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SYNTHESIS, CHARACTERIZATION, AND APPLICATION OF ZnO/SnS,, (z =1 or
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DEGRADATION UNDER VISIBLE LIGHT
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Chair: Salmiaton Bt. Ali, Ph.D.
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In this research work, the potentials and limitations of using ZnO/SnS and ZnO/SnS,
nanocomposites as photocatalysts for the removal of ciprofloxacin from water were stud-
ied. The two sets of photocatalysts containing various quantities of the SnS and SnS,
were prepared by calcination of their respective precursor zinc carbonate (ZnCO,/SnS
and ZnCO;/SnS,) nanocomposites at 633 K for 6h. The parent ZnCO; nanocomposites
were synthesized in PVP-ethylene glycol solution by microwave-assisted synthesis. The
as-synthesized ZnO/SnS, (x = 1 or 2) were characterized by X-ray diffraction, electron
microscopy, energy dispersive X-ray spectroscopy, ultraviolet-visible spectroscopy and
Brunauer - Emmett - Teller techniques. The results confirmed the products to consist
of hexagonal wurtzite ZnO phase /orthorhombic SnS phase (for ZnO/SnS) and hexago-
nal wurtzite ZnO/hexagonal SnS,. They also show that the samples exist as mesoporous
nanoparticles that are active in visible light.

The visible-light photocatalytic activities of the as-prepared samples were investigated
using ciprofloxacin as a model pollutant in distilled deionized water. The tests results
showed that ZnO/SnS samples were not as efficient as ZnO/SnS, samples. The most ac-
tive ZnO/SnS sample exhibit kinetics that is about eleven times less than the activity of the
most active ZnO/SnS,. The low visible light activity exhibited by the ZnO/SnS sample was
attributed to high densities of interfacial states due to lattice mismatch. In UV/ZnO/SnS
system, ciprofloxacin degradation rate constant increased tenfold. However, much of the
enhancement comes from direct UV photolysis of ciprofloxacin. The results of stability
tests showed that the efficiency of ZnO/SnS to remove ciprofloxacin decreased by about
27 % under UV light in 5 repeat runs. In the case of ZnO/SnS, however, no significant
activity loss was recorded after five repeat runs in visible light. The results of these tests
established the superiority of ZnO/SnS, over ZnO/SnS as possible visible light active pho-
tocatalyst for the removal of aqueous ciprofloxacin.

Robustness tests on ZnO/SnS, revealed that the catalyst is also effective in removing
methylene blue and Cr(VI) ions. Mechanistic test results showed that as expected pH
plays a crucial role in the oxidation of ciprofloxacin. Oxidation of the antibiotic was more
efficient in the pH range of 6-8 than in strongly acidic or basic media. Finally, results
from scavenger inhibition tests revealed that the principal mechanism of ciprofloxacin
oxidation over ZOSS-2 photocatalyst is driven by photogenerated holes and surface ad-



sorbed ®*OH radicals. Based on the scavenger inhibition tests, a mechanism for the visible
light-driven oxidation of ciprofloxacin in suspended ZnO/SnS, was proposed.
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NANOKOMPOSIT PHOTOCATALYSTS UNTUK CIPROFLOXACIN BURUK
DI BAWAH CAHAYA YANG BOLEH DILIHAT
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Pengerusi: Salmiaton BT. Ali, Ph D
Fakulti: Kejuruteraan

Dalam kerja-kerja penyelidikan ini, pontials dan batasan menggunakan ZnO /SnS dan
ZnO/SnS, nanokomposit sebagai photocatalysts untuk purfication air telah dikaji. Dua
set photocatalysts mengandungi pelbagai kuantiti daripada SnS dan SnS, telah disediakan
oleh pengkalsinan masing-pelopor zink karbonat mereka (ZnCO,/SnS dan ZnCO,/SnS,)
nanokomposit di 633 K untuk 6h. Parent ZnCO,; nanokomposit telah disintesis dalam
PVP-etilena glikol penyelesaian oleh sintesis microwave dibantu. Sampel yang disin-
tesis telah disifatkan oleh x-ray pembelauan, mikroskop elektron, tenaga serakan X-
ray spektroskopi, spektroskopi ultraungu boleh dilihat dan Brunauer-Emmett-Teller
teknik. Keputusan itu mengesahkan produk terdiri daripada wurtzite heksagon ZnO
fasa/otorombik SnS fasa (untuk ZnO/SnS) dan wurtzite heksagon ZnO/SnS, heksagon.
Mereka juga menunjukkan bahawa sampel wujud nanopartikel sebagai mesoporous yang
aktif dalam cahaya yang boleh dilihat.

Aktiviti photocatalytic kelihatan cahaya sampel as- bersedia disiasat menggunakan
ciprofloxacin sebagai pencemar model dalam air ternyahion suling. Hasil ujian me-
nunjukkan bahawa sampel ZnO/SnS tidak secekap ZnO/SnS, sampel. Aktif ZnO/SnS
kinetik sampel pameran yang kira-kira 10 kali kurang daripada acitvity ZnO paling aktif
/SnS,. Aktiviti cahaya yang boleh dilihat rendah dipamerkan oleh sampel ZnO/SnS dise-
babkan kepadatan tinggi negeri antara muka yang tidak berpadanan kekisi. Dalam sis-
tem UV/ZnO/8nS, ciprofloxacin Kadar kemerosotan berterusan meningkat sepuluh kali
ganda. Walau bagaimanapun, banyak peningkatan itu datang dari fotolisis UV langsung
ciprofloxacin. Keputusan ujian kestabilan menunjukkan bahawa kecekapan ZnO / SnS
untuk membuang ciprofloxacin menurun sebanyak kira-kira 27 % di bawah cahaya UV
dalam 5 berjalan berulang. Dalam kes ZnO/SnS, bagaimanapun, tiada kerugian kegiatan
yang penting dicatatkan selepas lima berjalan berulang dalam cahaya yang boleh dilihat.
Keputusan ujian ini ditubuhkan keunggulan ZnO/SnS, lebih ZnO/SnS yang mungkin ca-
haya yang boleh dilihat fotokatalis aktif untuk penyingkiran ciprofloxacin berair.

