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A good matching between the electrode material, pore size suitable for diffusion 
of electrolyte ions and the dimensions of ionic species is necessary for an optimal 
performance of electrode materials. By developing a cost-effective mesoporous 
carbon (MPC) electrode material with highly developed surface area and high 
electric conductivity may address the issues to enhance the capacitive 
performance of the material as well as power density, energy density and its 
cycle life. Thus, this study aims at developing MPC film from Resorcinol(R) 
/Formaldehyde(F)/F127 and modifying the carbon precursor using natural 
cellulose of carboxymethyl cellulose (CMC) before incorporated with manganese 
oxide (Mn2O3). That is purposedly to enhance the capacitance attributed from 
electric double layer (EDLC) properties in MPC film as well as the 
pseudocapacitive properties from faradaic redox reactions of Mn2O3. All samples 
were synthesised by using a spin coating self-assembly soft templating method 
and incipient wetness impregnation followed by calcination. The experimental 
conditions such as carbonisation temperature, molar ratio, stirring time, 
concentrations and calcination temperature and time were manipulated to 
enhance the capacitive performance of the electrode materials. X-ray diffraction 
(XRD), Fourier transform infrared (FTIR), Raman spectroscopy, X-ray 
photoelectron spectroscopy (XPS) and field emission scanning electron 
microscopy (FESEM) analysis was conducted to confirmed the structure and 
surface morphology of the samples. The electrochemical measurements e.g. 
cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD) 
measurement was performed in 1 M potassium chloride (KCl) electrolyte solution 
in a three-electrode system assembly.  

From the results, it was revealed that the specific capacitance of Mn2O3/MPC 
composites film calcined at 300 °C showed 3.5 times higher with 53.59 mF cm-2 
than optimised MPC film only 15.23 mF cm-2. These are in good agreement with 
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the impressive results of a low internal resistance value recorded for 
Mn2O3/MPC, which could lead to the interpretation of higher specific capacitance 
compared to MPC as supported by the CV and GCD results. Mn2O3/MPC 
composite film displayed the highest energy and power density and shows fairly 
stable capacitance with sample could retain about 71% of its initial capacitance 
until reaching 1000 cycles. Then the research geared onwards by applying green 
raw material which is CMCs as a carbon source for the electrode materials. In 
this study, two types of CMC; bamboo CMC and agro-based CMC commercial 
were used before Mn2O3 incorporation. The enhancement in specific 
capacitance with 31.98 mF cm-2 for Mn2O3/CMCPCbam was observed to be 3.3 
times higher compared to pure carbon samples. Mn2O3/CMCPCbam and 
Mn2O3/CMCPCcom show a relatively stable capacitance of around 65.6% and 
68.5% of the initial capacitance after 1000 charge-discharge cycles and showing 
highest energy and power density. 

The incorporation of pseudocapacitance metal oxides with EDLC carbon films is 
therefore an effective way to increase electrochemical performance in terms of 
specific capacitance, power density and energy density characteristics of carbon 
materials. The presence of Mn2O3 was strongly proved by the XRD, XPS and 
FTIR analysis while FESEM-EDX and HRTEM confirmed their existence in the 
structure. This strategy highlights well-organised mesoporous carbon films from 
synthetic and natural cellulose precursor with superior electrochemical 
performance as the promising materials for advanced supercapacitor 
applications. 
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Padanan di antara bahan elektrod, kesesuaian saiz liang untuk penyebaran ion 
elektrolit dan dimensi spesies ionik adalah diperlukan untuk prestasi optimum 
bahan elektrod. Pembangunan bahan elektrod karbon berliang meso (MPC) 
berkos efektif dengan luas permukaan dan kekonduksian elektrik yang tinggi 
diharap dapat meningkatkan prestasi kapasitans bahan serta ketumpatan 
kuasa, tenaga dan kitaran hayatnya. Oleh itu, kajian ini tertumpu kepada 
penghasilan MPC daripada Resorcinol (R)/Formaldehid (F)/F127 dan 
pengubahsuaian prekursor karbon menggunakan selulosa semulajadi 
karboksilmetil selulosa (CMC) sebelum digabungkan dengan mangan oksida 
(Mn2O3). Ia bertujuan untuk meningkatkan kapasitans yang disebabkan oleh 
sifat elektrik dua lapisan (EDLC) dalam filem MPC dan juga sifat 
pseudokapasitor dari tindak balas redoks faradaik Mn2O3. Kesemua sampel 
disintesis dengan menggunakan kaedah templat enapan berputar pembentukan 
sendiri dan kaedah serapan basah diikuti dengan proses pengkalsinan. 
Keadaan eksperimen seperti suhu karbonisasi, nisbah molar, masa 
pengadukan, kepekatan, suhu dan masa pengkalsinan diubahsuai untuk 
meningkatkan prestasi kapasitans bahan elektrod. Analisis pembelauan sinar-X 
(XRD), transformasi inframerah Fourier (FTIR), spektroskopi Raman, 
spektroskopi fotoelektron sinar-X (XPS) dan mikroskopi pengimbasan elektron 
pancaran medan (FESEM) dilakukan untuk menunjukkan struktur dan morfologi 
permukaan sampel. Pengukuran elektrokimia seperti voltammetri berkitar (CV) 
dan galvanostat cas nyahcas (GCD) dilakukan dalam larutan elektrolit 1 M 
kalium klorida (KCl) menggunakan sistem sel tiga elektrod. 
 
