

UNIVERSITI PUTRA MALAYSIA

A HYBRID METHOD OF FEATURE EXTRACTION AND NAIVE BAYES
CLASSIFICATION FOR SPLITTING IDENTIFIERS

NAHLA ALANEE

FSKTM 2016 32

A HYBRID METHOD OF FEATURE EXTRACTION AND NAÏVE BAYES

CLASSIFICATION FOR SPLITTING IDENTIFIERS

NAHLA ALANEE

MASTER OF COMPUTER SCIENCE

UNIVERSITI PUTRA MALAYSIA

DECEMBER 2016 © C
OPYRIG

HT U
PM

ii

DEDICATIONS

To my beloved and darling, master of humans, the light of knowledge, the teacher

of truth. . . The prophet and the messenger of Allah, Mohammed peace and

blessing be upon him.

To the soul of my father and brother who passed away during my study, the grief in

our hearts is big, but bigger is the love; they will live with us forever.

To the joy of the soul, balm of life, and presence tune that

I live on . . . my darling mother.

To whom I shelter in the space of their love and delight under their closeness

moments . . . my brothers.

To the amiability of difficult days and the moon of dark nights . . . my Precious

husband.

To my beloved and my eyes . . . my son Mohamed and my daughter Iceel.

To the idea’s companions and the messengers of fraternity and love . . . dear

friends.

To each of who has taught me or gave me advice . . . teachers.

To every Muslim in this world.

To everybody in this world who understands the meaning of humanity.

Dedicate this work . . .

© C
OPYRIG

HT U
PM

iii

ACKNOWLEDGMENTS

First and foremost, praise be to Allah for granting me patience and strength

throughout my journey to complete this study.

I would like to express my sincere gratitude to my supervisor Assoc. Prof. Dr. Masrah

Azrifah Azmi Murad for her guidance and support throughout this work. She has been

a great source of inspiration to me. No words can express how grateful I am to her.

To the soul of my father and brother who passed away during my study, death took

their body, but their spirit will remain with us and in our hearts forever.

To my darling mother and husband, and my two little angles Mohamed and Iceel. This

work is dedicated for you.

© C
OPYRIG

HT U
PM

iv

ABSTRACT

Nowadays, integrating natural language processing techniques on software systems

has caught many researchers’ attentions. Such integration can be represented by

analyzing the morphology of the source code in order to gain meaningful information.

Feature location is the process of identifying specific portions of the source code. One

of the most important information lies on such source code is the identifiers (e.g.

Student). Unlike the traditional text processing, the identifiers in the source code is

formed as multi-word such as ‘Employee-Name’. Such multi-words are not divided

using white space, instead it can be formed using special characters (e.g.

Employee_ID), CamelCase (e.g. EmployeeName) or using abbreviations (e.g.

EmpNm). This makes the process of extracting such identifiers more challenging.

Several approaches have been performed to resolve the problem of splitting multi-

word identifiers. However, there is still room for improvement in terms of accuracy.

Such improvement can be represented by utilizing more robust features that have the

ability to analyses the morphology of identifiers. Therefore, this study aims to propose

a hybrid method of feature extraction and Naïve Bayes classifier in order to separate

multi-word identifiers within source code. The dataset that has been used in this study

is a benchmark-annotated data that contains large number of Java codes. Multiple

experiments have been conducted in order to evaluate the proposed features

independently and with combinations. Results shown that the combination of all

features have obtained the best accuracy by achieving 64.7% of f-measure. Such

finding implies the usefulness of the proposed features in terms of discriminating

multi-word identifiers.