Ujian pelbagai aktiviti di ZnO/SnS, mendedahkan bahawa pemangkin juga berkesan
dalam menghapuskan metilena biru dan Cr(VI) ion. Keputusan ujian mekanistik me-
nunjukkan bahawa seperti yang diharapkan pH memainkan peranan yang amat penting
dalam pengoksidaan ciprofloxacin. Pengoksidaan antibiotik adalah lebih berkesan dalam
julat pH 6-8 berbanding media kuat berasid atau asas.
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Akhir sekali, hasil dari ujian perencatan penyapu jalan telah mendedahkan bahawa
mekanisme utama ciprofloxacin pengoksidaan lebih ZnO/SnS, fotokatalis didorong oleh
lubang photogenerated dan permukaan terjerap ®* OH radikal. Berdasarkan ujian peren-
catan penyapu jalan, satu mekanisme untuk pengoksidaan cahaya yang didorong oleh
yang boleh dilihat daripada ciprofloxacin dalam digantung ZnO/SnS, telah dicadangkan.

iv



ACKNOWLEDGEMENTS

Looking back, the time spent on my PhD studies was certainly one of the most challenging,
with multiple excitements and frustrations. Therefore, I would like to express my sincere
gratitude to the following people for their continuous support and guidance towards the
preparation of this thesis.

First, I would like to thank Prof. Madya Dr. Salmiaton Binti Ali for her constant support,
enthusiasm and trust in my research. Having been given the freedom to direct my research
on my own was challenging at times, but arguably more important allowed me to find and
follow my own interests through the nanoscale world of environmental engineering. You
have been and continue to be a fantastic Supervisor and mentor.

Second, I would also like to express my deepest gratitude and appreciation to my Com-
mittee: Prof. Elias B. Saion for his ideas, special assistance, supervision, and encourage-
ment throughout my research journey. Prof. Thomas S. Y Choong and Prof. Madya Dr.
Norhafizah Abdullah for their invaluable inputs and constructive critique of my presenta-
tions during the research work. I will forever continue to cherish your successful attempt
at instilling in me the ability and confidence to venture into uncharted scientific territory
and tackle new problems and challenges with cutting-edge research.

Third, to my family — loving wife Aisha and sons Abdul-Muiz, Yusuf-Siddiq and Muneer
— who continuously gave me strength, showered me with compassion and showed under-
standing on this difficult journey, even though they had to endure and tolerate my mood
swings. They comforted me through countless frustrations and managed always to put a
smile on my face. For this, I thank them with all my heart.

Fourth, to the whole members of the Makama’s family without whose enduring support,
prayers and faith in me I would not be where I am today. My special gratitude goes to my
brother Ado and his wonderful family, — Amina, Saadatu, Ismail and baby Safiyyah —
for making Malaysia not so lonely. Jaxakumullahu bi khairihi for being in my life and I
beseech Allaah SWT to continue to shower His blessings and protection on all of you.



This thesis was submitted to the Senate of Universiti Putra Malaysia and has been
accepted as fulfillment of the requirement for the degree of Doctor of Philosophy.

The members of the Supervisory Committee were as follows:

Salmiaton Bt. Ali, Ph D
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairperson)

Elias B. Saion, Ph D
Professor

Faculty of Science
Universiti Putra Malaysia
(Member)

Thomas S. Y. Choong, Ph D
Professor, Ir.

Faculty of Engineering
Universiti Putra Malaysia
(Member)

Norhafizah Abdullah, Ph D
Associate Professor

Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, Ph D
Professor and Dean

School of Graduate Studies
Universiti Putra Malaysia

Date:

vii



Declaration by graduate student

I hereby confirm that:

« this thesis is my original work;

« quotations, illustrations and citations have been duly referenced;

o this thesis has not been submitted previously or concurrently for any other degree at
any other institutions;

« intellectual property from the thesis and copyright of thesis are fully-owned by Uni-
versiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules
2012;

o written permission must be obtained from supervisor and the office of Deputy Vice-
Chancellor (Research and Innovation) before thesis is published (in the form of written,
printed or in electronic form) including books, journals, modules, proceedings, popular
writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules
or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;

« there is no plagiarism or data falsification/fabrication in the thesis, and scholarly in-
tegrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules
2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012.
The thesis has undergone plagiarism detection software.

Signature: Date:

Name and Matric. No.:

viii



Declaration by Members of Supervisory Committee

This is to confirm that:

« the research conducted and the writing of this thesis was under our supervision;
« supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies)
Rules 2003 (Revision 2012-2013) are adhered to.

Signature:

Name of Chairman of Supervisory Committee:

Signature:

Name of Member of Supervisory Committee:

Signature:

Name of Member of Supervisory Committee:

Signature:

Name of Member of Supervisory Committee:

ix



TABLE OF CONTENTS

ABSTRACT

ABSTRAK
ACKNOWLEDGEMENTS
APPROVAL
DECLARATION

LIST OF TABLES

LIST OF FIGURES

LIST OF ABBREVIATIONS

CHAPTER
1 INTRODUCTION

1.1
1.2
1.3
1.4

Background of Study

Statement of Research Problem
Research Goal and Objectives

Scope and Organization of the Thesis

2 LITERATURE REVIEW

2.1
2.2

2.3

24

2.5

2.6

2.7
2.8

Emerging Contaminants

Antibiotics

2.2.1 Antibiotics in the Environment

2.2.2  Health Risks Posed by Antibiotics

2.2.3  Occurrences

Removal of Antibiotics from Contaminated Water

2.3.1 Conventional Tertiary Wastewater Treatment Operations
2.3.2  Advance Oxidation Processes

2.3.3 Homogeneous Advanced Oxidation Porcesses

234 Heterogeneous Advanced Oxidation Processes

Model Pollutant: Ciprofloxacin

Impediment to Large Scale Commercialization of Photocatalysis
2.5.1  Characteristics of a Suitable Photocatalyst Material
2.5.2  Electronic Band Structure and Photocatalytic Activity
Precursor Semiconductors

2.6.1  Zinc(IT) Oxide

2.6.2  Tin(II) Sulfide

2.6.3 Tin(IV) Sulfide

2,64 ZnO/SnS, (x =1 or 2) Nanocomposite Photocatalysts
Nanostructured Photocatalysts