 
Berdasarkan keputusan, nilai kapasitans spesifik filem nanokomposit 
Mn2O3/MPC yang dikalsinasi pada suhu 300 °C adalah didapati 3.5 kali ganda 
lebih tinggi dengan 53.59 mF cm-2 berbanding filem MPC optimum dengan 
hanya 15.23 mFcm-2 . Ini bertepatan dengan nilai rintangan dalaman yang 
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rendah yang direkodkan untuk Mn2O3/MPC sebagai gambaran kepada 
kapasitans spesifik yang lebih tinggi berbanding MPC disokong oleh keputusan 
CV dan GCD. Filem komposit Mn2O3/MPC menunjukkan ketumpatan tenaga 
dan kuasa tertinggi serta kapasitans yang cukup stabil dengan sampel dapat 
mengekalkan sekitar 71% dari kapasitans awal sehingga mencapai 1000 
kitaran.  Kemudian, penyelidikan diteruskan dengan mengaplikasikan bahan 
mentah hijau iaitu CMC sebagai satu sumber karbon untuk bahan elektrod. 
Dalam kajian ini, CMC buluh dan CMC komersial berasaskan bahan pertanian 
telah digunakan sebelum penggabungan dengan Mn2O3. Peningkatan 
kapasitans spesifik sebanyak 31.98 mF cm-2 untuk Mn2O3/CMCPCbam adalah 
didapati 3.3 kali ganda lebih tinggi berbanding dengan sampel karbon tulen. 
Mn2O3/CMCPCbam dan Mn2O3/CMCPCcom menunjukkan kapasitans yang 
agak stabil iaitu 65.6% dan 68.5% dari kapasitans awal selepas 1000 kitaran cas 
nyahcas serta menunjukkan ketumpatan tenaga dan kuasa yang tertinggi. 

Penggabungan oksida logam pseudokapasitans dengan filem karbon EDLC 
adalah cara yang berkesan untuk meningkatkan prestasi elektrokimia dari segi 
kapasitans spesifik, ketumpatan kuasa dan tenaga bahan karbon. Kehadiran 
Mn2O3 telah dibuktikan dengan nyata oleh analisis XRD, XPS dan FTIR 
sementara analisis FESEM-EDX dan HRTEM mengesahkan kewujudannya 
dalam struktur bahan tersebut. Strategi ini mengenengahkan filem karbon 
tersusun berliang meso daripada bahan prekursor sintetik dan selulosa 
semulajadi sebagai bahan berpotensi yang berprestasi elektrokimia lebih baik 
untuk tujuan aplikasi superkapasitor termaju. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
1.1 General Introduction 
 
