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Fuzzy difFerential equations (FDEs) wit l: fuzzy initial conditions arc studied as a
suita blo setting for the modeling of problems in science ancl cngmccring in which
uncertaint ios or vagueness prevails. III this thesis, muncrical rnot hods arc extended
for solving first-order and second-order Fuz7,Y Initial Value Problems (FIVPs), which
are interpreted by using the strongly generalized differentiability concepts.

There arc several intcrprctat ions of FDEs depending on the types of differentiability
involved. Hukuhara clifference is the starting point of fuzzy derivative and has been
studied by several researchers. However, it has its drawbacks which resulted in the
development of new ideas using different approaches for the solutions of FDEs with
initial conditions. Consequently, it has inspired some researchers to present the
analytical and numerical methods for the solutions of first-order and also, analytical
approach for the solutions of Nth-order FIVPs. All the works are based on the
Zadeh's extension principle and Hukuhara differentiability.

In the first part, utilizing the characterization theorems, we transformed the FIVPs
into cUI equivalent systnlTI of ordinarv d iffcrr-ntial cqunt ions (ODEs). Thr-n we general-
ized some explicit and implicit one-step methods such as Midpoint, Trapezoidal and
Rungc-Kutta (TIK) methods for solviru; first-order PIVPs 1I11(kr strongly gf'lH'ralizf'd
differentiability. The results under strongly generalized differentiability arc more
accurate coiupurcd 10 1he Hukuhara dillcrcnt iubility.
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Next, we extend the multistep methods particularly the third-order Adams Moulton
and fourth-order Adams Bashforth method as well as the Predictor-Corrector method
of order three and four. They arc used for solving FIVPs under strongly generalized
differentiability, which clearly shown that the results under strongly generalized
differentiability is more accurate compared to other existing approaches.

In the third part of the thesis, we extend the Diagonally Implicit RI\: met hod
(DIRK) for FDEs under Hukuhara differentiability and the strongly generalized
differentiability. Using some mathematical Lemmas, we showed that the approximate
fuzzy solutions arc convergent to the exact fuzzy solutions. The numerical results
arc compared with other existing methods and a complete error analysis. which
guarantees pointwise convergence is also given.

Finally, we extend some definitions of strongly generalized differentiability for the
solutions of special second-order fuzzy dilicrcnt ial equations. The second-order FDEs
arc transformed to an equivalent system of ODEs using characterization theorem.
Then, tile multiple solutions of the second-order FDEs arc obtained using Runge-
Kutta-Nystrorn (RKN) method based on the stacking theorem.

All the numerical methods arc validated using several examples to depict their
applica bility and effect iveness.

n
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Chair Professor Fudziah Ismail, Ph.D.

Fakulti Institut Penyelidikan Matematik

Persam aan pernbezaan kabur (PPK) dcugan syarat awal yang kabur dikaji sebagai
suatu masalah pcmoclclan yang sesuai dalam sains clan kcjurutcraau eli m ana ketidak-
tentuan atau kekaburan wujud. Dal8J1l tesis in, kacdah berangka dipcrlunskan untuk
mcnyelesaikan persainaan nilai awal kal iur peringka t pcrt.uun dan ked ua. Per-sa maan
ini ditafsirkan mcugguuakan konscp kcbolchbezaan llllllllll yang knkuh.

Ada beberapa tafsiran bagi PPK l.crgantung kcpada jenis kcbolchbcznnn yang terlihat,
pcmbezaan Hukuhara adalah satu titik pcr nmlanu bagi tcrbit.an kabur clan tclali
dikaji oleh bcberapa penyelidik. Walaubagaimanapun ia mciupunyai kclcinahannya
tcrscndiri yang tclah menghasilkau ide barn mcnggunakan pcndekat.au yang bcrbeza
tclah dibangunkan bagi penyclesaian PPI< dcngan nilai awal. Olch yang dcmikian,
ia ineinbcri ilham kepacla pellyelidik ulltuk melllpcrsembahkan kaeda.h <1.11alitikdall
Lerangka untuk pcnyelesaian PPK peringkat pertalllCt dan pen<iekata.n allellitik lJagi
PPK peringkat ke N. Sellma kajian ini berclasilrkan perlllasan prinsipal Zadeh clall
kebolehbezaall Hukuhara.