Synthesis of Nanostructured Photocatalysts

2.8.1 Top Down Approach

2.8.2 Bottom-up Approach: Liquid Phase Synthesis

2.8.3  Nucleation and Growth of Nanoparticles

Page
iii
vi
viii
Xiii

Xix

A\ Ul i = =

11
11
13
13
13
14
16
19
25
28
28
28
29
29
31
32
33
33
34
35
36
36



2.8.4  Wet Synthetic Methods for Nanostructured Photocatalysts
2.8.5 Microwave-assisted Synthesis

3 MATERIALS AND METHODS

3.1
3.2

3.3

3.4
3.5
3.6
3.7
3.8

Materials

Experimental

3.2.1  Synthesis of ZnCO3

3.2.2  Microwave assisted synthesis of ZnO/ SnS, (z =1 or 2)
3.2.3  Proposed mechanism for the synthesis of ZnO/SnS,,
3.2.4  Photocatalytic Activity Measurement and Light Sources
3.2.5 Analytical methods

Photocatalytic Degradation Kinetics

3.3.1 Langmuir-Hinshelwood Kinetics of Ciprofloxacin Degradation
3.3.2  Half-Life of Ciprofloxacin Degradation

Mechanistic Study of Ciprofloxacin Degradation over ZOSS-2
Flat Band Potentials and Band Gap Alignment

Calculating Apparent Quantum Yield

Photocatalysts Stability Test

Material Characterization

3.8.1 Electron Microscopy

3.8.2 X-Ray Diffraction Analysis

3.8.3  Optical Spectroscopy

3.8.4  Specific Surface Area of the Photocatalysts

4 RESULTS AND DISCUSSION

4.1

4.2

4.3

Assessing the Potential of ZnO/SnS Nanocomposite as a Visible Light
Photocatalyst

4.1.1  Crystallinity and Structural Analysis

4.1.2  Surface Morphology and Elemental Analysis

4.1.3  Determination of Optical Band Gap of ZnO/SnS

4.1.4  Specific Surface Area and Pore Size Distribution.

4.1.5  Visible Light Degradation of Ciprofloxacin over ZnO/SnS
4.1.6 UV Light Degradation of Ciprofloxacin over ZnO/SnS
4.1.7  Kinetics of Ciprofloxacin degradation on ZnO/SnS

4.1.8  Proposed Band Structures of ZnO/SnS Heterojunction
4.1.9  Stability of the ZnO/SnS Photocatalyst

Assessing the Potential of ZnO/SnSy Nanocomposite as a Visible Light
Photocatalyst

4.2.1 Crystallinity and Structural Analysis

4.2.2  Surface Morphology and Elemental Analysis

42.3  Determination of Optical Band Gap of ZnO/SnS»

424 Surface Area and Pore Size Distribution

42.5 Visible Light Degradation of Ciprofloxacin over ZnO/SnS,
4.2.6  Kinetics of Ciprofloxacin Degradation over ZnO/SnS»
4.2.7  Stability of the ZnO/SnS;, Photocatalyst

4.2.8 Comparison of Photocatalytic Performance

429  Tests of ZOSS-2 Robustness

Mechanistic Studies of Ciprofloxacin degradation over ZOSS-2

xi

37
44

48
48
48
48
48
50
52
52
55
55
56
56
56
57
58
58
58
59
59
60

61

61
61
61
63
65
66
67
71
72
75

75
75
78
78
79
82
88
88
89
93
95



43.1  Effects of Charge Carriers and Radical Inhibitors 95

432  Effects of Operating Conditions 929

4.4 Band Gap Structure of ZOSS-2 and Mechanism for Ciprofloxacin Degra-
dation 108
4.4.1 Band Gap Structure of ZOSS-2 Nanocomposite 108

4.42  Charge Carrier Transfer and Possible Photocatalytic Degradation
Mechanism 108

443 Photocatalytic Activity Enhancement by the Heterojunction be-
tween ZnO and SnSo 110

5 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RE-

SEARCH 111

5.1 Summary 111

5.2 Conclusions 112

5.3 Future Research Direction 113
5.3.1 Optimize the SnS, Content in the ZnO/SnSs Nanocomposite 113

5.3.2  Testing in Complex Water Matrices 113

5.3.3  Tracking Degradation by Total Organic Carbon 113
REFERENCES 115
APPENDICES 147
BIODATA OF STUDENT 151

LIST OF PUBLICATIONS 152

xii



LIST OF TABLES

Table Page

2.1 Categories and sources of contaminants of emerging concern in aquatic
environment

2.2 Standard electrochemical reduction potentials for some common aqueous
oxidants at 298 K, 1M and atmospheric pressure

2.3 Classification of conventional AOPs based on hydroxyl radicals precursor.

2.4 Possible generic reactions in a typical Fenton process at a pH close to 3

2.5 Degradation of antibiotics by homogeneous and heterogeneous Fenton
techniques

2.6 Degradation of antibiotics by ozonation based methods

2.7 Degradation of antibiotics by ultrasound based methods

2.8 Summary of photocatalytic degradation of antibiotics by different types
of photocatalyst materials

2.9 Experimental conditions and efficiency of ciprofloxacin removal by vari-
ous photocatalysts from reported literature

2.10 Properties of bulk wurtzite ZnO

2.11 Loss tangent (tand) values for different solvents

2.12 Summary of microwave-assisted synthesis of nanocomposite photocata-
lysts systems

3.1 List of AR grade reagents used in this research work
3.2 Designation and summary of the amounts of precursor materials used for
the synthesis of ZnO/SnS and ZnO/SnS,

4.1 Characteristics of as synthesized ZnO/SnS samples

4.2 Kinetic parameters (Rate constants (k;.), half-lives (t; /), removal effi-
ciency (1), and correlation coefficient (x?)) for the photocatalytic degra-
dation of ciprofloxacin by ZnO/SnS under visible-light irradiation and
UV-light irradiation

4.3  Characteristics of the as synthesized ZnO/SnS, samples

4.4 Kinetic parameters (rate constants (k,) and correlation coeflicient
(x?))for the photocatalytic degradation of model pollutants in ZnO/SnSs
suspension

