPDS card number 39-0256 4.3

4.3 XRD patterns of Bi$_2$W$_{1-x}$Nb$_x$O$_6$: (a) $x=0.05$, (b) $x=0.10$, (c) $x=0.15$, (d) $x=0.20$, (e) $x=0.25$, (f) $x=0.30$, (g) $x=0.40$ and (h) $x=0.50$ 4.6

4.4 XRD patterns of Bi$_2$W$_{1-x}$Nb$_x$O$_6$: (a) $x=0.20$, (b) $x=0.25$, (c) $x=0.30$, (d) $x=0.40$ and (e) $x=0.50$ 4.7

4.5 XRD patterns of Bi$_2$W$_{1-x}$Ta$_x$O$_6$: (a) $x=0.05$, (b) $x=0.10$, (c) $x=0.15$, (d) $x=0.20$, (e) $x=0.25$, (f) $x=0.30$ and (g) $x=0.50$ 4.8

4.6 XRD patterns of Bi$_2$W$_{1-x}$Ta$_x$O$_6$: (a) $x=0.20$, (b) $x=0.25$, (c) $x=0.30$ and (d) $x=0.50$ 4.9

4.7 XRD patterns of (a) Bi$_2$W$_{1-x}$Nb$_x$O$_6$ and (b) Bi$_2$W$_{1-x}$Ta$_x$O$_6$ 4.11

4.8 XRD patterns of Bi$_2$W$_{1-x}$V$_x$O$_6$: (a) $x=0.05$, (b) $x=0.10$, (c) $x=0.15$ and (d) $x=0.20$ 4.12

4.9 XRD patterns of Bi$_2$W$_{1-x}$P$_x$O$_6$: (a) $x=0.05$, (b) $x=0.10$ and (c) $x=0.15$ 4.13

4.10 XRD patterns of Bi$_2$W$_{1-x}$As$_x$O$_6$: (a) $x=0.05$ and (b) $x=0.10$ 4.15

4.11 XRD patterns of Bi$_2$W$_{1-x}$Sb$_x$O$_6$: (a) $x=0.05$ and (b) $x=0.10$ 4.16

4.12 IR spectrum of Bi$_2$WO$_6$ showing (a) the whole spectrum and (b) the far IR region 4.18

4.13 IR spectrum of blank KBr run in ambient atmosphere 4.19

4.14 IR spectra of Bi$_2$W$_{1-x}$Nb$_x$O$_{6-x/2}$ solid solutions: (a) $x=0$, (b) $x=0.05$, (c) $x=0.10$, (d) $x=0.15$ and (e) $x=0.20$ 4.23

4.15 IR spectra of Bi$_2$W$_{1-x}$Ta$_x$O$_{6-x/2}$ solid solutions: (a) $x=0$, (b) $x=0.05$, (c) $x=0.10$, (d) $x=0.15$ and (e) $x=0.20$ 4.24

4.16 DTA thermograms of Bi$_2$WO$_6$ at heating rate of (a) 10°C/min, (b) 20°C/min and (c) 30°C/min 4.26
4.17 DTA thermograms of Bi$_2$W$_{1-x}$Nb$_x$O$_{6-x/2}$ solid solutions: (a) x=0, (b) x=0.10, (c) x=0.15 and (d) x=0.20

4.18 DTA thermograms of Bi$_2$W$_{1-x}$Ta$_x$O$_{6-x/2}$ solid solutions: (a) x=0, (b) x=0.10, (c) x=0.15 and (d) x=0.20

4.19 Complex plane plots of Bi$_2$WO$_6$ at (a) 351°C and (b) 550°C

4.20 Arrhenius plot of Bi$_2$WO$_6$

4.21 Complex plane plots of Bi$_2$WO$_6$ (sintered at 900°C) at (a) 350°C, (b) 500°C and (c) 800°C

4.22 Modulus plots of Bi$_2$WO$_6$ at various temperatures (1$^\text{st}$ heating cycle)

4.23 Complex plane plots of Bi$_2$W$_{0.95}$Nb$_{0.05}$O$_{5.975}$ at (a) 300°C and (b) 400°C

4.24 Complex plane plot of Bi$_2$W$_{0.95}$Nb$_{0.05}$O$_{5.975}$ at 400°C

4.25 Arrhenius plots of Bi$_2$W$_{1-x}$(Nb,Ta)$_x$O$_{6-x/2}$

4.26 Arrhenius plots of Bi$_2$W$_{1-x}$Nb$_x$O$_{6-x/2}$ solid solutions

4.27 Arrhenius plots of Bi$_2$W$_{1-x}$Ta$_x$O$_{6-x/2}$ solid solutions

4.28 XRD pattern of γ'-Bi$_2$MoO$_6$

4.29 XRD patterns of γ'-Bi$_2$Mo$_{1-x}$V$_x$O$_6$: (a) x=0.05 (42 hours at 800°C), (b) x=0.05 (64 hours at 800°C) and (c) x=0.10 (22 hours at 900°C)