© C
OPYRIG

HT U
PM

 v

TABLE OF CONTENTS

 Page

DEDICATIONS ii

ACKNOWLEDGMENTS iii

ABSTRACT iv

CONTENTS v

LIST OF TABLES vii

LIST OF FIGURES ix

LIST OF ABBREVIATIONS x

CHAPTERS

CHAPTER I INTRODUCTION

1.1 Introduction 1

1.2 Significance of Study 2

1.3 Problem Statement 2

1.4 Research Objectives 3

1.5 Research Scope 4

1.6 Research Methodology 4

1.7 Thesis Organization 6

1.8 Summary 7

CHAPTER II LITERATURE REVIEW

2.1 Introduction 8

2.2 Feature Location 8

2.3 The Dimensions Of Feature Location Task 9

 2.3.1 Analysis 9

 2.3.2 Input 10

 2.3.3 Data Sources 10

 2.3.4 Output 10

 2.3.5 Programming Language Support 11

© C
OPYRIG

HT U
PM

 vi

 2.3.6 Evaluation 11

2.4 Feature Location Techniques 11

 2.4.1 Dynamic Feature Location 12

 2.4.2 Static Feature Location 13

 2.4.3 Textual Feature Location 14

2.5 Splitting Identifiers 15

2.6 Naïve Bayes (NB) 17

2.7 Related Work 18

2.8 Summary 21

CHAPTER III RESEARCH METHOD

3.1 Introduction 23

3.2 Phase 1: Problem Identification 23

3.3 Phase 2: Design 24

3.4 Phase 3: Implemenation 24

 3.4.1 Dataset 25

 3.4.2 Transformation 26

 3.4.3 Feature Extraction 27

 3.4.4 Classification 30

3.5 Phase 4: Evaluation 31

3.6 Summary 31

CHAPTER IV EXPERIMENT SETTING

4.1 Introduction 33

4.2 Collecting And Dispalying The Data 33

4.3 Transformation 34

4.4 Developing The Features 35

4.5 Naïve Bayes Classification 37

4.6 Evaluation 43

4.7 Summary 44

CHAPTER V EXPERIMENTAL RESULTS

5.1 Introduction 45

5.2 Resulsts Of Independent Features 45

© C
OPYRIG

HT U
PM

 vii

5.3 Results Of Pair Combinaiton Of Features 47

5.4 Results Of Full Combinations Of Features 48

5.5 Summary 50

CHAPTER VI CONCLUSION AND FUTURE WORK

6.1 Introduction 51

6.2 Research Conclusion 51

6.3 Research Contribution 52

6.4 Future Work 52

6.5 Summary 53

REFERENCES 54

© C
OPYRIG

HT U
PM

viii

LIST OF TABLES

Table No. Page

Table 2.1 Summary of separation mechanisms ... 16

Table 2.2 Summary of related work .. 19

Table 3.1 Sample of count capital feature.. 28

Table 3.2 Sample of count punctuation feature ... 28

Table 3.3 Sample of digit count feature ... 29

Table 4.1 Sample data for NB computation ... 37

Table 4.2 Dividing the data into training and testing ... 38

Table 4.3 Sample of actual and predicted class labels ... 43

Table 4.4 Validating the predicted class labels .. 44

Table 5.1 Results of independent features ... 45

Table 5.2 Results of pair combinations .. 47

Table 5.3 Results of full combinations of the features .. 49

© C
OPYRIG

HT U
PM

ix

LIST OF FIGURES

Figure No. Page

Figure 1.1 Research methodology Error! Bookmark not defined.

Figure 3.1 Research methodology phases .. 23

Figure 3.2 Implementation phases ... 25

Figure 3.3 Sample of raw data ... 26

Figure 3.4 Sample of transformed data .. 27

Figure 3.5 Sample of Microsoft spell checking ... 29

Figure 3.6 Training and Testing representation used by NB classifier 30

Figure 4.1 Loading the data ... 34

Figure 4.2 Transformation task results .. 35

Figure 4.3 Feature representation... 37

Figure 5.1 Performances of each feature using f-measure ... 46

Figure 5.2 performances of all pair combinations of features 48

Figure 5.3. Performances of all combinations of the features 49

© C
OPYRIG

HT U
PM

x

LIST OF ABBREVIATIONS

ASDG Abstract System Dependence Graphs

DFT Dynamic Feature Traces

FL Feature Location

NB Naïve Bayes

NLP Natural Language Processing

SR Software Reconnaissance

SVD Singular Value Decomposition

© C
OPYRIG

HT U
PM

1

 CHAPTER I

INTRODUCTION

1.1 INTRODUCTION

Software engineering is the process of analyzing software systems in order to improve the

efficiency (Sjøberg et al. 2005). This process can be explained as supplying

recommendation, illustration and providing reports for enhancing the performance of a

particular system. To do so, a comprehensive analysis should be concentrated on the

significant features shown in the source code of the system (Thomas 2011). Analyzing

these features within the code provides valuable understanding of the intention of the

code which facilitate the process of re-use and modification that would be performed on

such code. One of the common concepts that are frequently used in any source code is the

identifiers (e.g. string Name) (Enslen et al. 2009). Extracting such identifiers would offer

a good opportunity to understand the headlines of the source code where the programmer

declares all the objects that will be used in the system (e.g. student, employee, etc.)

(Lawrie et al. 2007). In addition, the process of extracting identifiers has a significant

impact on improving feature locations. Feature location aims to extract specific portion of

the source code that typically correspond to the developer’s query (Chen & Rajlich 2000).

