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Yttrium iron garnet, Y3FeSOl2 (YIG), is a material widely used in electronic devices for

the microwave region from 300 MHz to 100 GHz range. Even though the technology

involving fcrrites is advancing, there is still a lack of understanding and systematic

examinations on how losses in ferrites occur and how to control them especially at UHf-

or higher frequencies. In this work, YIG powders were prepared via the microcmulsion

technique and different approaches of bulk preparation were employed to attempt

production of extremely low loss YIG. The loss of conventional-uniaxial sample,

monodisperse-uniaxial sample and monodisperse-CIP sample was studied lor samples

sintered at relatively low temperature and up to fairly high temperature. YIG was

produced by the microemulsion technique as the growth of the precursor was controlled

by a water-in-oil emulsion. The aqueous solution consists of (Y(N03h·6 H20) and

(Fc(N03) ·9 H-O). Cetyltrirnethyammonium Bromide (CTAL3) was used as the

surfactant and n-octanc as the oil phase. Ammonium hydroxide solution which acts as a

reducing agent was added to the aqueous solution to form precipitates. Then, the

III

© C
OPYRIG

HT U
PM



precipitates were separated by centri fugation, washed with ethanol and then dried at

80 OC for 12 h. The dried precipitate was calcined at 600 QC for 2 h and ground into

powder form. Three torroidal samples were prepared which is conventional-uniaxial

sample, monodispersion-uniaxial sample, and monodisperse-CIP sample were sintered

at different temperatures. The particle size was confirmed by Transmission Electron

Microscopy (TEM), the thermal analysis was performed using a Thermal

Thermogravimetric Analyzer (TGA), the phase was characterized uSll1g X-ray

diffraction (XRD) and morphology was observed by Field Emission scanning electron

microscopy (FeSEM). The permeability and rf energy loss of the samples was studied

using an impedance material analyzer. The TEM results show that the particles are in the

nanometer range with an average of 24 nm. The crystallization temperature of the

sample can be deduced to be at I 145°C as observed from the TGA curve. The XRD

results show that the full phase of YlG is formed at l200°C. FeSEM micrographs and

grain size distributions for the samples with different preparation techniques show the

evolution of microstructure as the grain size increases with the increase of the sintering

temperature. The micrographs clearly illustrate the evolution of the particle constituent

to the formation of necks which lead to grains development over the sintering

temperature range. The conventionally prepared and rnonodispersc sample show the

correlation between magnetic loss, phase purity and grain size as it decrease with the

decrease of grain size and phase purity. The monodisperse-CIP sample shows a different

trend where it has a big grain size but low loss. We speculate that the monodisperse-CIP

samples have significant numbers of pores that can act as pinning centers to the domain

wall movements thus decreasing the magnetic loss of the sample. All the samples exhibit

lower loss with tan () lower than 10.1 comparable to previous research results.
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CIRINYA
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MASNI BlNTI MANAP

Fcbrllari2013

Pcngerusi : Profesor Madya Manser Hashim, PhD

Fakulti : Sains

Yttrium Iron Garnet, Y 3FeSOl2 (YIG), merupakan bahan yang digunakan secara meluas

dalarn alat-alat elektronik bagi rantau gelombang mikro daripada 300 MHz hingga

100GHz. Walaupun teknologi ferit scrnakin maju, masih tcrdapat kekurangan

pernaharnan dan perneriksaan yang sistematik tcntang bagairnana kchilangan tennga

dalarn ferit berlaku dan bagaimana untuk rnengawalnya tcrutarna pada frekucnsi yang

sangat tinggi atau frekuensi yang Icbih tinggi. Dalarn kajian ini, scrbuk YIG tclah

disediakan melalui teknik mikrocmulsi dan pendekatan yang berbeza bagi teknik

penyediaan pukal telah dilakukan dalarn percubaan untuk menghasilkan kehilangan YIG

amat rendah. Kehilangan tenaga bagi sampcl proses penyediaan biasa-unipaksi, sampel

monodisperse-unipaksi dan sample monodisperse-CIP dikaji pad a suhu pensintcran yang

agak rendah dan sehingga ke suhu pensinteran yang tinggi. YIG tclah dihasilkan oleh

teknik mikroemulsi dengan pertumbuhan prekursor telah dikawal oleh emulsi air dalarn

rninyak. Larutan akueus terdiri Y(N03h dan Fc(N03), Cetyltrimethyarnmoniurn

brornida (CTAB) telah digunakan sebagai surfaktan clan n-oktana scbagai rasa minyak.
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Larutan Ammonium hidroksida yang bertindak sebagai agen penurunab ditarnbah

kepada larutan akueus bagi membentuk mendakan. Kemudian, rnendakan telah

dipisahkan oleh sentrifugasi, dibasuh dengan etanol dan kemudian dikeringkan pada