 
Energy demand is continuously increasing  due to the increase in world energy 
consumption and rapid economic development (Mekhilef et al., 2011).  It was 
predicted that by 2030, Malaysia’s global demand for energy will rise at a rate of 
1.6 percent which is around 65 percent of the increase will be due to developing 
countries (Petinrin and Shaaban 2015). The critical issue throughout the world 
concerning the limited fossil fuel as the main source of energy and other 
challenges such as global warming and detrimental environmental effects, 
encourage the policymakers and authorities to focus on renewable energy 
resources such as plant materials (biomass), wind, solar, waves, small hydro, 
ocean currents, ocean thermal e.g. temperature differences in the oceans and 
the energy of the tides (Samsudin et al., 2016). Biomass has been reported to 
be the world's fourth largest potential energy resource and given that Malaysia 
is blessed with the tropical and humid climate, we can fully utilise the huge 
potential of agriculture and tropical forests for the biomass resources. Looking 
backwards to 1990s till now, the idea of waste-to-wealth has been advocated 
and well-received where it has driven the transformation from unused waste to 
value added fuel with the rise in economic efficiency (Mekhilef et al., 2011). 
Recently, researchers have given significant attention on developing efficient 
energy generation and storage from renewable resources (Azam et al., 2014) 
based on advanced design and nanostructured carbon materials synthesised 
from natural plant and biomass-based due to their low cost, accessibility, 
environmentally friendliness, and recyclability. Furthermore, their natural 
hierarchical porous structure facilitates electrolyte penetration and provides 
generation of extra active sites (Gao et al., 2018).  
 
 
In a myriad of applications, electrochemical energy storage (EES) devices are 
important for telecommunications devices such as cell phones, remote 
communication, walkie-talkies, etc., standby power systems, and hybrid electric 
vehicles in the form of storage components. This has led to the need for 
advanced power sources with high power density (Gao et al., 2018; Azam et al., 
2014; Conway 1999). Supercapacitors (SCs) also are known by other names 
such as electrochemical capacitors (ECs) or ultracapacitors or electrochemical 
double-layer capacitors (EDLCs) or pseudocapacitors; all of which have great 
potential to produce more power than batteries and store more energy than 
conventional capacitors with fast charging-discharging time. SCs store energy 
by means of EDLCs capacitance (ion adsorption) and pseudocapacitane 
(surface redox reaction). With potential uses in transport, consumer electronics, 
and energy industries, the SC market's future is promising.  
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Ever since the launching of SCs to the market, they have drawn worldwide 
attention. The global market for SCs is projected to hit an estimated $3.1 billion 
by 2026 and is forecast to grow from 2017 to 2026 at a Compound Annual 
Growth Rate (CAGR) of 15.5 % (Figure 1.1). SCs provide avenues for 
researchers to discover all potential materials that can offer improved strength 
and energy density efficiency, charge-discharge characteristics, power 
stabilisation, long cycle stability and reversibility (Huang et al., 2019). 
 

 
Figure 1.1:   The market size and growth rate of global supercapacitor 

(Huang et al. 2019) 
 
Commercially available SCs mainly use carbon as their electroactive material 
namely, activated carbon (AC), nanostructured carbon, e.g. carbon nanotubes 
(CNT), high porosity activated fibers and graphite, nanosised transition metal 
oxides, conductive polymers, etc. in order to provide good electrical conductivity 
with the high specific surface area. The electrical capacitance of SCs depends 
heavily on the number of ions (anions or cations) on the electrode/electrolyte 
interface, thus the high surface area is essential for SCs to acquire high number 
of ions to be adsorbed on the electrode surface.  
 
 
Noteworthy mentioning, it is only the pores that are reachable by the electrolyte 
ions which will contribute to the capacitance. Porous carbon or AC is 
commonly recognised for its large surface area and therefore it has high 
adsorption and high energy storage capabilities. However, due to the narrow 
pore 'gate', the ion diffusion at the entrance of the pore is limited, thus resulting 
in the pore not reachable by electrolyte ions. On the other hand, mesoporous 
carbon with larger pore size  contributes  towards the efficient electrolyte ions 
diffusion through the material, which improves the ions mobility thus enhancing 
the capacitance (Huang et al., 2015). In short, the electrode surface, pore size 
and ionic species characteristics must perfectly match for the optimum 
performance of electrode materials.  
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1.2 Problem Statements 
 
 
Fossil fuels depletion and environmental pollution in recent years, have drawn 
the demand and requirement for renewable, cheap and clean energy sources. 
This includes the development of efficient energy storage or energy conversion 
devices. Furthermore, such devices are required to satisfy both high-energy and 
high-power density demands in which usually either one needs to be sacrificed. 
In energy storage technology, the disadvantage of capacitors is their inability to 
store big quantities of energy while batteries are incapable of quickly 
charge/discharge cycles owing to longer times for ion diffusion. This 
performance contrast is a significant barrier in the electrochemical energy 
storage, thus SCs were suggested to narrow the gap between capacitors and 
batteries. Other main features of SCs include ultra-fast charging and discharging 
as well as incredibly heavy cycling. By developing a porous electrode material 
with highly developed surface area and high electric conductivity may address 
this issue to enhance the capacitive performance of the material as well as power 
density, energy density and its cycle life. There is also a need to develop 
materials processing methods which are cost-effective as to promote large scale 
production (Xing et al., 2015).  
 