4.5 Removal of ciprofloxacin removal by ZnO/SnSx (x

4.6  Kinetic parameters (rate constants (k,), half-lives (t; /2), correlation coef-
ficient (x?) and percentage inhibition (% Ak,) of 40 mg/L CIP) for the
photocatalytic degradation of ciprofloxacin over ZnO/SnS, suspension
with the addition of scavengers

4.7  Kinetic parameters (rate constants (k,), half-lives (t; /2), and correlation
coefficient (x?)) for the photocatalytic degradation of ciprofloxacin on
Zn0O/SnSs and the amount CIP adsorbed as a function of pH

4.8  Kinetic parameters (rate constants (k,), half-lives (t; ), and correlation
coefficient (x?)) for the photocatalytic degradation of ciprofloxacin in
aqueous ZnO/SnS, suspension as a function of initial CIP concentration,
[CIP]o.

xiii

14
15
16
17
18
20
23
27
30
46

47

49

50

62

69
80

87
92

97

101

106



A.1 An overview of the different classes of antibiotics 147

Xiv



Figure

1.1

1.2

2.1
2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10
2.11
2.12

2.13
2.14

LIST OF FIGURES

Treatment methods being developed for the degradation of emerging con-
taminants, including conventional tertiary techniques and advanced oxi-
dation processes.

A flow diagram showing the scope of work for the thesis.

Pathways for the entry of antibiotics in the environment

lustration showing the formation, growth and violent collapse of cavita-
tion bubble and the three reaction zones: bubble interior, bubble-liquid,
and bulk solution

Primary steps leading to the formation of *OH over a semiconductor
photocatalyst: (I) Illumination of photocatalyst with photons of energy
(hv > E,) greater than or equal to the band gap (£) of the photocata-
lyst; (II) formation of charge carriers (e_, and h:fb) after photon absorp-
tion; (III) recombination of charge carriers with release of heat or photon;
(IV) migration of separated charge carriers to semiconductor surface; (V)
adsorbed species reduced by photogenerated electrons; (VI) initiation of
an oxidative pathway by photogenerated holes.

(a) Basic structure of quinolone moiety. (b) Chemical structure of
ciprofloxacin antibiotic. The numbers show the location of the piperazine
moiety.

(a) Molecular structure of CIP showing two of its acid dissociation con-
stants. (b) Speciation of the cation (CIP™), zwitterion (CIP*) and anion
(CIP™) as a function of pH.

Schematic diagram showing the reduction potentials of the photoexcited
conduction band electrons and the oxidation potentials of the valence
band holes relative to the redox potentials for various processes occur-
ring at the surfaces of ZnO, SnS, and SnS, precursor photocatalysts at pH
7.

Ball-and-stick representation of ZnO crystal structures: (a) cubic zinc
blende (B3), (b) hexagonal wurtzite (B4), and (c) cubic rocksalt (B1).
Shaded gray and black spheres denote Zn and O atoms, respectively
Ball-and-stick representation of the SnS orthorhombic crystal structure.
Shaded green and yellowish-green spheres denote Sn and S atoms, respec-
tively

Ball-and-stick representation of the SnS, hexagonal crystal structure.
Shaded dark green and yellow spheres denote Sn and S atoms, respectively
Classification of nanomaterials based on dimensions

Generic methods of nanoparticle synthesis

LaMer and Dinegar’s mechanism of homogenous nucleation and crystal
growth

Simplified illustration of the sol-gel process

Simplified illustration of a coperaciitation process

Xv

Page

12

19

21

25

26

29

30

32

34
35

37
39
40



2.15

2.16

2.17

2.18
2.19

3.1

3.2

3.3

34

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8
4.9

(a) Hlustration of a water-oil surfactant macromolecule. (b) Schematic
illustration of a reverse micelle showing the surfactant hydrophilic head
directed towards the interior trapped water phase and the hydrophobic
tail in the continuous oil phase

Proposed two-emulsions mechanism for the Preparation of suspended
nanoparticles by mixing two water-in-oil microemulsions.
Sonochemical synthesis of various nanostructured materials from volatile
organometallics

A thermal scan of conventional and microwave heating

Heating mechanisms under microwave irradiation: (a) dipolar polariza-
tion; (b) ionic conduction mechanism

Schematic illustration of the conversion processes from ZnCO,
nanospheres to a typical ZnOn/SnS; (x = 1 = or 2) the heterojunction.
(a) A picture of the photoreactor setup. (b) Sketch of the photoreactor
showing the various components: Cooling water input (1); Water out-
let (2); Medium pressure mercury lamp (or tungsten-halogen lamp) (3);
Quartz glass lamp sleeve (4); Magnetic stirrer (5); Reactant solution (6);
Exhaust (7); Borosilicate glass reactor (8).

(a) Profile of ciprofloxacin adsorption with time on ZnO/SnS, nanocom-
posite. (b) Calibration Curve

(a) Spectral irradiance of the 200 W tungsten halogen lamp measured at
the outer wall of the immersion wall (= 10.0 cm away from the lamp).
Shaded area represents the spectral band of interest. (b) The wavelength
dependence of the irradiance produced by model 6283 200 W mercury
lamp at 0.5 m. (1) shown conventionally in mW m™~! nm~! and (2) as
photon flux. Adapted from Manufacturer.

(a) XRD patterns of the as-prepared ZnO, ZOS-X (X =1 - 3) heterojunc-
tions and SnS.

Low magnification SEM morphological characterization of: (a) ZnO, (b)
Z0S-1 (25 % SnS), (c) ZOS-2 (50 % SnS), (d) ZOS-3 (75 % SnS), and (e)
SnS.

TEM micrographs showing the finer morphological characteristics of the
ZnO/SnS-X (X =1 - 3): (a)ZOS-1 (25 % SnS), (b) ZOS-2 (50 % SnS), and
(c) ZOS-3 (75 % SnS).

EDX analysis of a typical ZnO/SnS nanocomposite showing the elemental
composition on the catalysts surface.

Room temperature UV-Visible absorption spectra of ZnO, SnS and ZOS-
X (X = 1-3).

A plot of (av)? as a function of photon energy, indicating direct transition
with the optical band gap E, at x-intercept.

Nitrogen adsorption — desorption hysteresis isotherms and the BET sur-
face area plot (inset).