80°C selama 12 jam. Mendakan kering telah dikalsin pada 600°C selama 2 jam dan

dihancurkan kepada bentuk serbuk. Tiga sampel berbentuk torroid iaitu sampel proses

penyediaan biasa-unipaksi, sampel monodisperse-unipaksi dan sample monodisperse-

CIP telah disinter pad a suhu yang bcrbcza. Saiz partikel telah disahkan oleh mikroskop

transrnisi elektron (TEM), anal isis terma telah dilakukan mcnggunakan analisia terrna

termogravimetri (TGA), fasa dicirikan menggunakan pembelauan sinar-X (XRD) dan

morfologi telah diperhatikan oleh mikroskop imbasan clektron pelepasan medan

(FeSEM ). Kebolehtelapan dan kehilangan tenaga rf sampel telah dikaji rncnggunakan

penganalisis bahan impedans. Keputusan TEM menunjukkan bahawa partikel dalam

julat nanometer dengan purata scbanyak 24 nm. Suhu pembentukan hablur boleh

disimpulkan pada I 145°C seperti yang dilihat dari lengkung TGA. Kcputusan XRD

rnenunjukkan bahawa rasa pcnuh YIG telah terbentuk pada 1200°C. Mikrograf FcSEM

dan taburan saiz butiran untuk sarnpcl bagi scmua teknik pcnycdiaan mcnunjukkan

evolusi mikrostruktur apabila saiz butiran mcningkat dengan pcningkatan suhu

pensinteran. Mikrograf jelas menggambarkan evolusi butiran kepacla pcmbcntukan lehcr

yang mernbawa kepacla pembangunan butiran seiring dengan suhu pensintcran. Sam pel

penyediaan biasa dan monodispersc menunjukkan korelasi antara kehilangan tenaga,

ketulenan fasa clan saiz butiran kerana ia berkurangan dengan pcnurunan saiz butiran

clan ketulenan rasa. Sampcl CIP rnenunjukkan tren yang berbeza eli mana ia mernpunyai

saiz butiran yang bcsar tetapi mcrnpunyai kehilangan tenaga yang rcnclah. Kall1i

berspekulasi bahawa sampel CIP mcmpunyai bilangan liang yang signilikan yang bolch
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menyematkan pusat untuk pergerakan dinding domain sekal i gus mcngurangkan

kehilangan tenaga sam pel. Semua sampel mernpamerkan kehilangan tenaga yang lebih

rendah yang mempunyai tan 0 lebih rendah daripada 10-' jib dibandingkan dengan

penyelidikan sebelumnya.
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CHAPTER 1

INTRODUCTION

1.1 Background of the study

In the earlier part of electrical technology development, iron and its alloys were used

as magnetic materials to supply the need of the electrical industry for a long time.

However, with the introduction of higher frequencies, the standard techniques of

using lamination or iron powder cores, reducing eddy current losses, were no longer

cost effective or efficient. This realization stimulated a renewed interest in "magnetic

insulators" since first reported by Hilpert in Germany (1909). The high electrical

resistivity of oxides could be combined with desired magnetic characteristics and a

magnetic material would result that was well suited for high frequency operation.

Various laboratories all over the world have done research to develop such Cl

material, such as by V. Kato, T. Takci, and N. Kawai in the 1930's in Japan and by

Snoek of the Philips' Research Laboratories in the period 1935-45 in the Netherlands

(McLyman and McLyman, 2004). By 1945 Snoek had laid down the basic

fundamentals of the physics and technology of practical ferrite materials. In 1948,

the Neel theory (1948) of ferromagnetic provided the theoretical understanding of

this type of magnetic material. These ferrites are ceramic, homogeneous materials

composed of various oxides with iron oxide as their main constituent.
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Generally, ferrites are classified into three classes based on three different crystal

types which are:

i) Soft Ferrite with spinel cubic structure, for example; Nickel Zinc

Ferrite and Manganese Zinc Ferrite.

ii) Soft Ferrite with garnet structure, for example yttrium-based garnets

that are used in microwave devices.

iii) Hard Ferrite with magnetoplumbite (hexagonal) structure. The

hexagonal ferrites develop high coercivity and are an important

member of the permanent magnet family.

