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Subcritical and supercritical fluids are good solvents because they possess liquid-like
density and gas-like diffusivity and viscosity. which allow quick equilibration and
micro pore permeation of fluid. Advantages of using subcritical and supercritical
fluid are environmental friendly, less contamination of final product, energy saving
and ecasy to control. In order to develop subcritical and supercritical processes,
fundamental knowledge about thermophysical properties and phase equilibrium
knowledge are crucial. With solubility data of compounds in subcritical and
supercritical condition of solvent, these processes can be designed, scaled up and
optimized. One major problem currently is that this fundamental knowledge is still
lacking or limited to specific thermodynamic range. With all these problems, this
study is significant with objectives to design and develop an experimental rig for
solubility study, to investigate the effect of temperature and pressure on solubility
behavior and to identify suitable mathematical model that correlates solubility data
with changes of thermodynamic condition. In this study, solubility behavior of two
active  compounds from Malaysia local herbs. which are camphene and
caryophyllene oxide, were investigated because of their medicinal values and
unavailability of their solubility data. Experimental apparatus was developed based
on dynamic method that coupled with off-line gravimetrically analysis for its
convenience and better accuracy. As the apparatus had been assembled. it was
subjected to validation with naphthalene to determine suitable flow rate for the
experiment (4 ml/min) and to check the workability and accuracy of apparatus. Then,
solubility study was carried out for camphene and caryophyllene oxide under
subcritical (298.15 K and 303.15 K, 50 — 70 bar) and supercritical conditions (308.15
K'and 313.15 K for camphene, 308.15 K and 318.15 K for caryophyllene oxide: 80 -
250 bar) of carbon dioxide. Solubility behavior of both compounds under subcritical
carbon dioxide condition increased significantly with minor increment in pressure
and temperature because density of solvent is very sensitive in subcritical region. In
supercritical condition, retrogradation behavior happened and therefore solubility of



both compounds decreased when temperature increased. However, solubility of both
compounds still increased with pressure. Three commonly used semi-empirical
models, which are Bartle model, Chrastil model. and Mendez-Santiago-Teja model,
were tested to correlate solubility data with density of carbon dioxide. Of these three
models, Mendez-Santiago-Teja model showed excellent fitting for both compounds

in subcritical and supercritical condition with average absolute relative deviation
kept below 2%.
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Bendalir hampir kritikal dan lampau kritikal merupakan pelarut vang baik kerana
mereka mempunyai ketumpatan seperti cecair dan kemeresapan serta kelikatan
seperti gas. Ciri-ciri seperti ini membolehkan kelarutan yang cepat dan penyerapan
melalui liang mikro bendalir. Kelebihan penggunaan bendalir ini adalah mesra alam
sekitar, produk akhir kurang mencemar, menjimatkan tenaga and senang untuk
dikawal. Pengetahuan asas tentang termofizikal dan keseimbangan fasa adalah
penting untuk membangunkan proses hampir kritikal dan lampau kritikal. Dengan
data kelarutan sebatian, proses hampir kritikal dan lampau kritikal boleh direka,
dinaiktaraf dan dioptimumkan. Tetapi, data kelarutan ini masih kekurangan atau
dihadkan dalam syarat termodinamik tertentu. Oleh sebab ini. kajian kali ini adalah
penting dengan tujuan merekabentuk satu alat kajian vang boleh mendapat data
kelarutan, menyiasat kesan suhu dan tekanan pada kelarutan sebatian, dan
mengenalpasti model matematik yang sesuai untuk mengaitkan data kelarutan
dengan keadaan termodinamik. Dalam penyelidikan ini, kelakuan kelarutan bagi dua
sebatian aktif dari herba tempatan Malaysia, iaitu camphene dan carvophyllene
oksida, akan disiasat kerana ia mempunyai nilai perubatan yang tinggi dan data
kelarutannya masih tidak diketahui. Alat kajian direka berasaskan kaedah dinamik
dengan analisis offline graviti kerana cara ini senang dipasang. kurang rumit, murah
dan lebih tepat. Selepas alat ini siap direka. pengesahan dengan data kelarutan
naftalena dijalankan untuk menentukan kadar aliran yang sesuai bagi kajian (4
ml/min) dan memeriksa kebolehkerjaan dan ketepatan alat. Kemudian, kajian
kelarutan baru dijalankan untuk camphene dan carvophyilene oksida dalam keadaan
hampir kritikal (298.15 K dan 303.15 K, 50 — 70 bar) dan lampau kritikal (308.15 K
dan 313.15 K bagi camphene, 308.15 K dan 318.15 K bagi carvophyllene oksida; 80
— 250 bar). Kelarutan bagi kedua-dua sebatian dalam keadaan hampir kritikal naik
secara ketara dengan kenaikan tekanan dan suhu yang kecil kerana ketumpatan
pelarut sangat sensitif dalam keadaan hampir kritikal. Bagi lampau kritikal. “keadaan
kemunduran™ berlaku dengan kelarutan kedua-dua sebatian menurun apabila suhu
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dinaikkan. Walaupun begitu, kelarutan mereka masih menaik apabila tekanan
dinaikkan. Tiga model semi-empirikal yang biasanya digunakan, iaitu model Bartle,
model Chrastil dan model Mendez-Santiago-Teja, telah pun diaplikasikan untuk
mengaitkan data kelarutan dengan ketumpatan karbon dioksida. Daripada ketiga-tiga
model ini, model Mendez-Santiago-Teja paling sesuai bagi kedua-dua sebatian