4.30 XRD patterns of γ'-Bi$_2$Mo$_{1-x}$As$_x$O$_6$: (a) x=0.05 (44 hours at 800°C), (b) x=0.05 (22 hours at 850°C) and (c) x=0.10 (22 hours at 850°C)

4.31 XRD patterns of γ'-Bi$_2$Mo$_{1-x}$M*$_x$O$_6$: (a) M*=Ti, (b) M*=Sb and (c) M*=Zr

4.32 XRD patterns of γ'-Bi$_2$Mo$_{1-x}$M*$_x$O$_6$: (a) M*=Nb and (b) M*=Ta

4.33 IR spectrum of γ'-Bi$_2$MoO$_6$ showing (a) the whole spectrum and (b) the far IR region

4.34 DTA thermogram of γ'-Bi$_2$MoO$_6$

4.35 XRD pattern of γ'-Bi$_2$MoO$_6$ quenched from melt
4.36 Arrhenius plots of γ'-Bi$_2$MoO$_6$

4.37 Arrhenius plots of two different pellets of γ'-Bi$_2$MoO$_6$

4.38 Arrhenius plots of γ'-Bi$_2$MoO$_6$ (2nd pellet)

4.39 Arrhenius plots of γ'-Bi$_2$MoO$_6$ sintered at different temperatures

4.40 Arrhenius plots of γ'-Bi$_2$MoO$_6$ pre-sintered at 928°C

4.41 Complex plane plots of γ'-Bi$_2$MoO$_6$ at 550°C: (a) 1st heating cycle and (b) selected cooling cycles

4.42 Combined spectroscopic plots of M" and Z" of γ'-Bi$_2$MoO$_6$ at 550°C (a) 1st heating cycle and (b) 4th cooling cycle

4.43 Complex plane plot of γ'-Bi$_2$MoO$_6$ (pellet sintered at 900°C) at 500°C

4.44 Complex plane plots of γ'-Bi$_2$MoO$_6$ (sintered at 900°C) at high temperatures

4.45 Arrhenius plots of γ'-Bi$_2$MoO$_6$ in two different atmospheres

4.46 Arrhenius plots of γ'-Bi$_2$MoO$_6$ sintered in different environments

4.47 Isothermal conductivity at 600°C of γ'-Bi$_2$MoO$_6$ in different atmospheres

4.48 SEM micrographs of γ'-Bi$_2$MoO$_6$ sintered at (a) 800°C, (b) 850°C, (c) 900°C and (d) after 11 cycles of conductivity measurements

4.49 Modulus plots of γ'-Bi$_2$MoO$_6$ at various temperatures

4.50 Plots of (a) capacitance and (b) permittivity at Z"$_{max}$ against temperature for data obtained in the 11th cooling cycle of γ'-Bi$_2$MoO$_6$ (1st pellet)

4.51 XRD pattern of γ-Bi$_2$MoO$_6$

4.52 Comparison of XRD pattern with JCPDS using µPDSM: (a) γ-Bi$_2$MoO$_6$ and (b) JCPDS card number 21-0102

4.53 XRD patterns of γ-Bi$_2$Mo$_{1-x}$M$_x$O$_6$ prepared at 530°C: (a) M" =Nb, (b) M" =Ta, (c) M" =V and (d) M" =Cu
4.54 XRD patterns of γ-Bi$_2$Mo$_{1-x}$M$_x$O$_6$ prepared at 620°C:
(a) $M^*=$Nb, (b) $M^*=$Ta, (c) $M^*=$V and (d) $M^*=$Cu

4.55 IR spectrum of γ-Bi$_2$Mo$_6$ showing (a) the whole spectrum and
(b) the far IR region

4.56 DTA thermogram of γ-Bi$_2$Mo$_6$

4.57 Complex plane plots of γ-Bi$_2$Mo$_6$ at (a) 375°C, (b) 500°C and
(c) 625°C

4.58 Arrhenius plots of γ-Bi$_2$Mo$_6$

4.59 Spectroscopic plots of γ-Bi$_2$Mo$_6$ at (a) 350°C and (b) 450°C

4.60 Modulus plots of γ-Bi$_2$Mo$_6$ at various temperatures
(a) 1st heating cycle and (b) 2nd heating cycle

4.61 XRD patterns of γ-Bi$_2$W$_{1-x}$Mo$_x$O$_6$ prepared at 530 – 710°C

4.62 XRD patterns of Bi$_2$W$_{1-x}$Mo$_x$O$_6$ (prepared at 800°C): x = (a) 0,
(b) 0.05, (c) 0.10, (d) 0.20, (e) 0.35, (f) 0.40, (g) 0.45 and (h) 0.50