Among most common representatives of soft ferrite with the garnet structure is Y3

Fe, 0'2 (YIG) which has been widely investigated as it is an interesting ferrimagnetic

material. This material has high resistivity and low magnetic loss at high frequency

which has made it among the best UHF magnetic materials. It is widely used in the

microwave frequency range and optical-communication devices and other

applications (Vaqueiro et. al, 1997).

1.2 Ferrite for Microwave Application

Microwave technology is moving up to higher frequencies and higher bandwidths,

into the mm wave range, up to 100 Gl-lz. Nonconducting materials are essential to

ensure total penetration of electromagnetic fields. Ferrite materials are unique

because they are one of a few classes of insulating magnetic oxides that possess

moderate value of magnetization, high permeability, moderate to high permittivity,

and low losses at frequencies from de to sub-millimetre wavelengths. These

properties add to them a great value in high frequency devices that require strong

2
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coupling to electromagnetic signals while experiencing low losses (Harris et ai.,

2009). Ferrite elements are widely used in microwave devices such as isolators,

circulators, and phase shifters. For applications requiring nonreciprocal operation, as

in circulators and isolators, there is no alternative to magnetic devices. Due to their

very high specific resistance, remarkable flexibility in tailoring the magnetic

properties, ease of preparation, and, last but not the least, price and performance

considerations, ferrites are the first choice materials for microwave applications.

However, the frequency range of operation, the power handling capacity and the

temperature sensitivity of ferrite devices should be improved.

Nanostructured materials have a number of desirable electromagnetic and

mechanical properties. Electromagnetic absorption properties can be controlled by

changing the particle size distribution in nano-materials and application-specific,

tailored materials can be produced. Eddy -current and magnetic losses are minimized

in nano-rnaterials and very sharp resonances can be set up leading to high-Q filter

characteristics. This can be directly exploited in antenna technology. Few key aspects

that make nano-rnaterials very attractive candidates for antenna technology

development are:

i. Physical properties different from bulk and often superior

ii. Superior mechanical properties

iii. Better control of microstructure, porosity

iv. Selective enhancement of desirable parameter
© C
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1.3 Problem Statement

To appreciate the value of ferrites in microwave applications, it is important to

understand the basic physical phenomena that are involved in successful device

operation. Even though the technology in ferrites is advancing, there is still a lack of

understanding and systematic investigation on how losses in ferrites occur and how

to control them especially at UHF or higher frequencies.

Some magnetic properties of a ferrite depend critically on the structure and

microstructure of the material. The dependence towards microstructure of the

materials leads to the development of techniques to produce garnets with a strict

control of the composition, homogeneity, size and particle shape (Vaqueiro et. ai,

1997). This work would attempt to obtain extremely low loss nanometer-sized YIG

particles by the water-in-oil microemulsion technique.

1.4 Objectives

The goal of this research is to synthesize a high quality yttrium iron garnet with

extremely low electromagnetic loss via the microemulsion technique. In order to

accomplish this work, an experimental investigation was carefully conducted. The

objectives are as follows:

1) To prepare uniform and monodispersc Yttrium Iron Garnet nanoparticles

from microemulsion technique.

4
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2) To study the effect of phase purity, crystal structure and microstructure on

EM energy losses.

3) To synthesize a garnet that can transmit and receive microwave energy with

very little EM energy loss, employing synthesis variation effects.

1.5 Thesis Outline

The earliest chapter of this thesis gives an introduction on ferrites, ferrites for

microwave application and some research questions. Chapter two presents aspects on

the related literature on low loss ferrites, synthesis methods, and some

microstructural of ferrites. Chapter three reports the basic theories of magnetism, the

ferromagnetic structure of garnet, and microemulsion synthesis. The preoccupations

in chapter four are methodologies employed for the preparations and the

characteristics measurement of the prepared YIG samples. The discussion of the

results obtained forms chapter five. Chapter six summarizes and concludes the

research findings, in addition to some suggested recommendations. The list of

publications by the author is attached at the end of the thesis, preceded by the

author's biography, appendices and references/bibliographies.
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