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Continuation Power Flow (CPF) analysis is developed to overcome singularity
problem of Jacobian matrix of power flow analysis. This analysis is done by
reformulating the power flow equations so that they remain well-conditioned at all
possible loading conditions. This allows the solution of the power flow problem for
both stable and unstable equilibrium points.  However, its effectiveness and
efficiency are still in question as it needs many continuation steps to solve each
problem. This situation will delay the process of corrector in the system. The CPF
algorithm has also been found to fail for a system which has a very sharp turning
point for the solution curve which can drag the system to have convergence
problem. The step cutting technique that is used to improve convergence can lead

to slightly incorrect results in the case of sharp turning point.

In order to provide continuity of the power flow in both stable and unstable

situations. the numerical method chosen in the analysis should be able to provide



il
predictor and corrector values with minimal computational effort. Therefore, the
aim of this work is to introduce new algorithms that can ensure the continuous
power flow climinate the convergence problem for all power systems regardless of
the size of the system and improve the existing CPF. This research will focus on
static voltage stability analysis where voltage collapse is explained as static
bifurcation phenomenon. Three algorithms. which are based on Krylov Subspace
method, have been developed in order to overcome the drawbacks of the existing
CPF. These developed algorithms are tested on 14, 118 and 300 IEEE bus
systems. Furthermore, the real data with 293 buses and 595 lines is used as a

practical system for verification of the new algorithms.

The results show that these new algorithms are able to eliminate the convergence
problem faced by the existing CPE algorithm. For IEEE 300 bus system, the
iteration has been reduced from 36 to 34 iterations. The CPU time ratio in
performing the analysis has also been reduced between three to twenty percent.
These new algorithms are also able to produce more reliable results compared to

the existing CPE method.
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Analisis aliran kuasa berterusan telah dibangunkan untuk mengatasi masalah
keadaan tunggal vang dihadapi oleh matriks Jacobian di dalam analisa aliran
kuasa. Analisa tersebut dilakukan dengan perumusan semula persamaan aliran
kuasa supaya aliran kuasa tersebut berada dalam keadaan baik pada semua
keadaan bebanan yang mungkin. Ini membenarkan penyvelesaian masalah aliran
kuasa untuk kedua-dua titik keseimbangan iaitu stabil dan tidak stabil.
Walaubagaimanapun, keberkesanan dan kecekapan CPE ini masih diragui kerana
memerlukan langkah berterusan yvang banyak untuk menyelesaikan setiap masalah.
Situasi ini akan melengahkan proses pembetul di dalam sistem tersebut. Algoritma
CPF juga didapati gagal memberikan penyelesaian yang lengkap untuk sistem
vang mempunyai titik lengkuk yang tajam pada lengkungan penvelesaian di mana
boleh menghasilkan masalah penumpuan.  Teknik pemotongan langkah yvang

digunakan untuk membaiki penumpuan juga boleh menjurus kepada keputusan



yang tidak tepat di dalam kes titik lengkuk tajam. PUSTAXAAN KEJ

Untuk menyediakan keterusan pada aliran kuasa dalam keadaan st abil dan tidak
stabil, kaedah berangka yang dipilih di dalam analisa hendaklah berupaya
menyediakan nilai peramal dan pembetul dengan kaedali pengiraan yang minimal.
Oleh yang demikian, matlamat utama kerja ini adalah untuk memperkenalkan
algoritma baru yang dapat memastikan aliran kuasa berterusan yang dapat
menghapuskan masalah pencapahan bagi semua sistem kuasa tidak kira kecil atau
besar dan memperbaiki kaedah sedia ada. Kajian ini akan memfokus dalam analisa
kestabilan voltan statik di mana kejatuhan voltan diterangkan sebagai fenomena
statik dwiwujudan. Tiga algoritma berdasarkan kaedah Sub-rnang Krylov telah
dibangunkan untuk menyelesaikan permasalahan CPF sedia ada. Ketiga-tiga
algoritma ini telah diuji ke atas sistem IEEE 14, 118 dan 300 bas. Selanjutnya.
data sebenar yang mempunyai 295 bas dan 595 talian digunakan sebagai sistem

paktikal untuk verifikasi algoritma-algoritma yang telah dibangunkan.