BJH pore size distribution for ZOS-2.

Removal efficiency of photolytic and photocatalytic degradation of
ciprofloxacin over different photocatalysts under visible-light (A > 420
nm) irradiation.

41

42

43
44

45

50

51

53

54

62

63

64

65

66

67

68

69

70



4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18
4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26
4.27

4.28
4.29
4.30
4.31

4.32

Removal efficiency of photolytic and photocatalytic degradation of
ciprofloxacin over different photocatalysts under UV light irradiation.

Non-linear fit of experimental data of photolytic and photocatalytic degra-
dation of ciprofloxacin over different photocatalysts to the Langmuir-
Hinshelwood pseudo first order model under visible light irradiation.

Non-linear fit of experimental data of photolytic and photocatalytic degra-
dation of ciprofloxacin over different photocatalysts to the Langmuir-

Hinshelwood pseudo first order model under UV visible light irradiation.

Proposed schematic diagram of the electronic band diagram structure of
the ZnO/SnS heterojunction. (a) Under Visible light irradiation and (b)
Under UV light irradiation.

XRD patterns of the as-prepared ZnO, SnS, and the heterojunctions.
Low magnification SEM images showing the change in morphology of
ZnO powder with increasing SnS,. (a) Pure ZnO, (b) ZOSS-1 (25 % SnS,),

(c) ZOSS-2 (50 % SnS,), (d) ZOSS-3 (75 % SnS,), and (e) Pure SnS, content.

The photocatalytic CIP degradation performance and stability test of ZOS-
2 sample over five repeated operations under UV- light illumination.
TEM micrographs of the ZnO/SnS, samples: (a) ZOSS-1 (25 % SnS,), (b)
ZOSS-2 (50 % SnS,), and (c) ZOSS-3 (75 % SnS,).

A representative size distribution of the ZOSS-2 sample.

Energy dispersive x-ray spectroscopy of a typical ZnO/SnS, heterojunc-
tion showing the presence of elemental O, S, Zn, and Sn.

Room temperature optical absorbance spectra ZnO, ZOSS-X ( X = 1-3),
and SnS,.

Tauc ((ahv)? vs. hv) plots and band gap estimates for the SnS, and the
different heterojunctions. The band gap of ZnO was estimated from the
onset of absorption from Fig. 4.20.

Representative nitrogen adsorption — desorption isotherms and the BET
surface area plot (inset) plot for ZOSS-2.

(BJH pore size distribution. (c) ¢ potential of porous ZnO/SnS, suspen-
sion as a function of pH showing the isoelectric point.

Visible-light (A > 420 nm) induced photo-degradation of CIP by pho-
tolysis and by photocatalysis over different catalysts. The dashed - dot
-dashed black line in (a) represent nonlinear fit of degradation data to
Cy = Cyexp(—kT) (Eq. (3.5)). Rate coefhicients for each reaction is tab-
ulated in Table 4.4 on page 87.

Shows the comparison of the quantity of CIP removed in 60 min by pho-
tocatalysis over the different catalysis.

Photocatalytic performances of ZnO/SnS, in the first five reuse cycles.
Histogram showing a comparison of ratios of pseudo-rate constants for
Z0OS-2 and ZOSS-2.

Histogram showing a comparison of CIP removal efficiency in 5 runs over
Z0OS-1 and ZOSS-2.

Chemical Structure of Methylene blue.

Chemical Structure of hexavalent chromium.

Visible-light (A > 420 nm) photo-degradation of Cr"’, CIP, and MB over
ZOSS-2 photocatalyst.

Shows a comparison of the amounts of CIP, Cr"!, and MB removed by
adsorption and photocatalysis.

xvii

71

72

73

74
75

77

79
80

81

81

82

83

84

85

86
89

90
91
93
93
94

95



4.33

4.34

4.35

4.36
4.37

4.38
4.39
4.40

441

4.42

4.43

4.44
4.45

Effects of addition of KI, i-PrOH, KBrO;, and BQ on the degradation of
CIP in the presence of ZOSS-2 under visible light.

(a) Change in CIP concentration profile with time. (b) Variation in re-
moval efficiency and apparent rate constant with scavenger.

Effects of solution pH on the visible light photocatalytic oxidation of aque-
ous CIP over ZOSS-2 photocatalyst. The dotted black lines in (a) are
non-linear fits of experimental data to C; = Cj exp(—kt) (Eq. (3.5) on
page 55). Conditions: [CIP] = 40 mg/L, [ZOSS-2] = 500 mg/L, Stirring
speed = 400 rpm and temperature = (303+0.5) K

Variation of apparent rate constant, k, with pH.

Adsorption of CIP onto ZOSS-2 photocatalyst at different initial pH val-
ues. The pink, green and blue dotted lines represent the fraction profiles
of cationic (CIP™), zwitterionic, (CIP*) and anionic, (CIP~) forms of
CIP, respectively. [CIP]p = 40 mg/L, [ZOSS-2] = 200 mg/L, volume of
CIP solution = 300 mL, temperature = (303+0.5) K, shaking speed = 150
rpm.

Point of zero charge of ZOSS-2.

Effect of pH on the ionic state of a CIP molecule.

Effects of catalyst dosage on the visible light photocatalytic oxidation
of aqueous CIP over ZOSS-2 photocatalyst. The dotted black lines are
non-linear fits of experimental data to C; = Cyexp(—Fkt) (Eq. (3.2) on
page 55). Conditions: [CIP] = 40 mg/L, pH = 6.1 and Stirring speed =
400 rpm and temperature = (303£0.5) K..

Shows the relationship between apparent rate constant, k, and ZOSS-2
concentration.

Effects of initial CIP concentration on the visible light oxidation of CIP
over ZOSS-2 photocatalyst. The dotted black lines (a) are non-linear fits
of experimental data to C; = C exp(—kt) (Eq. (3.5) on page 55). Con-
ditions: pH = 6.1, [ZOSS-2] = 500 mg/L, stirring speed = 400 rpm, CIP
solution volume= 300 mL, and temperature = (303.0 £ 0.5) K.
Relationship between inverse initial rate, 1/ry and inverse initial CIP con-
centration 1/[CIP].

