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ORDER FUZZY DIFFERENTIAL EQUATIONS

By
REZA AFSHARINAFAR

October 2014

Chair: Professor Fudziah Ismail, Ph.D.

Faculty: Institute for Mathematical Research

Fuzzy differential equations (FDEs) with fuzzy initial conditions are studied as a
suitable setting for the modeling of problems in science and engincering in which
uncertainties or vagueness prevails. In this thesis, numerical methods are extended
for solving first-order and second-order Fuzzy Initial Value Problems (FIVPs), which
are interpreted by using the strongly generalized differentiability concepts.

There are several interpretations of FDEs depending on the types of differentiability
involved. Hukuhara difference is the starting point of fuzzy derivative and has been
studied by several researchers. However, it has its drawbacks which resulted in the
development of new ideas using different approaches for the solutions of FDEs with
initial conditions. Consequently, it has inspired some rescarchers to present the
analytical and numerical methods for the solutions of first-order and also, analytical
approach for the solutions of Nth-order FIVPs. All the works are based on the
Zadel'’s extension principle and Hukuhara differentiability.

In the first part, utilizing the characterization theorems, we transformed the FIVPs
into an cquivalent system of ordinary differential equations (ODIEs). Then we general-
ized some explicit and implicit one-step methods such as Midpoint, Trapezoidal and
Runge-Kutta (RK) methods for solving first-order FIVPs under strongly generalized
differentiability. The results under strongly generalized differentiability are more
accurate compared to the Hukuhara differentiability.
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Next, we extend the multistep methods particularly the third-order Adams Moulton
and fourth-order Adams Bashforth method as well as the Predictor-Corrector method
of order three and four. They are used for solving FIVPs under strongly generalized
differentiability. which clearly shown that the results under strongly oeneralized
differentiability is more accurate compared to other existing approaches.

In the third part of the thesis, we extend the Diagonally Implicit RK method
(DIRK) for FDEs under Hukuhara differentiability and the strongly generalized
differentiability. Using some mathematical Lemmas, we showed that the approximate
fuzzy solutions are convergent to the exact fuzzy solutions. The numerical results
arc compared with other existing methods and a complete error analysis. which
guarantees pointwise convergence is also given.

Finally, we extend some definitions of strongly generalized differentiability for the
solutions of special second-order fuzzy differential equations. The sccond-order FDEs
arc transformed to an equivalent system of ODEs using characterization theorem.
Then. the multiple solutions of the sccond-order FDEs are obtained using Runge-
Kutta-Nystrom (RKN) method based on the stacking theorem.

All the numerical methods are validated using several examples to depict their
applicability and effectiveness.

il



Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH BERANGKA UNTUK MENYELESAIKAN PERSAMAAN
PEMBEZAAN KEBUR PERINGKAT PERTAMA DAN KEDUA

Oleh

REZA AFSHARINAFAR

Oktober 2014

Chair : Professor Fudziah Ismail, Ph.D.

Fakulti : Institut Penyelidikan Matematik

Persamaan pembezaan kabur (PPK) dengan syarat awal yang kabur dikaji sebagai
suatu masalah pemodelan vang sesuai dalam sains dan kejuruteraan di mana ketidak-
tentuan atau kekaburan wujud. Dalam tesis in, kacdah berangka diperluaskan untuk
menyelesaikan persamaan nilai awal kabur peringkat pertama dan kedua. Persamaan
ini ditafsirkan menggunakan konsep kebolehbezaan umum yang kukuh.

Ada beberapa tafsiran bagi PPK bergantung kepada jenis kebolehbezaan yang terlibat.
pembezaan Hukuhara adalah satu titik permulaan bagi terbitan kabur dan telah
dikaji oleh beberapa penyelidik. Walaubagaimanapun ia mempunyai kelemahannya
tersendiri yang telah menghasilkan ide barn menggunakan pendekatan yang berbeza
telah dibangunkan bagi penyelesaian PPK dengan nilai awal. Oleh yang demikian,
ia memberi ilham kepada penyelidik untuk mempersembahkan kaedah analitik dan
berangka untuk penyelesaian PPK peringkat pertama dan pendekatan analitik bagi
PPK peringkat ke N. Semua kajian ini berdasarkan perluasan prinsipal Zadeh dan
kebolehbezaan Hukuhara.