Dalalll bahagian pertama, dcngall l11ellggunakan teorem pellcirian, kmlli llbah PPK
ini kep8cla sistem PPB yflng set8ra. Kellluclifln kami pcr]uaskan bcbcrnpa kacdnh
satu lallgbh tak tersir8t dan tcrsirat seperti kacdnh titik tCllgah, bcdah trnpczoidal
clall kaedah Rungc-Klltta ulltuk lllenye]esnik811 PPK peringkat pcrtama lllCllggU-
llakeln kebolehbezaan 11ll1l1l11 yallg kukllh. I<epntnsan berHllgka. lllellggllll,11mn kehole-
hbezaan U111Ul11 yelllg kukuh adalah lebih jitu berbanding lllellggllnaknn keholehbeZ8811
Hukllhara.

III

© C
OPYRIG

HT U
PM



Kcmudian karni pcrluaskan kacdah multilangkah tcrutamanva kacdah Adams xloul-
ton pcringkat kctiga, kacdah Adams Bashforth peringkat kccmpat dan juga ka cdah
pcramal pembctul peringkat ketiga clan kccmpat. Kacdah tcrscbut cligunakan den-
gan kcbolchbczaan umum yang kukuh , yang mcnujukkan kcputusan mcnggunakan
kcbolchbczaan umum yang kukuh adalah lebih jitu berbanding pcndckatan scdia ada.

Di bahagian kcdua tcsis in, karni pcrluaskan kacdah RK pcpcnjuru tcrsirat (RI\:PT)
untuk rncnyclcsaikan PPK dibawah kebolehbezaan Hukuhara dan kebolehbezaan
umurn yallg kukuh. Dcngan menggunakan beberapa Lemma matematik. kami mc-
nunjukkan pcnyclcsaian kabur hampiran aclalah mcnumpu kcpada pcnyclcsaian kabur
yang tcpat. Kcputusan bcrangka dibandingkan dengan kaedah scdia ada dan analisis
ralat yang menjamin pcnumpuan titik demi titik turut dibcrikan

Akhir sckali, kami pcrluaskan bcbcrapa takrif bagi kebolehbczaan umum yang kukuh
kcpada pcnyclcsaian pcrsarnaan pcmbezaan kabur pcringkat keclua. PPI\: pcringkat
kcdua tersebut diubah kcpada sistem PPB mcnggunakan tcorem pcncirian. Kcmudian.
pcnyclcsaian bcrganda bagi PPK peringkat kcdua terscbut diporolchi mcnggunakan
kacdah Rungc-Kutta Nystrom (RKN) bcrclasarkan tcorCI11susunan.

Kescll1llCt kacda.h bcrangka tcrscbut ditcntllsahkan menggunakan bcbcrapa contoh
untllk mcnunjukkan kcbolchgunaan clan kcberkesanannya.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The: concept of f11ZZY set theory presented by Lotfi 1\. Z;:v]0h has hor-n a PO\\"e:)"f111
tool for modeling of uncertainty and for processing vague or subjective informa-
tion in mathematical models. It has developed ill many main directions and has
been applied in many different real problems. In fuzzy set theory with possibilistic
uncertainty, the fuzzy differential equations (FDEs) used to be ,I normal met hoc!
for modeling dynamical systems. The solutions of FDEs arc ut.ilizod within most
of the complications ill science and engineering and they need to satisfy the fuzzy
initial conditions: so finding the solutions of fuzzy initial value problem (FIVP) has
become very important. However, si !lCC finding the exact sol ut ions of F IVPs is too
complicated or sometimes impossible, numerical methods arc applied under several
approaches to find the behavior of the solutions.

Hukuhara differentiability was the starting point and the most used technique ill
fuzzy number value mapping which, however, has a disadvantage that the solution
turns into fuzzier while time moves. This is clue to the fuzzy solution reacts ill a
diffC:l"(~nt. way from the crisp solution. To avoid t.ho problem, difforont intor prot at iou
such as differential inc! usion arc used, butt hat int.orprct.at ious suffer from diflorcnt
disadvantages such as the existence of a derivative of fuzzy-number-valued functions.
Therefore, a more general derivative of Hukuhara derivative named as the strongly
generalized II ukuhara dillcrcut lability is defined to discuss the FD Es with its pa m-
metrical form.