Schematic of the proposed energy band diagram of ZOSS-2 heterojunction.

Simplified illustration of possible degradation pathways for the photocat-
alytic oxidation of ciprofloxacin in a visible light-ZOSS-2 system

xviii

96

97

99
100

101
102
103

104

105

106

107
108

109



LIST OF ABBREVIATIONS

AOP Advance Oxidation Process

AR Antibiotic Resistance

ARB Antibiotic Resistance Bacteria

ARG Antibiotic Resistance Gene

CEC Contaminant of Emerging Concern

CIP Ciprofloxacin

CNT Classical Nucleation Theory

CS Core/Shell

DI Deionized

DO Dissolved Oxygen

EC Emerging Contaminant

EDC Endocrine Disrupting Chemicals

EDS Energy-Dispersive X-ray Spectroscopy
FESEM Field Emission Scanning Electron Microscopy
FETEM Field Emission Transmission Electron Microscopy
GMO Genetically Modified Food

ICDD International Centre for Diffraction Data
LH Langmuir - Hinshelwood

MB Methylene Blue

MWTP Municipal Wastewater Treatment Plant
MWW Municipal Wastewater

nZVI Nanoscale Zero Valent Iron

NC Nanocrystal

PCD Photocatalytic Decomposition

PhAC Pharmaceutically Active Compound
PVP Polyvinylpyrrolidone or Poly(N-vinylpyrrolidone)
PXRD Powder X-ray Diftraction

QSE Quantum Size effect

ROS Reactive Oxidizing Species

RPM Revolution per minute

SEM Scanning Electron Microscopy

SC Semiconductor

SCF Supercritical Fluid

SCW Supercritical Water

SnS Tin(II) Sulfide

SnS, Tin(IV) Sulfide

Xix



TEM Transmission Electron Microscopy

UV-Vis Ultraviolet-Visible Spectroscopy

UV-vis DRS Ultraviolet-Visible Diffuse Reflectance Spectroscopy

WCS Wet Chemical Synthesis

XRD X-Ray Diffraction

ZnO Zinc Oxide

Zn0O/Sn§,, A generic formular depicting the as-synthesized
nanocomposite photocatalysts. = can take the value 1
for SnS or 2 for SnS,

(D) Average crystallite sizes, nm

E° Energy of free electrons on the hydrogen scale (~ 4.5
eV)

Eo Conduction band potential, eV

Eup Valence band potential, eV

Ke Monolayer Adsorption Equilibrium constant, mg/Lmin

e Photogenerated Electron

h, Photogenerated Hole

k, Apparent first order rate constant (= k,.K), min—*

k, Photocatalytic reaction rate constant, Lmg ™!

rGO Reduced Graphene Oxide

r Full-width at half-maximum (FWHM) in radians

B Integral breadth = (7/2)I' or (r/(4In2))zT for
Lorentzian peak or a Guassian peak

A Wavelength, nm

(0 Absolute electronegativity of a semiconductor, eV

0 Diftraction angle, °



CHAPTER 1
INTRODUCTION

1.1 Background of Study

In many parts of the world, freshwater sources are becoming scarce. Factors contributing
to this problem are growing population, rapid industrialization and urbanization in devel-
oping countries. Others include increased consumption in developed countries, contam-
ination of surface water and groundwater sources, wasteful water distribution and utiliza-
tion policies, and extreme global weather patterns (US National Research Council, 2012).
The devastating effects of inadequate clean water supply and water quality deterioration
represent serious contemporary issues of concern.

Inadequate access to safe water and the use of polluted water are major causes of diseases
and deaths. A global estimate puts the number of people who die annually as a result of
lack of clean drinking water, poor water sanitation, and other hygiene-related causes at
3.4 million (Priiss-Ustiin et al., 2008). About 783 million people mostly in the developing
countries are presently at risk due to lack of access to potable water (UN-Water, 2013).
Clean water is, therefore, essential for the continued existence of life and its importance
to human development cannot be overemphasized.

Demand for water is projected to increase rapidly (Cai and Rosegrant, 2002). But be-
cause of the finite natures and limitations, it is unlikely that natural sources can meet the
projected increased in demand (Pickering and Davis, 2012). Therefore, bridging the gap
between demand and supply to ensure long-term sustainable access is one of the major hu-
man development challenges of the 21st century (World Economic Forum, 2015; United
Nations Develpment Program, 2006). Averting the impending gap in supply is likely to
come through a combination of paradigm shifts in water utilization and management.
That is source water protection, identification and development of new and untapped wa-
ter sources including the reuse of reclaimed water such as municipal wastewater. (US
National Research Council, 2012; Asano, 2001).

Municipal wastewater (MWW) is a highly polluted water source. It consists of effluents
from diverse sources including households, offices, hospitals, industrial wastes and storm
runoffs. Thus, MWW is contaminated by all kinds of organic and inorganic chemical
substances, microbes, and pathogens. Extensive purification is required before wastewa-
ter can augment existing water sources or discharge safely into the environment. Tradi-
tionally, treatment of MWW involves processing in physical, biological and chemical unit
operation equipment assembled in a municipal wastewater treatment plants (WTP). How-
ever, advances (Bixler et al., 2014; Shi et al., 2012; Wu et al., 2010; Richardson, 2008) in
the sensitivity and accuracy of analytical methods and detection equipments have shown
(Luo et al., 2014; Liu and Wong, 2013; Zuccato et al., 2008; Nakada et al., 2007; Bendz et al.,
2005) that “treated” sewage contains trace (ngL~! to ug L™') amounts of different types
of micropollutants that were not effectively removed by conventional treatment. Conse-
quently, many materials (see Section 2.1 on page 8) of unknown toxicity and effects are
increasingly being detected in effluents of WTP, surface water, groundwater, and drink-
ing water (Luo et al., 2014; Sauve and Desrosiers, 2014; Liu and Wong, 2013; Loos et al.,
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2013; Jia et al., 2012; Lapworth et al., 2012; Kasprzyk-Hordern et al., 2009; Stuart et al.,
2012; Zuccato et al., 2008; Nakada et al., 2007; Bendz et al., 2005).