dalam keaadaan hampir kritikal dan lampau kritikan dengan menunjukkan purata
sisithan relatif mutlak bawah 2%.
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CHAPTER 1

INTRODUCTION

1.1 Background

Fluids become subcritical when their pressure and temperature were brought to a
region near critical value while they become supercritical when they are heated
beyond the critical temperature and compressed beyond the critical pressure. In this
state, they have liquid like density and gas like diffusivity (Garlapati & Madras,
2008), which is a good solvent with very unique property that provides quick
equilibration and micro pore permeation of the fluid. Due to this exclusive feature, it
has been exploited in production of controlled drug delivery systems, pollution
prevention and remediation, powder processing, crystallization, bioseparations,
methods for spray paint and coatings, polymerization, food processing, chemical
reactions, cleaning of semiconductors and precision machinery, dyeing and dry
cleaning of textiles, metal de-binding and extractions (Gupta & Shim, 2007).

Occurrence of supercritical phase was first reported by Baron Charles Cagniard de la
Tour (1822). From his early experiment, critical point of a substance was first
discovered when he observed gas-liquid boundary disappear during heating in a
closed glass container. Then, Hannay and Hogarth (1879) first demonstrated the
solvating power of supercritical ethanol for cobalt (II) chloride, iron (III) chloride,
potassium bromide and potassium iodide while Buchner (Buchner, 1906) reported
solubility of some non-volatile organic materials in supercritical carbon dioxide.
They have proven solvating power of supercritical fluid is much higher than the
value solid vapour pressure could predict.

The dissolving capacity of supercritical fluid hence starts to receive interest at the
first half of the twentieth century in process operations. In 1936, Wilson, Keith and
Haylett invented a propane deasphalting process for refining lubricating oils by
changing solvent power of liquid with changes of temperature and pressure in
subcritical point region (Wilson ez al., 1936). In 1970s, subcritical pentane was used
to remove lower boiling point products from heavier asphaltenes in residuum oil
supercritical extraction (ROSE) process by Kerr McGee Corporation (Knox, 2005).

A significant development of supercritical fluid technology can be seen in Zosel's
patent in 1971 with extraction of caffeine from green coffee with carbon dioxide
(Zosel, 1971). Since 1980, supercritical fluid extraction begins to have rapid
development such as extraction of hop (Hubert & Vitzthum, 1978), cholesterol from
butter (Mohamed er al., 1998), fragrance and tlavour from natural product (Naik ez
al., 1989), residual solvents and monomers from polymers (Sato er «l., 1998) and
unsaturated fatty acid from fish oil (Nilsson ez al., 1989).



1.2 Problem statement

One of the current issues faced by industrial sector is the lack of clean processes that
can produce premium product with low cost. In many pharmaceutical and food
industries, organic solvent is still widely used in extraction and particle formation
processes. Problems with organic solvents are the flexibility of recycling,
contamination of solvent residue in the extract or final product, high cost and
environmental pressure (Grodowska & Parczewski, 2010: Beckman, 2004).
Compared to organic solvent, supercritical carbon dioxide offers numerous benefits
to process yield, environmental aspect, process efficiency, operating cost and time
saving, and safety condition. In terms of process yield and efficiency, carbon dioxide
is available in high purity which decreases the impurities in product form, while
supercritical fluid technology has higher selectivity and lower mass transfer
resistance compared to conventional process, which ease the process progression and
result in time saving. In order to develop an application using supercritical fluid
technology, the fundamental thermophysical properties and phase equilibrium
knowledge are important because they can be used to design, scale up and optimize
the processes. However, this fundamental knowledge is still limited currently.