4.63 XRD patterns of γ'-Bi$_2$Mo$_6$ solid solutions, γ'-Bi$_2$Mo$_x$W$_{1-x}$O$_6$
prepared at 800°C where (a) x=0.90, (b) x=0.95 and (c) x=1

4.64 XRD patterns of Bi$_2$W$_{1-x}$Mo$_x$O$_6$ prepared at 800°C: (a) x=0,
(b) x=0.60, (c) x=0.70, (d) x=0.80, (e) x=0.85, (f) x=1 and
(g) γ-Bi$_2$Mo$_6$

4.65 IR spectra of γ-Bi$_2$W$_{1-x}$Mo$_x$O$_6$ solid solutions prepared at 530 -
710°C: (a) x=0, (b) x=0.1, (c) x=0.3, (d) x=0.5, (e) x=0.7,
(f) x=0.9 and (g) x=1

4.66 IR spectra of Bi$_2$W$_{1-x}$Mo$_x$O$_6$ solid solutions prepared at 800°C:
(a) x=0, (b) x=0.10, (c) x=0.20, (d) x=0.35, (e) x=0.50 and
(f) γ-Bi$_2$Mo$_6$

4.67 IR spectra of γ'-Bi$_2$Mo$_x$W$_{1-x}$O$_6$ solid solutions prepared at 800°C:
(a) x=1, (b) x=0.95 and (c) x=0.90

4.68 XRD patterns of melted and quenched Bi$_2$W$_{1-x}$Mo$_x$O$_6$: (a) x=0,
(b) x=0.2, (c) x=0.4, (d) x=0.5, (e) x=0.7, (f) x=0.8, (g) x=0.9
(h) x=1 and (i) unmelted γ'-Bi$_2$Mo$_6$
4.69a DTA thermograms of $\gamma\text{-Bi}_2\text{W}_{1-x}\text{Mo}_x\text{O}_6$: (a) $x=0$, (b) $x=0.10$, (c) $x=0.20$, (d) $x=0.40$ and (d) $x=0.50$

4.69b DTA thermograms of $\gamma\text{-Bi}_2\text{W}_{1-x}\text{Mo}_x\text{O}_6$: (f) $x=0.60$, (g) $x=0.80$, (h) $x=0.90$, (i) $x=0.95$ and (j) $x=1$