 
Ordered mesoporous carbon (OMC) with integrated porous structure materials 
have been fabricated recently and has gained considerable attention over 
conventional microporous carbon materials due its unique, chemical and 
mechanical stability, electronic characteristics and thermal conductivity, thus 
leading to good mass transport and electrical properties (Mitome et al., 2014; 
Matsui et al., 2013; Cai et al., 2013; Feng et al., 2011; Chang et al., 2007). In 
general, OMC can be produced by either hard or soft templating methods. Hard 
templating method is less desirable due to the high production cost and complex 
synthesis route, it also involves tedious and environmentally hazardous 
preparatory process that hinders the large-scale production.  
 
 
The advancement of carbon materials with high capacitance and minimum 
equivalent series resistant (ESR) should also be addressed. This calls for the 
demand for binder-free thin film for electronic devices or free-standing 
mesoporous carbon thin film. Addressing such issues may resolve problems of 
interparticle resistance and contact resistance between the carbon electrode and 
the current collector which eventually contribute towards improvement in many 
applications such as chemical sensors, separation 
membranes, membranes of reactors and catalytic membrane electrodes (Zhang 
et al., 2012).  
 
 
Concurrently, there are several advantages and disadvantages in the active 
materials used for SC electrode, for instance, carbon materials suffer from small 
capacitance even though they possess excellent electrical and mechanical 
properties with long cycle life. Meanwhile, the cheap and flexible conducting 
polymer have poor cyclability, and on the other hand the high specific 
capacitance of metal oxide materials is very costly. Thus, a pseudocapacitor 
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electrode where the energy is stored in the active materials via accelerated 
reversible faradaic shifts and transitions has been introduced to overcome the 
issues. As such, this high-quality supercapacitor electrodes fabricated from 
transition metal oxides are therefore being promising candidates that can 
enhance the specific capacitance and power density by virtue of 
pseudocapacitive mechanism (Li et al., 2015; Wang et al., 2011). Due to their 
abundance, low cost, wide electrochemical windows, rich redox chemistry and 
high specific theoretical capacitance, manganese oxide (MnOx) is claimed to be 
a new class of promising material for supercapacitors (1100–1300 F g−1) (Huang 
et al., 2015; Prasad et al., 2013; Song et al., 2012; Zhang et al., 2011). Thus, 
extensive research was carried out for binary and ternary composites to combine 
and balance the advantages. One of the effective strategies was the utilisation 
of carbon-inorganic composite of metal oxides and carbon materials (Huang et 
al., 2015).  
 
 
The low-cost abundant and renewable biomass of bamboo has indeed been 
assigned as a precursor of green materials. Based on Kim et al. (2006), owing 
to good thermal, electrical conductivity and high surface area, good anti-
causticity, high stability, fast growing species, low cost and commercially 
available, bamboo was claimed to be the most suitable candidate in the 
production of the electrode for supercapacitors. Hence, our local Malaysian 
bamboo was selected in the study as the starting material because the palm 
kernel shell and coconut shell become a commodity of shortages. To fix the issue 
of bamboo residues generated by non-wood industries as by-products e.g. 
chopstick industries each year, could be processed into value-added products of 
mesoporous carbon (MPC) from bamboo that convert waste into wealth. 
Normally, the residue is dumped to self-decompose or open burning. However, 
this will give rise to greenhouse gases, e.g. contribution of CH4 and CO2 to global 
warming.  
 
 
To address key issues as highlighted above, there is a need to develop a low 
cost of mesoporous carbon from biomass sources. To further enhance the 
electrochemical properties, selection of suitable transition metal oxide is very 
important to be hybridised with the carbonaceous material as binder-less 
electrode and ready to be use. The extensive assessments on the relationship 
between the structure and electrochemical based on the capacitive performance 
have been performed and discussed. This research should be seen as an 
innovative work that provides innovative electrochemical solutions for potential 
energy and power storage devices from MPC materials and the fabricated 
composites. 
 