Keputusan  menunjukkan bahawa algoritma yang baru itu telah berjaya
menghapuskan masalah penumpuan yang dihadapi oleh algoritma CPE sedia ada.
Untuk sistem IEEE 300 bas, didapati lelaran berkurang dari 36 kepada 34 lelaran.
Nisbah masa CPU yang diperlukan untuk menyelesaikan analisa telah berkurangan
di antara tiga hingga dua puluh peratus. Juga. algoritma yang baru ini dapat
memberikan keputusan yang bolehharap berbanding dengan kaedah CPT yang

sedia ada.
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CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

Power system stability is a feature of a power system that allows the system to
remain in a state of operating equilibrium under normal operating condition and be
at an acceptable state of operating equilibrium after facing disturbances [1]. There
are several forms of stability involved in power system stability studies such as rotor
angle stability, voltage stability and voltage collapse. as well as mid term and long
term stability. However, in this research the focus is on the voltage stability and
voltage collapse analysis.

Stability is defined by Taylor [2] as:

1. A power system at a given operating state is small-disturbance voltage stable
if, following any small disturbance, voltages near loads are identical or close

to the pre-disturbance values.

2. A power system at a given operating state and subject to a given disturbance

is voltage stable if voltages near loads approach post-disturbance equilibrium



values. The disturbed state is within the region of attraction of the stable

post-disturbance equilibrium.

3. A power system at a given operating state and subject to a given disturbance
undergoes voltage collapse if post-disturbance equilibrium voltages are below

acceptable limits. Voltage collapse may be total or partial.

Voltage stability is usually known as a steady-state viability problem which is
suitable for static analysis [2]. The major aspect in any voltage stability is the
ability to transfer power from the power source to consumers during the steady

operating condition.

On the other hand, voltage instability is known as a phenomenon when the voltage
drops rapidly and the system control fails to improve the voltage level due to the
load increase or some other systems change which last from several seconds to
several minutes. These cause instability and the result is often the decrease in

voltage magnitude.



1.2 VOLTAGE COLLAPSE EXPERIENCE

According to Hill and Hisken [3], voltage collapse is defined as a power system at
a given operating state and subject to a given large disturbances undergoes voltage
collapse il its voltage is unstable or the post-disturbance equilibrium values are
non-viable. During the last decades there have been several large voltage collapses
almost every year somewhere in the world including in Malaysia.

Some of the voltage collapse events around the world are:

1. September 12, 2005, a blackout in Los Angeles affected millions of consumer
) O

in California [4].

8]

December 1. 2006. a blackout in Ontario and continued into December 2. 2006

[5].

3. June 27, 2007, a power failure in New York City and affected Manhattan and

Bronx for one hour [6].

4. On July 23, 2007, the city of Barcelona suffered a near-total blackout for more

than 78 hours due to a massive electrical substation chain failure [7]

o

On February 20 in 2008, coal supplies to some power plants in Java have been

stopped resulting electricity shortage affecting Jakarta [8]



Meanwhile for Malaysia there have been incidences as follows:

1. Blackout in northern states of Malaysia in Penang and Kedah on November

2007 [9)]

2. Blackout in the southern Peninsular Malaysia on September 1, 2003, due to

power failure affecting 5 states including Kuala Lumpur for 5 hours [10]

3. In Jan 13, 2005, a blackout hits several parts of Malaysia including Petaling
Jaya, Putrajaya, Cyberjaya. Melaka. Negeri Sembilan and Johor about 12.30
pm due to a problem at Kapar switchyard at the Port Klang Power Station

[11].