Dalam bahagian pertamna, dengan menggunakan teorem pencirian, kami ubah PPK
ini kepada sistem PPB yang setara. Kemudian kami perluaskan beberapa kaedah
satu langkah tak tersirat dan tersirat seperti kacdah titik tengah. kaedalh trapezoidal
dan kaedah Runge-Kutta untuk menyelesaikan PPK peringkat pertama menggu-
nakan kebolehbezaan umum vang kukuh. Keputusan berangka menggunakan kebole-
hbezaan umum vang kukuh adalah lebili jitu berbanding menggunakan kebolehbezaan
Hukuhara.
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Kemudian kami perluaskan kacdah multilangkah terutamanya kacdah Adams Moul-
ton peringkat ketiga, kacdah Adams Bashforth peringkat keempat dan juga ka edah
peramal pembetul peringkat ketiga dan keempat. Kacdah tersebut digunakan den-
gan kebolehbezaan umum yang kukuh, yang menujukkan keputusan menggunakan
kebolehbezaan umum yang kukuh adalah lebih jitu berbanding pendckatan sedia ada.

Di bahagian kedua tesis in, kami perluaskan kacdalh RIX pepenjuru tersirat (RKPT)
untuk menyelesaikan PPK dibawah kebolehbezaan Hukuhara dan kebolehbezaan
umum yvang kukuh. Dengan menggunakan beberapa Lemma matematik. kami me-
nunjukkan penyelesaian kabur hampiran adalah menumpu kepada penyelesaian kabur
vang tepat. Keputusan berangka dibandingkan dengan kacdah sedia ada dan analisis
ralat yang menjamin penumpuan titik demi titik turut diberikan.

Akhir sckali, kami perluaskan beberapa takrif bagi kebolehbezaan umum vang kukuh
kepada penyelesaian persamaan pembezaan kabur peringkat kedua. PP peringkat
kedua tersebut diubah kepada sistem PPB menggunakan teorem peneirian. Kemudian.
penyclesaian berganda bagi PPK peringkat kedua tersebut diperolehi menggunakan
kacdah Runge-Kutta Nystrom (RKN) berdasarkan teorem susunan.

Kesemua kaedah berangka tersebut ditentusahkan menggunakan beberapa contoh
untuk menunjukkan kebolehgunaan dan keberkesanannya.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The concept of fuzzy sct theory presented by Lotfi A. Zadeh has heen a powerful
tool for modeling of uncertainty and for processing vague or subjective informa-
tion in mathematical models. It has developed in many main directions and has
been applied in many different real problems. In fuzzy set theory with possibilistic
uncertainty, the fuzzy differential cquations (FDIEs) used to be a normal method
for modeling dynamical systems. The solutions of FDEs are utilized within most
of the complications in science and engineering and they need to satisfy the fuzzy
initial conditions: so finding the solutions of fuzzy initial value problem (FIVP) has
become very important. However, since finding the exact solutions of FIVPs is too
complicated or sometimes impossible, numerical methods are applied under several
approaches to find the behavior of the solutions.

Hukuhara differentiability was the starting point and the most used technique in
fuzzy number value mapping which, however, has a disadvantage that the solution
turns into fuzzier while time moves. This is due to the fuzzy solution reacts in a
different way from the crisp solution. To avoid the problem, different interpretation
such as differential inclusion are used, but that interpretations suffer from different
disadvantages such as the existence of a derivative of fuzzy-number-valued functions.
Therefore, a more general derivative of Hukuhara derivative named as the strongly
generalized Hukuhara differentiability is defined to discuss the FDEs with its para-
metrical form.