Since the source code is written by the natural language, analyzing the source

code can be done by using Natural Language Processing techniques. However, there are

multiple differences between the regular text and the source code. In the source code, the

multi-word identifiers are written without a space between them, instead several strategies

can be used. First, it may be divided using special characters such as ‘Employee-Name’

© C
OPYRIG

HT U
PM

2

or ‘Employee_Name’ (Enslen et al. 2009). Second, it may be written using ‘CamelCase’

approach, this approach aims to capitalize the first letter of the first words and the first

letter of the second word without spacing (e.g. EmployeeName) (Lawrie & Binkley

2011a). Apart from the multi-word splitting problem, the identifiers in the source code

may be written using abbreviations such as ‘Emp’ for ‘Employee’ (Feild et al. 2006).

Hence, there is no unified or agreement mechanism to write the identifiers in the source

code. This can make extracting such identifiers from the source code is a challenging

task. Therefore, this study aims to propose an automatic approach for extracting

identifiers from the source code. In particular, domain specific features will be developed

that have the ability to utilize the characteristics of identifiers in the source code. After

that, supervised machine learning technique will be used in order to classify the

identifiers.

1.2 SIGNIFICANCE OF STUDY

With the dramatic evolution of software engineering, tremendous amount of software

nowadays is being modified, changed and improved chronically. This continuous

changing requires understandable developer who can treat the source code. The developer

should know what the source code is intended to do by each included function. However,

dealing with a large-scale source code would significantly hinder the process of

modification by the user. Therefore, developer will tend to search manually on the desired

portions that wanted to be modified. Meanwhile, the manual searching would be tedious

and time consuming especially when there are thousands of lines. Therefore, feature

location has been proposed for this purpose in order to facilitate the process of identifying

the location of specific feature or identifier.

1.3 PROBLEM STATEMENT

Recently, information retrieval has been applied on software engineering applications in

order to enhance the productivity of systems. This can be shown by allowing the

developer to search within the source code for specific portions. This process called

© C
OPYRIG

HT U
PM

3

Feature Location. Such process depends mainly on the natural language processing

techniques by utilizing the syntax and semantic of the words. The most important

semantics that have been addressed is the identifiers. Such identifiers can provide a big

picture of the whole source code. This can facilitate the process of feature location.

However, unlike the traditional text processing, source code contains complex

morphology where the multi-word identifiers are not divided using white space. Instead,

the splitting depends on several mechanisms. It could be divided using special characters

such as ‘dash’ (e.g. Student-ID) or ‘underscore’ (e.g. Student_ID). In addition, it could be

divided using CamelCase where the first letters of both words are being capitalized such

as ‘StudentId’. The most complicated splitting mechanism is the multi-word that are

separated neither by special characters nor by CamelCase. In such case, both words are in

lowercase and attached to each other without a white space such as ‘studentid’. Several

approaches have been proposed to resolve such problem (Enslen et al. 2009; Feild et al.

2006; Lawrie & Binkley 2011a; Lawrie et al. 2007). Yet, there is a need for enhancement

in terms of recall and precision. Such requirement of improvement is represented by using

more robust features that have the ability to recognize the splitting words. Therefore, this

study aims to identify an extension of features with machine learning techniques in order

to separate the multi-word identifiers.

1.4 RESEARCH OBJECTIVES

The research objectives of this study are illustrated as follows:

1. To develop a set of features that have the ability to describe the cases of multi-

word identifiers.

2. To implement a Naïve Bayes classifier to accommodate the splitting process based

on the developed features.

 © C
OPYRIG

HT U
PM

4

1.5 RESEARCH SCOPE

This study aims to propose a splitting method for the identifiers located in the source

code. The type of analysis used to perform the separation is textual (more specifically

lexical) in which multiple morphological features are being developed, then a Naïve

Bayes classifier will utilize these features in order to conduct the separation. The source

code that will be used in this study collected from the study of Enslen et al. (2009). Such

data contains 9000 open source Java programs from SourceForge (https://sourceforge.net)

which is a website consists of numerous Java projects with its source code.

1.6 RESEARCH METHODOLOGY

The research architecture contains four main stages as shown in Figure 1.1 including (i)

problem identification, (ii) design, (iii) implementation and (iv) evaluation. The first stage

which is problem identification aims to conduct a literature review for the field of feature

location and narrowing the search into splitting identifier problem. This stage aims to

identify ongoing and endure gaps in order to formulate the problem statement of this

study. Design stage aims to investigate the existing techniques that have been used for the

feature location and splitting identifiers. Such investigation aims to select an appropriate

technique as an objective of this study. Implementation stage aims to carry out the

proposed technique in the objective. This can be represented by collecting a dataset,

applying the proposed method and observing the results. Evaluation stage aims to identify

an appropriate evaluation metrics in order to assess the performance of the proposed

method.