4. In August 3 1996, the blackout aflected the whole Peninsular Malaysia

including Kuala Lumpur. It occurred at 5:17p.an. {12
(<)

Events listed show that voltage collapse is a real problem and needs to be
considered as a scerious condition. A thorough analysis of cach event is essential so
that any voltage collapse event could be identified and corrective action can be
taken appropriately. Hence. avoidance and fixing ways could be carefully planned

to minimize the occurance of voltage collapse.



1.3

STATIC OR DYNAMIC ANALYSIS

A power system may collapse due to some  transmission lines reaching  the

maximum power that can be transmitted or due to the lack of local reactive power

support. This voltage collapse is known as a static voltage problem and will be the

main focus or scope of this thesis.

Voltage stability analysis is normally done using the power flow simulation. Kundur

[1] has classified voltage stability into two subclasses which ave:

Large disturbance voltage stability which concerns a system’s ability to
control voltages following large disturbanees such as system faults, loss of
oeneration or cirenit contingencies.  Therefore, this subclass requires a
dynamic analysis. A eriteria for this voltage stability is to follow a given
disturbance and system-control actions. Also, the voltages at all buses must

reach acceptable steady-state levels.

Small-disturbance voltage stability concerns a system’s ability to control
voltages following small perturbations such as due to incremental changes in
system load. This concept is useful to determine how the system voltage will
respond to small system changes.  Therefore, a static analysis can be
effectively used to  determine stability margins and identify - factors
influencing stability, and to examine a wide range of system conditions and a
large number of post-contingency scenarios. A criterion for small-disturbance
voltage stability is that, at a given operating condition for every bus in the

systenn, the bus voltage magnitude increases as the reactive power injection



at the same bus increases. A system is voltage unstable if, for at least one
bus in the system, the bus voltage magnitude, V' decreases as the reactive

power injection (Q at the same bus is increased.

Voltage stability is usually not much influenced by system dynamies . Therefore,
using static methods, more issues regarding voltage stability can be effectively
analyzed. One of the examples is examining the feasibility of the equilibrium point
for a specified operating condition of the power system [13, 141, The static analysis
can be used to analyze more system conditions and provide the solution more
efficiently [15. 16]. Meanwhile the dynamic analysis is used to study the specific

voltage collapse situations, protection and controls.

Dynamic simulation or time domain simulation gives the events and the chronology
leading to instability but this simulation is time consuming and does not provide
sensitivity information and the degree of stability [17, 18], The dynamic analysis also
does not have the same spectrum as static analysis due to the time frame involved;
the static voltage stability analysis may require minutes to hours of analysis but the
dynamic voltage stability analysis may require milliseconds to seconds [19, 20]. The
use of steady state or static analysis method is permitted in many cases in which
load flow equations are used to represent the system conditions.  In comparison
to the dynamic study, investigation on long-term voltage stability determined by

steady-state studies usually offers optimistic results [21].
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This work focuses on the small-disturbance voltage stability where the researcher
studies the ability of the system to determine the response of the system due to
changes in the load system. The static analysis is the best choice to study this issue
because this study will concentrate on loading margin which relate to the load flow

analysis.

1.4 RESEARCH MOTIVATION AND PROBLEM STATEMENT

Nowadays, the usage of electricity has become more and more important as
technologies of electrical apparatus and equipment have rapidly egrown.  This
phenomenon is also due to the modern living style and the needs from industries.
The analysis method may help the utilities to be ready with any changes or any
contingencies that may happen in order to fulfill the high usage of electricity
demand. Therefore, an appropriate analysis method is needed to deal with this
dramatic growth of electricity demand. This is to ensure that the demand can be

delivered without any interruption.