In all approaches, the FDEs arc substituted by all equivalent ODE system or its
parametrical equations. Consequently, the numerical methods for solving FIVPs are
also classified into

• One-step methods: the approximated solution is evaluated using the information
of only one previous point

• Multi-step methods: the approximated solution is evaluated using the informa-
tion of k previous point© C
OPYRIG
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1.2 The objective of thesis

The main objective of the research is to find the fuzzy solutions of first-order and
second-order fuzzy initial value problems under the strongly generalized differentia-
bility (named as generalized differentiability) using one-step and multi-step methods.
This goal can be attained by:

l. Extension of one-step methods consist of ~Iidpoint. Trapezoidal and nunge-
Kutta methods under Generalized Hukuhara differentiability. The convergence
of the methods are proven using Taylor series.

2. Extcnsiou of Diagonally Ruugc-Kutt a method based Oil the Hukuliara difloron-
tiability and Generalized Hukuhara differentiability. The conwrgence of the
method are proven using Taylor series.

3. Construction of generalized Predictor-Corrector method by extension of Adams-
Bashford and Adams-Moulton methods as multi-step met hods under the Gen-
eralized Hukuhara differentiability. The convergence of the methods are also
proven using Taylor series.

4. Generalization of some definitions of the solutions to second-order Iuzzv differ-
ential equations (FDE) which are substituted by an equivalent ODE systems.

5. Discussion of the numerical approximation of the second-order fuzzy differential
equations by means of Runge-Kutta-Nystrorn method of order four under the
H ukuhara diflerentiabili ty and Generalized H ukuhara different ia bili tv. Corivor-
gence of the proposed method is also proven.

1.3 Scope of thesis

The scope of thesis will focus 011 solving first awl second order fuzzy diffcrcntiul
equations by generalizing one-step and multi-step methods under H ukuhara and
Ccucralizcd Hukuliara diUcrelltiability. III addit iou, by extending some theorems and
definitions, several types of possible derivatives of second order fuzzy number valued
functions are defined for the fuzzy solutions of second order FDEs.

1.4 Outline of thesis

In Chapter 1, a brief introduction on fuzzy differential equations and different types
of fuzzy derivatives with application of numerical methods for solving first and second
oreler fuzzy initial value problems are given.

2
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Chapter 2 consists of earlier researchers ami related study on severn I proposed
approaches [or solving first order FOEs. Some basic dcfinit ions and theorems on
numerical methods for solving FIVPs will abo be given.

Chapter 3 presents the extension of l'Iidpoint, Trapezoidal and Rungc-Kuttu meth-
ods under the Generalized Hukuhara differentia bility. Utilizing the charactcrizntion
theorems, approximate solutions of FDEs arc obtained by an equivalent system of
ODEs followed by the convergence of the approximate solutions. Also, the numcrica I
results are compared with other existing methods and provided with complete error
analysis, which guarantees pointwise convergence.

Chaptcrd shows the construction of generalized predictor-corrector (GPC) method
combining the extended Adams-Bashford method as et predictor and extended Adams-
l\loulton method as a corrector method. Convergence of the constructed method is
also discussed in detail. Applicability of the method is illustrated by solving some
numerical examples ill comparison with other existing methods.

Chapter 5 introduces et generalized fourth order Diagonally Implicit Rungc-Kuttu
method (DIRK) as an A-stable Rungo-Kutt a method for finding the fuzzy solutions
of first order fuzzy different iul cqua t ions (F D Es) under the 11ukuhnra alld Gelleral-
ized Hukuhara differentiability. Also, the convergence of the method is proven ,1I1e1
numerical results are compared with existing Rungc-Kutta method.

In Chapter G, we consider the mul tip!e solutions of second-order fuzzy difioront.ial
equations with initial conditions. Some dr-finir ious for the fuzzy solutions of first-
order fuzzy differential equations me extended to second-order FOEs. Utilizing the
extended characterization theorem, the numerical Clpproxinia tion of the second-order
fuzzy differential equa tions are obtained by mea ns of R uugc- K 11t t a-X ystrom met hod
of order four under l Iukuhara anrl Gcucralizo.l l lukuharn diffcrcnt iabilitv. Convor-
gcncc of the proposed method is also proven. An example is provided to show the
applicability and accuracy of the proposed method.

Finally, the conclusion of the thesis is sununarizcd in the last chapter. Future work
on the research is also suggested in the last chapter.

3
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