 
1.3 Background of research  
 
 
The development of high-performance electrode materials has been a topic of 
major research interest. A good electrode material requires it to be simple and 
cost-effective, possessing high specific surface area and useful pores, 
environmentally friendly and good conductivity (Chou et al., 2014; Mitome et al., 
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2014). In this study, three major strategies were adopted to enhance the 
electrochemical performance in supercapacitor electrode. First, through the 
preparation of MPC film using resorcinol/formaldehyde as the carbon source and 
Pluronic F127 as the structure directing agent. This work is based to the previous 
comprehensive studies on the electrochemical performance of porous carbons 
made from biological sugarcane bagasse templates (Chou et al., 2014; Huang 
and Doong 2012), mesoporous polymer (Wang et al., 2016; Cai et al., 2013; 
Matsui et al., 2013) and carbon films using mesoporous polymers (Mitome et al., 
2016; Xie et al., 2016; Mitome et al., 2014; Feng et al., 2011). The second part 
is the incorporation of metal oxides, Mn2O3 to the porous carbon electrode to 
form (Mn2O3/MPC) nanocomposite film using a simple and facile method, 
namely, spin coating self-assembly soft templating technique and incipient 
wetness impregnation which demonstrates excellent capacitance of 3.5 times 
higher than MPC film. In the last few years, composite electrode materials from 
manganese oxides-carbon was fabricated such as MnO2/carbon aerogel (Li et 
al., 2010), Mn2O3 /mesoporous carbon (Wang et al., 2013; Jiang et al., 2011), 
MnO2/carbon nanotube, RuO2/carbon nanotube and NiO/carbon nanotube 
(Fisher et al., 2013).  Due to their charge storage mechanisms with double layer 
capacitance, the composites demonstrate an improved capacitive behavior 
(Wang et al., 2011; Zhang and Zhao 2009) and have been produced in recent 
years. 
 
 
The last part of the study was carried out by the substitution of synthetic carbon 
material with plant-based material, namely, carboxymethyl cellulose (CMCs) 
incorporated with Mn2O3 as another potential electrode material. Research and 
developments on the use of CMC as one of the composite materials in the SC 
application has been reported by Karaca et al. (2018), Yu et al. (2017) and Xu 
and Zhang (2015). The target is to develop a greener and eco-friendly product; 
manganese oxide incorporated CMC porous carbon (CMCPC/Mn2O3) 
composites film by combining both EDLCs and pseudocapacitors (Yang et al., 
2015). The research flow and overview of the study is presented in Figure 1.2. 
CMC has drawn considerable attention owing to its renewability, biocompatibility 
and environmentally friendliness, (non-toxic and biodegradable) (Akhtar et al., 
2018; Esteghlal et al., 2018; Achachlouei and Zahedi 2018). Its properties also 
can be strengthened due to the presence of carboxyl groups that can be attached 
to metal ions such as Ca2+, Mg2+, Al3+, Mn3+ and Fe3+ (Yu et al., 2017).  
 
 
A comprehensive work has been done towards the electrochemical energy 
storage potential that utilises plant-based biomass as ‘natural and green 
chemistry' from a cross-disciplinary perspective that embraces material science 
for SCs energy storage.  
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Figure 1.2:   Research flow and overview of the study 
 
 
1.4 Scope of study 
 
 
The previous study shows that MPCs are suitable to be used as electroactive 
materials for SC electrode. This research was therefore carried out in order to 
discover the best fitting between the material of the electrode for optimum 
electrode material performance and efficiency. The scope of this study is to 
prepare and characterise the MPC film from resorcinol (R) and formaldehyde (F) 
as the carbon source and Pluronic F127 as the structure directing agent.  The 
MPC film was prepared by using spin coating self-assembly soft templating 
method on the Titanium (Ti) substrate. The different molar ratios of F127/R, 
water/ethanol, carbonisation temperature and stirring time are expected to 
produce MPC with different electrochemical properties.  
 
 
Another scope of this study is to incorporate Mn2O3 into MPC nanocomposite 
film by incipient wet impregnation method. The composites are expected to 
demonstrate an improved capacitive behaviour due to their dual charge storage 
mechanisms with double layer capacitance enhance the performance of 
capacitance.  
 