Power flow analysis involves calenlation of power flows and  voltages of
trausimission network at specified tevminal or bus condition [1]. This caleulation is
required for analysis of steady state as well as dynamic performance of the power
systen. Therefore, it is the most important procedure in power systen planning

and operation.
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Traditionally, the Newton-Raphson method has been used for solving the power
flow problem. However, rescarchers found that the Jacobian matrix of power flow
analysis for this Newton-Raphson method becomes singular at the voltage stability
limit (1, 22, 23], This means that this power flow algorithm will face convergence
problems at operating condition which is near to the stability limit.  The
Continuation Power Flow(CPEF) analysis is meant to overcome this problem by
reformulating the power flow equations so that they remain well-conditioned at all
possible loading conditions. This allows the solution of the power flow problem for
both stable and unstable equilibrinm points.  Based on previous studies, it has
been found that this continuation method can handle the singularity problem
faced by Newton-Raphson method (24, 25, 23, 26]. However. its effectiveness and
efficiency still require improvement as i needs many continuation steps to solve
cach problem. This is due to the step-length that needs to be considered in the
corrector step. Therefore, computational efforts become heavy  with  more
continuation steps and this situation will delay the process of corrector in the
system. The Continuation Power Flow aleorithm has also been found to fail for a
system which has very sharp turning point for the solution curve which can drag
the system to have convergence problem [25]. The step cutting technique is used to
improve convergence which can lead to slightly incorrect results in cases of sharp

turning points[27, 28, 29, 30].

In order to provide continuity of the power flow in both stable and unstable
situations, a munerical method chosen in the analysis is needed to be able to
provide predictor and corrector values with a minimal computational effort.

Therefore, this work is aimed at tackling this issue using the proposed analysis



method.

1.5 AIM AND OBJECTIVES

The aim of this work is to introduce new algorithms that can provide contintous
power flow inclusive of upper and lower equilibrivim points for any scale of power
system as well as improving the existing method to solve the problem faced by

Continuation Power Flow.

The objectives of this work are:

1. To prove the convergence problem faced by existing Continuation Power Flow

method.

2. To develop new algorithms to address the singularity and convergence problem

of Continuation Power Flow.

3. To develop a software tool based on the new algorithms for voltage stability

analysis.



1.6 SCOPE OF RESEARCH

This research will focus on static voltage stability analysis where voltage collapse
is explained as static bifurcation phenomenon. Three new developed algorithms
are tested on 14, 118 and 300 IEEE bus systems which are used to verify these
new aleorithms. Furthermore. the practical system with 293 buses and 595 lines.
provided by Tenaga Nasional Berhad, is used as the real system to test and verify
the new algorithms. The contingency analysis for IEELE 118 bus systems is carried

out to verify the new algorithms.

1.7 OUTLINE OF THE THESIS

The structure of the thesis is as follows:

Chapter 1 provides the overview of the rescarch where the definition of the voltage
stability is briefly described.  This follows the discussion on voltage collapse
phenomenon with several cases of blackouts around the world including Malaysia.
The difference between dynamic and static analyvsis are discussed.  Research
motivation and problem statement, aim and objectives, and scope of the research

are set out as the gnideline of completing this research.

Chapter 2 presents a discussion on voltage stability which details on the basic

concept of voltage stability. Voltage collapse and its analysis method is reviewed.
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Chapter 3 highlights the Continuation Power Flow starting with the discussion of
bifurcation and direct methods and later on lead to Continnation method. This

follows with in-depth review of the previous works by previous rescarchers.

Chapter 4 discusses the development of proposed new algorithms which are based
on Krylov Subspace Methods. These algorithms are developed using Generalized
Minimized Residual Method (GMRES), Conjugate Gradient Squared (CGS) and
BiConjugate Gradient Stabilized (BiCGSTAB) where the fundamental of all the
three algorithms come from Krylov Subspace.  The review of power flow using,
Krylov Subspace are also discussed. The methodology and the new algorithm are

also explained.

Chapter 5 shows the results of Continnation Power Flow and the proposed
algorithms when applied to TEEE bus systems. The vesults are compared and used

as a verification of the new algorithins.

Chapter 6 reports the results of the new algorithms when applied to the practical
system.  The results include the contingency analysis of the practical system
followed by the application of Continuation Power Flow on the systen. Later the

application of the new algorithms on the system are presented.
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Chapter 7 concludes the rescarch work. The capabilities and limitations of the
proposed algorithms are presented.  Some perspectives for future work are also

suggested.
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