© C
OPYRIG

HT U
PM

5

Figure 1.1 Research methodology

© C
OPYRIG

HT U
PM

6

1.7 THESIS ORGANIZATION

This research composed of five chapters that are being described as follows:

Chapter I provides the headlines of this research where the background of the study,

problem statement and the objectives are being discussed.

Chapter II conducts a comprehensive literature review for the field of feature

location by identifying the problem, impacted factors and techniques used for this

problem. In addition, this chapter aims to concentrate on the splitting identifiers

problem as a sub-task of feature location. Finally, this chapter will provide a critical

analysis of the state of the art approaches.

Chapter III discusses the implementation of the proposed method by discussing the

dataset used in the experiments, the transformation tasks, feature extraction,

classification and evaluation.

Chapter IV discusses experiment setting in which the mechanism of attaining the

results will be identified. This can be performed by determining all the parameters of

each phase including transformation, feature extraction, classification and evaluation.

Chapter V analyzes the experimental results that have been obtained by the proposed

method. Consequentially, the results will be analyzed technically in terms of the

effectiveness.

Chapter VI provides the final conclusion of the research in which a summary of the

whole thesis is being described. In addition, an emphasis of the research contribution

is also provided. Finally, the future directions that could be inspired by this research

will be described.

© C
OPYRIG

HT U
PM

7

1.8 SUMMARY

This chapter has provided the outline of the research in which the background of the

study, problem statement, research objectives, research architecture are being

described properly. Next chapter will discuss the literature review by describing the

related work and their techniques in more details.

© C
OPYRIG

HT U
PM

54

REFERENCES

Alhindawi, N., Dragan, N., Collard, M. L. & Maletic, J. 2013. Improving feature

location by enhancing source code with stereotypes. Software Maintenance

(ICSM), 2013 29th IEEE International Conference on, 300-309.

Amor, N. B., Benferhat, S. & Elouedi, Z. 2004. Naive bayes vs decision trees in

intrusion detection systems. Proceedings of the 2004 ACM symposium on

Applied computing, 420-424.

Bohnet, J., Voigt, S. & Doellner, J. 2008. Locating and understanding features of

complex software systems by synchronizing time-, collaboration-and code-

focused views on execution traces. Program Comprehension, 2008. ICPC

2008. The 16th IEEE International Conference on, 268-271.

Chen, K. & Rajlich, V. 2000. Case Study of Feature Location Using Dependence

Graph. IWPC, 241-247.

Chen, K. & Rajlich, V. 2001. RIPPLES: tool for change in legacy software.

Proceedings of the IEEE International Conference on Software Maintenance

(ICSM'01), 230.

Dit, B., Revelle, M., Gethers, M. & Poshyvanyk, D. 2013. Feature location in source

code: a taxonomy and survey. Journal of Software: Evolution and Process

25(1). 53-95.

Eisenbarth, T., Koschke, R. & Simon, D. 2001a. Derivation of feature component

maps by means of concept analysis. Software Maintenance and Reengineering,

2001. Fifth European Conference on, 176-179.

Eisenbarth, T., Koschke, R. & Simon, D. 2001b. Feature-driven program

understanding using concept analysis of execution traces. Program

Comprehension, 2001. IWPC 2001. Proceedings. 9th International Workshop

on, 300-309.

Eisenberg, A. D. & De Volder, K. 2005. Dynamic feature traces: Finding features in

unfamiliar code. 21st IEEE International Conference on Software

Maintenance (ICSM'05), 337-346.

Enslen, E., Hill, E., Pollock, L. & Vijay-Shanker, K. 2009. Mining source code to

automatically split identifiers for software analysis. Mining Software

Repositories, 2009. MSR'09. 6th IEEE International Working Conference on,

71-80.

Feild, H., Binkley, D. & Lawrie, D. 2006. An empirical comparison of techniques for

extracting concept abbreviations from identifiers. Proceedings of IASTED

International Conference on Software Engineering and Applications (SEA’06),

© C
OPYRIG

HT U
PM

55

Freitag, D. 2000. Machine learning for information extraction in informal domains.

Machine learning 39(2-3). 169-202.