Several laboratory studies aimed at assessing the effectiveness of existing wastewater treat-
ment technologies in removing antibiotics from wastewater have shown that they are not
effective (Adams et al., 2002; Ingerslev and Halling-Serensen, 2000; Ternes, 1998). Be-
cause of this, there is the need to develop alternative cleaning measures —that are effec-
tive, sustainable, and environmentally friendly— to guard against the unforeseen impacts
of antibiotic pollution on life. Among the many technologies being proposed and devel-
oped for this purpose are the conventional tertiary treatment processes and the advanced
oxidation processes (Fig. 1.1). The conventional tertiary processes use electric energy,
expensive chemicals as inputs and generate secondary wastes. The high-pressure mem-
brane processes — nanofiltration (NF), and reverse osmosis (RO) — and biodegradation
(biological activated carbon (BAC)) are capable of producing high-quality water. Unfor-
tunately, the membrane processes are prohibitively expensive for large-scale (municipal)
water purification. Microbial degradation is not ideal for micropollutants because many
are toxic and refractory materials. Furthermore, the carbon effluents and membrane con-
centrates from these processes usually contain recalcitrant ECs and waste treatment resid-
uals necessitating the need for further treatment (Luo et al., 2014; Sauve and Desrosiers,
2014; Liu and Wong, 2013; Loos et al., 2013; Dolar et al., 2009; Westerhoff et al., 2009; Sny-
der et al.,, 2007). In contrast, advanced oxidation processes (AOPs) hold much promise
in complete removal of ECs because of their ability to produce highly reactive oxidative
species (ROS) such as photogenerated hole (h;"b), *OH, H,0,, and O,*". The ROS re-
act with and degraded recalcitrant (organic, inorganic, and biological) pollutants (Kim
etal., 2011; Comninellis et al., 2008). In some instance, the pollutants are completely min-
eralized to primary molecules H,O, CO, and inorganic salts. Equation (1.1) shows the
generic reaction of a pollutant with ROS.

Pollutant + ROS —— Intermediates — CO, + H,O + Salts (1.1)

Many types of AOPs are being considered for removal of ciprofloxacin from contami-
nated water (Feng et al., 2013; Rivera-Ultrilla et al., 2013). These include electrochemical,
photochemical, photocatalytic processes or their combinations. The photochemical and
electrochemical processes such as ozonation (Liu et al., 2012a; Vasconcelos et al., 2009),
photo/electro-Fenton (Miralles-Cuevas et al., 2013; Yahya et al., 2014), persulfate (Mahdi-
Ahmed and Chiron, 2014; Ji et al., 2014), and others. Also, they use expensive precursors
chemicals (O3, H,0,, Fe*") and expensive energy sources (UV photons or electricity) to
generate ROS. On the other hand, the photocatalytic decomposition (PCD) produces ROS
without the need of any chemical and can be operated at ambient conditions. Further-
more, PCD has the inherent potential to be simple, reusable, efficient, clean, and can be
designed to utilize a significant portion of the infinitely free energy from the sun. For
these reasons, PCD is widely regarded as a potentially viable AOP for water purification
(Liu et al., 2014b; Ryu and Choi, 2007; Zhao et al., 2014). In heterogeneous photocatalytic
decontamination (PCD) process, a semiconductor (SC) material harnesses energy from
photons that posse energies equal to or greater than its band gap. The absorbed energy
is utilized to excite electrons from the valence band to the conduction band of the semi-
conductor. The photogenerated electrons and holes then react with adsorbates such as O,,
H,O to initiate the production of ROS radicals that directly degrade pollutants (Gaya and



Abdullah, 2008; Herrmann et al., 1993; Houas et al., 2001). A more detailed discussion on
some of the major AOPs is given in Section 2.3.2 on page 14.

Heterogeneous photocatalytic decomposition (PCD) is one of the promising advanced
oxidation processes (AOP) being developed for the removal of ECs especially antibiotics
from contaminated water bodies (Van Doorslaer et al., 2015; Zhu et al., 2013). Photo-
catalysis on single phase semiconductor (TiO, (Kwiecien et al., 2014), ZnO (El-Kemary
et al,, 2010), CdS (Li et al., 2009)), doped/sensitized catalysts (N-CsTaWO, (Mukherji
etal,2011), C/N-TiO, (Wangetal., 2011), ZnIn,S, (Shen etal., 2012)), or composite pho-
tocatalysts (CuO/BiVO, (Wang et al., 2014b), TiO,/SiO, (Seo et al., 2012), CdS/g-C;N,
(Xu and Zhang, 2015)) has demonstrated potential in degrading a wide range of pollu-
tants into biodegradable or less toxic organic compounds, as well as inorganic CO,, H,O,
NO?*-, PO3 ™, and halide ions according to the generic reaction Eq. (1.2).

A >E, .
Pollutant ————— CO, + H, 0O + Intermediates (1.2)

Photocatalyst

The major appeal of PCD over other AOPs is that it can generate the transient reactive ox-
idizing species (ROS) from renewable resources: water and sunlight. Therefore, PCD has
the potential of being economical and environmentally friendly (Kim et al., 2011). How-
ever, PCD has some challenges to overcome before commercial application in the water
industry. A key challenge is in the development of a stable and effective photocatalyst(s)
that can utilize a substantial portion of the solar spectrum for the generation of charge
carriers. Therefore, it is necessary to continue the search for new photocatalyst(s) with
improved performance (Wang et al., 2014a).

1.2 Statement of Research Problem

The sources, occurrence, fate, effects and risks of ECs especially pharmaceutically active
compounds (PhACs) in the environment are issues of increasing importance (Schaider
etal.,, 2014). Pharmaceutical compounds cover a wide range of compounds with substan-
tial variability in structure, function, behavior and activity, and are used in both humans
and animals to cure disease and fight infection. Among the different types of PhACs,
the antibiotics are perhaps the most likely source of trepidation because they are linked
to the evolution and prevalence of antibiotic resistance genes (ARGs) and bacteria (ARB)
(BiroSova et al., 2014; Marti et al., 2014; Xu et al., 2015; Sidrach-Cardona et al., 2014; Rizzo
etal., 2013; Rodriguez-Mozaz et al., 2015). The fluoroquinolone group of antibiotics is one
of the most important class of medication used worldwide to treat a broad variety of Gram
(+) and Gram (-) bacterial infections (Oliphant and Green, 2002). Several studies have
reported the environmental presence of fluoroquinolones especially ciprofloxacin (CIP)
in many countries, such as China (Bu et al,, 2013), Germany (Heberer, 2002), Canada
(Nakata et al., 2005), and others (Heberer, 2002). The presence of CIP in the aquatic en-
vironments, albeit at low concentrations, may pose serious threats to the ecosystem and
human health and thus should be removed from polluted water through PCD.