In all approaches, the FDEs are substituted by an equivalent ODE system or its
parametrical equations. Consequently, the munerical methods for solving FIVPs are
also classified into

e One-step methods: the approximated solution is evaluated using the information
of only one previous point

e Multi-step methods: the approximated solution is evaluated using the informa-
tion of A previous point



1.2 The objective of thesis

The main objective of the research is to find the fuzzy solutions of first-order and
second-order fuzzy initial value problems under the strongly generalized differentia-
bility (named as generalized differentiability) using one-step and multi-step methods.
This goal can be attained by:

1. Extension of one-step methods consist of Midpoint. Trapezoidal and Runge-
Kutta methods under Generalized Hukuhara differentiability. The convergence
of the methods are proven using Taylor series.

0o

Extension of Diagonally Runge-Kutta method based on the Hukuhara differen-
tiability and Generalized Hukuhara differentiability. The convergence of the
method are proven using Taylor series.

3. Construction of generalized Predictor-Corrector method by extension of Adams-
Bashford and Adams-Moulton methods as multi-step methods under the Gen-
cralized Hukuhara differentiability. The convergence of the methods are also
proven using Taylor series.

4. Generalization of some definitions of the solutions to second-order fuzzy differ-
ential equations (FDE) which are substituted by an equivalent ODE svstems.

D

Discussion of the numerical approximation of the second-order fuzzy differential
equations by means of Runge-Kutta-Nystrom method of order four under the
Hukuhara differentiability and Generalized Hukuhara differentiabilityv. Conver-
gence of the proposed method is also proven.

1.3  Scope of thesis

The scope of thesis will focus on solving first and sccond order fuzzy differential
equations by generalizing one-step and multi-step methods under Hukuhara and
Generalized Hukuhara differentiability. In addition, by extending some theorems and
definitions, several types of possible derivatives of second order fuzzy number valued
functions are defined for the fuzzy solutions of second order FDEs.

1.4 Outline of thesis

In Chapter 1, a brief introduction on fuzzy differential equations and different tyvpes
of fuzzy derivatives with application of numerical methods for solving first and second
order fuzzy initial value problems are given.

8]



Chapter 2 consists of carlier rescarchers and related study on several proposed
approaches for solving first order FDEs. Some basic definitions and theorems on
numerical methods for solving FIVPs will also be given.

Chapter 3 presents the extension of Midpoint, Trapezoidal and Runge-Kutta meth-
ods under the Generalized Hukuhara differentiability. Utilizing the characterization
theorems, approximate solutions of FDEs are obtained by an equivalent system of
ODEs followed by the convergence of the approximate solutions. Also, the numerical
results are compared with other existing methods and provided with complete error
analysis, which guarantees pointwise convergence.

Chapter 4 shows the construction of generalized predictor-corrector (GPC) method
combining the extended Adams-Bashford method as a predictor and extended Adams-
Moulton method as a corrector method. Convergence of the constructed method is
also discussed in detail. Applicability of the method is illustrated by solving some
numerical examples in comparison with other existing methods.

Chapter 5 introduces a generalized fourth order Diagonally Implicit Runge-Kutta
method (DIRK) as an A-stable Runge-Kutta method for finding the fuzzy solutions
of first order fuzzy differential cquations (FDEs) under the Hukuhara and General-
ized Hukuhara differentiability. Also, the convergence of the method is proven and
numerical results are compared with existing Runge-Kutta method.

In Chapter 6, we consider the multiple solutions of second-order fuzzy differential
equations with initial conditions. Some definitions for the fuzzy solutions of first-
order fuzzy differential equations are extended to second-order FDEs. Utilizing the
extended characterization theorem, the numerical approximation of the second-order
fuzzy differential equations are obtained by means of Runge-Kutta-Nystrom method
of order four under Hukuhara and Generalized Hukuhara differentiability. Conver-
genee of the proposed method is also proven. An example is provided to show the
applicability and accuracy of the proposed method.

Finally. the conclusion of the thesis is summarized in the last chapter. Future work
on the rescarch is also suggested in the last chapter.
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