Gay, G., Haiduc, S., Marcus, A. & Menzies, T. 2009. On the use of relevance

feedback in IR-based concept location. Software Maintenance, 2009. ICSM

2009. IEEE International Conference on, 351-360.

Hill, E., Pollock, L. & Vijay-Shanker, K. 2009. Automatically capturing source code

context of NL-queries for software maintenance and reuse. Proceedings of the

31st International Conference on Software Engineering, 232-242.

Huang, J., Lu, J. & Ling, C. X. 2003. Comparing naive Bayes, decision trees, and

SVM with AUC and accuracy. Data Mining, 2003. ICDM 2003. Third IEEE

International Conference on, 553-556.

Koschke, R. & Quante, J. 2005. On dynamic feature location. Proceedings of the 20th

IEEE/ACM international Conference on Automated software engineering, 86-

95.

Lawrie, D. & Binkley, D. 2011a. Expanding identifiers to normalize source code

vocabulary. Software Maintenance (ICSM), 2011 27th IEEE International

Conference on, 113-122.

Lawrie, D. & Binkley, D. 2011b. Expanding identifiers to normalize source code

vocabulary. 2011 27th IEEE International Conference on Software

Maintenance (ICSM), 113-122.

Lawrie, D., Feild, H. & Binkley, D. 2007. Quantifying identifier quality: an analysis

of trends. Empirical Software Engineering 12(4). 359-388.

Maletic, J. I. & Marcus, A. 2001. Supporting program comprehension using semantic

and structural information. Proceedings of the 23rd International Conference

on Software Engineering, 103-112.

Marcus, A., Sergeyev, A., Rajlich, V. & Maletic, J. I. 2004. An information retrieval

approach to concept location in source code. Reverse Engineering, 2004.

Proceedings. 11th Working Conference on, 214-223.

McCallum, A. & Nigam, K. 1998. A comparison of event models for naive bayes text

classification. AAAI-98 workshop on learning for text categorization, 41-48.

Petrenko, M., Rajlich, V. & Vanciu, R. 2008. Partial domain comprehension in

software evolution and maintenance. Program Comprehension, 2008. ICPC

2008. The 16th IEEE International Conference on, 13-22.

Poshyvanyk, D., Gueheneuc, Y.-G., Marcus, A., Antoniol, G. & Rajlich, V. 2007.

Feature location using probabilistic ranking of methods based on execution

scenarios and information retrieval. IEEE Transactions on Software

Engineering 33(6). 420-432.

© C
OPYRIG

HT U
PM

56

Poshyvanyk, D., Marcus, A., Dong, Y. & Sergeyev, A. 2005. IRiSS-A Source Code

Exploration Tool. ICSM (Industrial and Tool Volume), 69-72.

Robillard, M. P. & Murphy, G. C. 2002. Concern graphs: finding and describing

concerns using structural program dependencies. Proceedings of the 24th

international conference on Software engineering, 406-416.

Robillard, M. P. & Murphy, G. C. 2007. Representing concerns in source code. ACM

Transactions on Software Engineering and Methodology (TOSEM) 16(1). 3.

Shepherd, D., Fry, Z. P., Hill, E., Pollock, L. & Vijay-Shanker, K. 2007. Using natural

language program analysis to locate and understand action-oriented concerns.

Proceedings of the 6th international conference on Aspect-oriented software

development, 212-224.

Sjøberg, D. I., Hannay, J. E., Hansen, O., Kampenes, V. B., Karahasanovic, A.,

Liborg, N.-K. & Rekdal, A. C. 2005. A survey of controlled experiments in

software engineering. Software Engineering, IEEE Transactions on 31(9).

733-753.

Tan, S., Cheng, X., Wang, Y. & Xu, H. 2009. Adapting naive bayes to domain

adaptation for sentiment analysis. Advances in Information Retrieval. 337-

349. Springer.

Thomas, S. W. 2011. Mining software repositories using topic models. Proceedings of

the 33rd International Conference on Software Engineering, 1138-1139.

Venkatapathy, S. & Joshi, A. K. 2005. Measuring the relative compositionality of

verb-noun (VN) collocations by integrating features. Proceedings of the

conference on Human Language Technology and Empirical Methods in

Natural Language Processing, 899-906.

Wilde, N., Gomez, J. A., Gust, T. & Strasburg, D. 1992. Locating user functionality in

old code. Proceedings Conference on Software Maintenance 1992, 200-205.

Wilde, N. & Scully, M. C. 1995. Software reconnaissance: mapping program features

to code. Journal of Software Maintenance: Research and Practice 7(1). 49-62.

Wilson, L. A. 2010. Using ontology fragments in concept location. Software

Maintenance (ICSM), 2010 IEEE International Conference on, 1-2.

© C
OPYRIG

HT U
PM