The application of heterogeneous photocatalytic degradation as a viable technology for



the purification of contaminated water is contingent on the development of photocata-
lyst(s) that can meet intrinsic, operational, economic, and environmental requirements.
For this purpose, many different types of materials have been developed and tested includ-
ing metal oxides semiconductors (Kwiecien et al., 2014), chalcogenides (Tang et al., 2015),
metal/nonmetal doped oxides (Xue et al., 2015b), semiconductor based nanocomposites
(Liu et al., 2014d) and others.

One of the semiconductors under investigation as a promising photocatalyst for
ciprofloxacin removal is ZnO (El-Kemary et al., 2010). Zinc oxide is a promising photo-
catalyst, owing to its abundance in nature, low cost, non-toxicity, and high photocatalytic
activity (El-Kemary et al., 2010; Zhang et al., 2011; Liu et al., 2013a). However, a funda-
mental drawback of ZnO is that it is only active in UV-light because of its wide band gap
of 3.3 eV. The wide band gap constraint limits the utilization of terrestrial solar radiation
by ZnO to about 3 %-5%. Therefore, to utilize a substantial portion of terrestrial solar
energy and improve the usefulness of ZnO as a photocatalyst. It is imperative to extend
the photoactivity of ZnO to the visible light region. One possible scheme of doing this
is to compound a wide band gap semiconductor such as ZnO with a narrow band gap
semiconductor whose band edge(s) is strategically located to enhance interfacial charge
carrier transfer between the two semiconductors (Wang et al., 2014b; Yang et al., 2009).

Among the narrow band gap materials under consideration as visible light harvesters for
wide band gap semiconductors are tin (II) sulphide (SnS) (Ghosh et al., 2009; Ichimura
and Takagi, 2009; Sohila et al., 2013; Yang et al., 2009) and tin (IV) sulphide (SnS,) Yang
et al. (2009, 2013a); Yuan et al. (2015); Zhang et al. (2014b). ZnO/SnS, (x =1 or 2) have
matched conduction band potentials with ZnO (Xu and Schoonen, 2000). Compounding
ZnO with nanosized SnS, whose band gap is widen due to quantum size effect (QSE)
could cause its conduction band to be more negative than that of ZnO and thus, allow the
photogenerated electron on SnS, to easily transfer to the conduction band of ZnO under
visible light (A > 420 nm) irradiation. Hence, enhancing the separation of photogenerated
electrons and holes in SnS, and bringing about the sensitization of ZnO. For this reason,
the ZnO/SnS, composites with appropriate compositions should have higher visible light-
driven photocatalytic activity than individual SnS, and ZnO. To the best of the author’s
knowledge, to date, no studies have reported the systematic evaluation of the potentials
and limitations of using ZnO/SnS or ZnOSnS, nanocomposites as visible light responsive
photocatalysts for water purification. This study, therefore, proposes to fill the identified

gap

1.3 Research Goal and Objectives

Accordingly, it is, therefore, the goal of this research work to synthesize a series of
ZnO/SnS and ZnO/SnS, nanocomposites and systematically evaluate their potentials and
limitations as visible light active photocatalysts for water purification. The study will in-
clude investigations of their crystal and surface structures, optical properties, band gap
alignments and the mechanistic studies of their visible light induced photocatalytic oxi-
dation of a model emerging contaminant, ciprofloxacin. Towards this goal, the following
research objectives were formulated based on analysis of existing body of knowledge on
the subject of study.



1. To synthesize and characterize visible light active porous ZnO/SnS and ZnO/SnS,
nanocomposites with different SnS and SnS, contents

2. To study their photocatalytic activities for the removal of ciprofloxacin from deion-
ized water and determine the most effective photocatalyst formulation between the
ZnO/SnS and ZnO/SnS, groups of nanocomposites.

3. To investigate the effects of charge carrier inhibitors and operating conditions (ini-
tial pH, catalyst dosage and initial ciprofloxacin concentration) on the visible light
photocatalytic activity of the most effective catalysts identified in (2).

1.4 Scope and Organization of the Thesis

The research work is limited to the synthesis of a series of ZnO/SnS and ZnO/SnS,
nanocomposites containing different ratios of SnS, (x = 1 or 2) from non-toxic materi-
als in a three step process. The as-produced samples where characterized using X-Ray,
SEM and TEM, EDX, UV-Visible Spectroscopy, BET and BJH techniques. The photocat-
alytic performance of the as-synthesized photocatalysts (ZnO/SnS, (x =1 or 2)) to degrade
ciprofloxacin in model contaminated water was systematically investigated to determine
the most active formulation. Finally, the individual effects of operating parameters (pH,
mass of catalyst, and initial ciprofloxacin concentration) and radical scavengers (potas-
sium iodide, potassium bromate, isopropanol, dissolved oxygen, and 1,4-benzoquinone)
were investigated in a series of batch experiments in order to propose the ciprofloxacin
degradation mechanism over the most photoactive catalyst under visible light. The scope
of the thesis is summarized in the flow diagram shown in Figure 1.2 on the facing page.

The thesis consists of 5 Chapters which are organization as follows: Chapter 1 sets the con-
text for embarking on this research work. It gives background of study, expresses the state-
ment of research problem and highlights the research goal, objectives and scope. Chapter
2 presents a systematic review of relevant literature on important concepts, definitions and
methods used throughout the thesis. It also includes the main trends and challenges which
are useful to draw the objectives of this thesis. In Chapter 3, the materials, methods fol-
lowed throughout the study and principles of the different characterization techniques are
briefly presented. The main contributions of this work are essentially included in Chapters
4. In this Chapter, experimental results are presented, analyzed and discussed in detail. Fi-
nally, Chapter 5 summarizes and concludes the thesis contribution(s) and suggests future
research directions.
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