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ABSTRACT 

 

Nowadays, integrating natural language processing techniques on software systems 

has caught many researchers’ attentions. Such integration can be represented by 

analyzing the morphology of the source code in order to gain meaningful information. 

Feature location is the process of identifying specific portions of the source code. One 

of the most important information lies on such source code is the identifiers (e.g. 

Student). Unlike the traditional text processing, the identifiers in the source code is 

formed as multi-word such as ‘Employee-Name’. Such multi-words are not divided 

using white space, instead it can be formed using special characters (e.g. 

Employee_ID), CamelCase (e.g. EmployeeName) or using abbreviations (e.g. 

EmpNm). This makes the process of extracting such identifiers more challenging. 

Several approaches have been performed to resolve the problem of splitting multi-

word identifiers. However, there is still room for improvement in terms of accuracy. 

Such improvement can be represented by utilizing more robust features that have the 

ability to analyses the morphology of identifiers. Therefore, this study aims to propose 

a hybrid method of feature extraction and Naïve Bayes classifier in order to separate 

multi-word identifiers within source code. The dataset that has been used in this study 

is a benchmark-annotated data that contains large number of Java codes. Multiple 

experiments have been conducted in order to evaluate the proposed features 

independently and with combinations. Results shown that the combination of all 

features have obtained the best accuracy by achieving 64.7% of f-measure. Such 

finding implies the usefulness of the proposed features in terms of discriminating 

multi-word identifiers. 
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 CHAPTER I 

INTRODUCTION 

 

 

1.1 INTRODUCTION 

Software engineering is the process of analyzing software systems in order to improve the 

efficiency (Sjøberg et al. 2005). This process can be explained as supplying 

recommendation, illustration and providing reports for enhancing the performance of a 

particular system. To do so, a comprehensive analysis should be concentrated on the 

significant features shown in the source code of the system (Thomas 2011). Analyzing 

these features within the code provides valuable understanding of the intention of the 

code which facilitate the process of re-use and modification that would be performed on 

such code. One of the common concepts that are frequently used in any source code is the 

identifiers (e.g. string Name) (Enslen et al. 2009). Extracting such identifiers would offer 

a good opportunity to understand the headlines of the source code where the programmer 

declares all the objects that will be used in the system (e.g. student, employee, etc.) 

(Lawrie et al. 2007). In addition, the process of extracting identifiers has a significant 

impact on improving feature locations. Feature location aims to extract specific portion of 

the source code that typically correspond to the developer’s query (Chen & Rajlich 2000).  

 

Since the source code is written by the natural language, analyzing the source 

code can be done by using Natural Language Processing techniques. However, there are 

multiple differences between the regular text and the source code. In the source code, the 

multi-word identifiers are written without a space between them, instead several strategies 

can be used. First, it may be divided using special characters such as ‘Employee-Name’ 
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or ‘Employee_Name’ (Enslen et al. 2009). Second, it may be written using ‘CamelCase’ 

approach, this approach aims to capitalize the first letter of the first words and the first 

letter of the second word without spacing (e.g. EmployeeName) (Lawrie & Binkley 

2011a). Apart from the multi-word splitting problem, the identifiers in the source code 

may be written using abbreviations such as ‘Emp’ for ‘Employee’ (Feild et al. 2006). 

Hence, there is no unified or agreement mechanism to write the identifiers in the source 

code. This can make extracting such identifiers from the source code is a challenging 

task. Therefore, this study aims to propose an automatic approach for extracting 

identifiers from the source code. In particular, domain specific features will be developed 

that have the ability to utilize the characteristics of identifiers in the source code. After 

that, supervised machine learning technique will be used in order to classify the 

identifiers.  

 

1.2 SIGNIFICANCE OF STUDY 

With the dramatic evolution of software engineering, tremendous amount of software 

nowadays is being modified, changed and improved chronically. This continuous 

changing requires understandable developer who can treat the source code. The developer 

should know what the source code is intended to do by each included function. However, 

dealing with a large-scale source code would significantly hinder the process of 

modification by the user. Therefore, developer will tend to search manually on the desired 

portions that wanted to be modified. Meanwhile, the manual searching would be tedious 

and time consuming especially when there are thousands of lines. Therefore, feature 

location has been proposed for this purpose in order to facilitate the process of identifying 

the location of specific feature or identifier.  