 

Preparation and Electrochemical Properties of 
Mesoporous Carbon (MPC) Film from Synthetic 

Chemicals and Natural Cellulose Precursor 
Incorporated with Mn2O3 Nanocomposites for 

Supercapacitor Application

Synthesis of MPC film by using spin coating self-
assembly soft templating method

Incorporation of Mn2O3/MPC nanocomposite film 
by incipient wet impregnation method

Synthesis of carboxymethylcellulose from 
bamboo (CMCPCbam) and commercial 

agro-based (CMCPCcom) film

Incorporation of Mn2O3/CMCPCbam and 
Mn2O3/ CMCPCcom nanocomposite film 

by incipient wet impregnation method 

© C
OPYRIG

HT U
PM



 
 

7 
 

Meanwhile, the potential advantages of using green and natural carboxymethyl 
cellulose (CMC) as a linker to link Mn2O3 particles in order to enhance its 
properties due to the existence of the carboxyl group. Thus, the synthesis of 
carboxymethylcellulose from bamboo (CMCPCbam) and commercial agro-
based (CMCPCcom) film incorporated with metal oxide, Mn2O3/CMCPCbam and 
Mn2O3/ CMCPCcom nanocomposite film was prepared by incipient wet 
impregnation method and was compared with the results of MPC prepared from 
chemical synthetic materials for the supercapacitive performance as electrode 
SC. 
 
 
1.5 Objectives 
 
 
The main objective of the project is to develop MPC film from synthetic precursor 
and natural bamboo-derived cellulose as carbon source-Mn2O3 composites for 
SC electrodes using spin coating self-assembly soft templating and incipient 
wetness impregnation technique. Below are the specific objectives to be 
addressed: 

1. To synthesise MPC film from synthetic precursor as carbon 
source incorporated with Mn2O3 (Mn2O3/MPC) composite film  

2. To synthesise the MPC film from natural carboxymethylcellulose 
precursor i.e. from bamboo (CMCPCbam) and commercial agro-
based (CMCPCcom) material. 

3. To prepare and characterise CMCPC incorporated Mn2O3 
(Mn2O3/CMCPCbam and Mn2O3/CMCPCcom) composites film 

4. To optimise study parameter of the MPC, CMCPC and Mn2O3 

deposition in the composite samples 
5. To evaluate the electrochemical performance of all samples 

produced as electrode material in the SC.  
 
 
1.6 Structure of thesis 
 
 
This thesis, which explores the improvement of mesoporous carbon 
performance, is divided into 6 chapters. Chapter 1 is intended to provide the 
reader with a general introduction on Malaysia’s overview of energy and 
technologies also the market perspective of SC industry. It also serves the 
background of research on SC electrodes and the important factors which 
govern the performance, green production, problem statements, scope of study 
and objectives. In addition, this section highlights the importance of this work. 
 
 
Chapter 2 provides a literature review on the development of mesoporous carbon 
materials from both the synthetic and natural cellulosed-based materials 
incorporated with metal oxides for SC applications. It also provides an additional 
ongoing literature review on the structure and techniques used to prepare the 
materials, as well as, their focus for use in SCs. This literature review is important 
for the reader to follow and understand the content discussed in later sections.  
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Chapter 3 discusses the research methodology which describes the 
experimental work and procedures completed during this project. This is 
attempted to produce high capacitance mesoporous carbon film and particularly, 
the source of the materials and chemicals used. The characterisation and 
analysis techniques also discussed in this chapter.  
 
 
To facilitate understanding, the results and discussion were divided into Chapter 
4 and Chapter 5, respectively. Chapter 4 exploring on the synthesis of MPC from 
synthetic precursor followed by the synthesis of Mn2O3/MPC nanocomposite film 
whereby Chapter 5 on the synthesis of CMC porous carbon from lignecellulose 
material before hybridising with Mn2O3/CMCPCbam and Mn2O3/CMCPCcom 
nanocomposite film. Each chapter introduces and discusses the results 
concerning the parameters that have been studied. The conditions of the 
experiment, e.g. carbonisation temperature, molar ratio, stirring time, 
concentrations and calcination temperature and time were varied in the study in 
order to enhance the capacitive behaviour and electrochemical performance of 
the electrode materials for supercapacitor. These include characterisation of the 
morphology, structure and composite. 
 
 
Chapter 6 provides a summary and conclusion of the results of the projects and 
a brief discussion on the direction of future work regarding the potential 
application. 
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