4.70 Compositional dependance of phase transition temperatures

4.71 Phase diagram of Bi$_2$WO$_6$ - Bi$_2$MoO$_6$ system

4.72 Arrhenius plots of $\gamma\text{-Bi}_2\text{WO}_6$ (prepared at 710°C)

4.73 Arrhenius plots of $\gamma\text{-Bi}_2\text{W}_{0.90}\text{Mo}_{0.10}\text{O}_6$

4.74 Arrhenius plots of $\gamma\text{-Bi}_2\text{W}_{0.70}\text{Mo}_{0.30}\text{O}_6$

4.75 Arrhenius plots of $\gamma\text{-Bi}_2\text{W}_{0.50}\text{Mo}_{0.50}\text{O}_6$

4.76 Complex plane plots at 400°C of Bi$_2$WO$_6$ (prepared at 710°C) sintered at (a) 710°C and (b) 800°C

4.77 Spectroscopic plots at 400°C of Bi$_2$WO$_6$ (prepared at 710°C) sintered at (a) 710°C and (b) 800°C

4.78 SEM micrographs of Bi$_2$WO$_6$ prepared and sintered at (a) 710°C and (b) 800°C

4.79 Arrhenius plots of $\gamma\text{-Bi}_2\text{W}_{0.30}\text{Mo}_{0.70}\text{O}_6$

4.80 Arrhenius plots of $\gamma\text{-Bi}_2\text{W}_{0.20}\text{Mo}_{0.80}\text{O}_6$

4.81 Arrhenius plots of $\gamma\text{-Bi}_2\text{W}_{0.10}\text{Mo}_{0.90}\text{O}_6$

4.82 Arrhenius plots of $\gamma\text{-Bi}_2\text{W}_{0.05}\text{Mo}_{0.95}\text{O}_6$

4.83 Arrhenius plots of Bi$_2$W$_{1-x}$Mo$_x$O$_6$ solid solutions

4.84 Isothermal conductivity of Bi$_2$W$_{1-x}$Mo$_x$O$_6$

4.85 Arrhenius plots of γ'-Bi$_2$Mo$_x$W$_{1-x}$O$_6$ solid solutions
LIST OF ABBREVIATIONS

ac alternating current
BIMEVOX bismuth metal vanadium oxide
dc direct current
DTA differential thermal analysis
EMF electromotive force
EPMA electron probe microanalysis
FT-IR Fourier-transform infrared
JCPDS Joint Committee on Powder Diffraction Standards
μPDSM micro Powder Diffraction Search/Match
OFN oxygen free nitrogen
SEM scanning electron microscope
SOFC solid oxide fuel cell
TGA thermogravimetric analysis
XRD X-ray diffraction
YSZ yttria stabilised zirconia
A area
a, b, c cell parameters
β angle between a and c
C capacitance
C_b bulk capacitance
C_{gb} grain boundary capacitance
D diffusion coefficient
e elementary charge
\(\varepsilon_0 \) \hspace{1cm} \text{permittivity of free space}

\(\varepsilon \) \hspace{1cm} \text{permittivity}

\(\varepsilon' \) \hspace{1cm} \text{relative permittivity}

\(E \) \hspace{1cm} \text{electric field}

\(E_a \) \hspace{1cm} \text{activation energy}

\(f \) \hspace{1cm} \text{frequency}

\(I \) \hspace{1cm} \text{current}

\(k \) \hspace{1cm} \text{force constant}

\(l \) \hspace{1cm} \text{length}

\(\mu \) \hspace{1cm} \text{reduced mass}

\(\mu_{\text{ion}} \) \hspace{1cm} \text{mobility of ions}

\(M^* \) \hspace{1cm} \text{dopant introduced}

\(M^* \) \hspace{1cm} \text{complex electric modulus}

\(M' \) \hspace{1cm} \text{real part of electric modulus}

\(M'' \) \hspace{1cm} \text{imaginary part of electric modulus}

\(N_{\text{ion}} \) \hspace{1cm} \text{number of ions}

\(\omega \) \hspace{1cm} \text{angular frequency}

\(P'_{\text{O}_2} \) \hspace{1cm} \text{partial pressure of O}_2 \text{ of sample}

\(P''_{\text{O}_2} \) \hspace{1cm} \text{partial pressure of O}_2 \text{ of reference material}

\(R \) \hspace{1cm} \text{resistance}

\(\rho \) \hspace{1cm} \text{resistivity}

\(\sigma \) \hspace{1cm} \text{conductivity}
\(\tau \)
relaxation time

\(T \)
temperature

\(\bar{\nu} \)
wavenumber

\(X \)
reactance

\(Z^* \)
impedance

\(Z' \)
real part of impedance

\(Z'' \)
imaginary part of impedance
CHAPTER 1
INTRODUCTION

1.1 Solid Electrolytes and Oxide Ion Conductors

Electrical conduction occurs by the long-range diffusion of either electrons or ions. Usually, conduction by one or the other type of charge carrier predominates but in some inorganic materials both ionic and electronic conduction are significant.

Migration of ions at normal temperatures does not occur to any appreciable extent in most ionic and covalent bonded solids such as oxides and halides. For example, NaCl is an insulator at room temperature with a conductivity of only $\sim 10^{-15}$ S cm$^{-1}$.

The idea that ions can diffuse as rapidly in a solid as in an aqueous solution or in a molten salt may seem astonishing. However, since the 1960s, a variety of solids that include crystalline compounds, glasses, polymers and composite materials with exceptionally high ionic conductivities have been discovered. Many of these materials have been synthesised and studied. These include materials where the conduction species are anions (e.g. F^- and O^{2-}) or cations (e.g. H^+, Li^+, Na^+, Cu^+, Ag^+). A variety of names have been given for these materials including solid electrolytes, superionic conductors, and fast-ion conductors. ‘Solid electrolytes’ arguably provides the least misleading and broadest description for this class of materials. Such materials often have rather special crystal structures in that there are open tunnels or layers through which the mobile ions may move.
In Figure 1.1, the electrical conductivities of several common substances and representative solid electrolytes are shown at the temperatures where the materials have potential application. The solid electrolytes have conductivities that fall between those of a typical semiconductor, silicon and a typical aqueous electrolyte, sodium chloride.

There has been active research in the area of fast-ion transport in solids in recent years, partly because of the many potential technological applications of solid electrolytes. These applications include high-energy-density batteries, fuel cells, sensors, electrochromic materials for both optical display and ‘smart window’ devices, low-cost electrolysis of water and selective atomic filters. Devices using solid electrolytes are already available commercially: oxygen detectors for automotive pollution-control systems employ solid O^2- conductors and solid-state batteries using Li^+ conducting solid electrolytes are employed in heart pacemakers.