 

1.3 PROBLEM STATEMENT 

Recently, information retrieval has been applied on software engineering applications in 

order to enhance the productivity of systems. This can be shown by allowing the 

developer to search within the source code for specific portions. This process called 
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Feature Location. Such process depends mainly on the natural language processing 

techniques by utilizing the syntax and semantic of the words. The most important 

semantics that have been addressed is the identifiers. Such identifiers can provide a big 

picture of the whole source code. This can facilitate the process of feature location. 

However, unlike the traditional text processing, source code contains complex 

morphology where the multi-word identifiers are not divided using white space. Instead, 

the splitting depends on several mechanisms. It could be divided using special characters 

such as ‘dash’ (e.g. Student-ID) or ‘underscore’ (e.g. Student_ID). In addition, it could be 

divided using CamelCase where the first letters of both words are being capitalized such 

as ‘StudentId’. The most complicated splitting mechanism is the multi-word that are 

separated neither by special characters nor by CamelCase. In such case, both words are in 

lowercase and attached to each other without a white space such as ‘studentid’. Several 

approaches have been proposed to resolve such problem (Enslen et al. 2009; Feild et al. 

2006; Lawrie & Binkley 2011a; Lawrie et al. 2007). Yet, there is a need for enhancement 

in terms of recall and precision. Such requirement of improvement is represented by using 

more robust features that have the ability to recognize the splitting words. Therefore, this 

study aims to identify an extension of features with machine learning techniques in order 

to separate the multi-word identifiers.  

1.4 RESEARCH OBJECTIVES 

The research objectives of this study are illustrated as follows: 

1. To develop a set of features that have the ability to describe the cases of multi-

word identifiers.  

 

2. To implement a Naïve Bayes classifier to accommodate the splitting process based 

on the developed features.  
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1.5 RESEARCH SCOPE 

This study aims to propose a splitting method for the identifiers located in the source 

code. The type of analysis used to perform the separation is textual (more specifically 

lexical) in which multiple morphological features are being developed, then a Naïve 

Bayes classifier will utilize these features in order to conduct the separation. The source 

code that will be used in this study collected from the study of Enslen et al. (2009). Such 

data contains 9000 open source Java programs from SourceForge (https://sourceforge.net) 

which is a website consists of numerous Java projects with its source code.  

 

1.6 RESEARCH METHODOLOGY  

The research architecture contains four main stages as shown in Figure 1.1 including (i) 

problem identification, (ii) design, (iii) implementation and (iv) evaluation. The first stage 

which is problem identification aims to conduct a literature review for the field of feature 

location and narrowing the search into splitting identifier problem. This stage aims to 

identify ongoing and endure gaps in order to formulate the problem statement of this 

study. Design stage aims to investigate the existing techniques that have been used for the 

feature location and splitting identifiers. Such investigation aims to select an appropriate 

technique as an objective of this study. Implementation stage aims to carry out the 

proposed technique in the objective. This can be represented by collecting a dataset, 

applying the proposed method and observing the results. Evaluation stage aims to identify 

an appropriate evaluation metrics in order to assess the performance of the proposed 

method.  
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Figure 1.1 Research methodology 
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1.7 THESIS ORGANIZATION  

This research composed of five chapters that are being described as follows: 

 

Chapter I provides the headlines of this research where the background of the study, 

problem statement and the objectives are being discussed. 

 

Chapter II conducts a comprehensive literature review for the field of feature 

location by identifying the problem, impacted factors and techniques used for this 

problem. In addition, this chapter aims to concentrate on the splitting identifiers 

problem as a sub-task of feature location. Finally, this chapter will provide a critical 

analysis of the state of the art approaches.     

 

Chapter III discusses the implementation of the proposed method by discussing the 

dataset used in the experiments, the transformation tasks, feature extraction, 

classification and evaluation.  

 

Chapter IV discusses experiment setting in which the mechanism of attaining the 

results will be identified. This can be performed by determining all the parameters of 

each phase including transformation, feature extraction, classification and evaluation. 

 

Chapter V analyzes the experimental results that have been obtained by the proposed 

method. Consequentially, the results will be analyzed technically in terms of the 

effectiveness.  

 

Chapter VI provides the final conclusion of the research in which a summary of the 

whole thesis is being described. In addition, an emphasis of the research contribution 

is also provided. Finally, the future directions that could be inspired by this research 

will be described.  
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1.8 SUMMARY 

This chapter has provided the outline of the research in which the background of the 

study, problem statement, research objectives, research architecture are being 

described properly. Next chapter will discuss the literature review by describing the 

related work and their techniques in more details.  
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