Number of research works done on supercritical fluid is abundant but research on
subcritical fluid is still not very common, especially subcritical carbon dioxide.
Subcritical fluid has temperature between boiling point and critical point and
pressure high enough to maintain the liquid state (King & Grabiel, 2007). As
temperature rises in subcritical fluid, there is a remarkably decrease of permittivity,
increase of diffusion rate and decrease of viscosity and surface tension (Smith. 2006).
Consequently, subcritical fluid offers numerous advantages as like supercritical fluid
but at lower pressure which is rather inoffensive. Changes of subcritical fluid density
with little variation of temperature and pressure are intense in subcritical condition.
Thus, it is interesting to know the solubility behavior of solute in subcritical fluid:
however this information is very scarce. Therefore. in this work. solubility behavior
study in subcritical carbon dioxide was covered to have comparison between
supercritical and subcritical in the aspect of solubility trend. This knowledge may be
useful in future to replace supercritical fluid with suberitical fluid for milder working
conditions.

In order to generalize the solubility behavior of a specific compound, mathematical
modeling is needed to estimate solubility data at condition other than experimental
one. Mathematical modeling is important because it is time and cost saving to
determine solubility behavior of solute at condition that experimental data is not
available. Although there are many options of model used for correlation,
mathematical modeling is solute dependent and no one universal model can be used
to fit all types of solute. In existing solubility study works. not many solubility data
was correlated with models. Thus, in this study, some semi-empirical models were
tested to fit solubility data in subcritical and supercritical carbon dioxide and detail
methodology of employing these models was discussed to simplify the usage of
models.
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As mentioned, fundamental knowledge of thermophysical properties and phase
equilibrium are still limited at present. The solubility data for most pharmaceutical
active compounds is either not available or limited to specific thermodynamic range.
Caryophyllene oxide and camphene are commonly used as flavor and fragrance
agent, still have no available solubility data in subcritical and supercritical carbon
dioxide. These two active compounds are from Malaysia local herbs, black pepper
(Piper nigrum L.) and peacock ginger (Kaempferia rotunda). Both of these
compounds can be made into essential oils and they have antioxidant effect which
can help reduce the toxin effects in the body and promote good health (Kadri er al.,
2011; Amiri, 2010). Caryophyllene oxide also has anti-fungal properties which can
be used as preservative in food, drugs and cosmetic (Hossain ez al., 2008). Of these
benefits, solubility behavior of these compounds in supercritical condition is useful
to have a cleaner and better process of extraction, separation, purification and
synthesis in near future. Thus, this study focuses solubility behavior of camphene
and caryophyllene oxide in subcritical and supercritical carbon dioxide for its
medicinal values and benefits of subcritical and supercritical tluids.

1.3 Objective

The objectives of this study are:

i.  To design and develop an experimental rig that obtains solubility data of
interest compound in subcritical and supercritical carbon dioxide.

ii.  To investigate the variation of temperature and pressure on the solubility
behavior of selected compounds in subcritical and supercritical carbon
dioxide.

iii.  To identify suitable mathematical correlation that fits and explains the effect
of temperature and pressure on the solubility data.

1.4 Thesis outline

The thesis starts with Chapter 1 which outlines the background of research and
problem statement in which its significance is established. The scope of research and
objectives are discussed in this chapter as well.

Chapter 2 presents the literature review of subcritical and supercritical fluid behavior,
their advantages of applying in industrial processes, some common applications of
subcritical and supercritical fluid technology such as extraction in food sector,
decomposition of waste in environmental management, particle formation in
pharmaceutical sector, chromatography, cleaning and particle removal. Mechanism

(V9]



of solubility measurement, mathematical correlation for solubility data, and solute
chosen for the study are critically reviewed as well.

Chapter 3 covers the design of solubility study rig based on the dynamic mechanism.
The solubility rig contains an equilibrium cell which solubilizes solid solute into the
carbon dioxide in complete saturated phase at desired thermodynamic condition
before discharging to collection unit. Method of study, materials used in the
experiment, design and development of experimental apparatus, procedure to operate
the rig, safety precautions and methodology of correlation by mathematical models
are outlined in Chapter 3.

As the rig is designed, validation is compulsory to justify the accuracy and
workability of the rig. In Chapter 4. validation results. solubility behavior of
camphene and caryophyllene oxide in subcritical and supercritical carbon dioxide,
and mathematical models used are discussed.

The thesis ends with Chapter 5 which covers the conclusions and recommendations
for future research.
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