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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Master of Science

PROPERTIES OF PSEUDO τ - ADIC NON-ADJACENT FORM AND
THE EXPANSION OF τ -ADIC NON-ADJACENT FORM

By

SYAHIRAH BINTI MOHD SUBERI

June 2017

Chairman : Faridah binti Yunos, PhD
Faculty : Institute for Mathematical Research

The elliptic curve cryptography (ECC) system are public key mechanisms where
scalar multiplication (SM) is the dominant operation of ECC. SM is an operation
involving the computation of an integer n for multiple n times with a point P on the
Koblitz curve. In this research, the representation of the scalar n is in the form of
pseudo τ-adic non-adjacent form (pseudoTNAF), that is ∑

l−1
i=0 ciτ

i of size l > 0 with
ci ∈ {−1,0,1}, cl−1 6= 0 and cici+1 = 0.

The objective of this research is to study some properties of ρ0+ρ1τ in order to find
the relation of n mod (ρ0 +ρ1τ)( τm−1

τ−1 ) by considering three cases. Firstly, for the
case when ρ0 is odd and ρ1 is even. Secondly, for ρ0 is even and ρ1 is odd and the
last case is for both ρ0 and ρ1 are odd. From all these three cases, the behaviour of
the scalar n is obtained and also we developed some properties for norm of ρ0+ρ1τ .
As a result, the relation between the norms and the modulo congruence of n̄≡ n mod
(ρ0 +ρ1τ) τm−1

τ−1 is obtained.

Besides, an algorithm is used in transforming TNAF expansion into an element of
Z(τ). By using the algorithm, we analyzed and construct the propositions regarding
TNAF expansions having the least Hamming weight.
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CIRI BAGI PSEUDO τ-ADIC BUKAN-BERSEBELAHAN DAN
KEMBANGAN τ-ADIC BUKAN-BERSEBELAHAN

Oleh

SYAHIRAH BINTI MOHD SUBERI

Jun 2017

Pengerusi : Faridah binti Yunos, PhD
Fakulti : Institut Penyelidikan Matematik

Sistem kriptografi lengkuk eliptik merupakan mekanisma kunci awam dengan pen-
daraban skalar adalah operasi paling dominan dalam sistem ini. Pendaraban skalar
adalah suatu operasi yang melibatkan pengiraan integer n untuk n kali dengan suatu
titik P di atas lengkuk Koblitz. Dalam kajian ini, perwakilan bagi skalar n adalah
dalam bentuk pseudo τ-adic bukan-bersebelahan (pseudoTNAF) iaitu ∑

l−1
i=0 ciτ

i ber-
saiz l > 0 dengan ci ∈ {−1,0,1}, cl−1 6= 0 dan cici+1 = 0.

Objektif kajian ini adalah untuk mengkaji ciri bagi ρ0 +ρ1τ bagi tujuan untuk men-
cari kaitan bagi n mod (ρ0+ρ1τ)( τm−1

τ−1 ) dengan mempertimbangkan tiga kes. Yang
pertama, untuk kes apabila ρ0 ganjil dan ρ1 genap. Yang kedua, untuk ρ0 genap dan
ρ1 ganjil dan kes yang terakhir untuk kedua-dua ρ0 dan ρ1 ganjil. Daripada ketiga-
tiga kes, sifat pengganda n diperolehi dan kami juga membangunkan beberapa ciri
bagi norma ρ0 +ρ1τ . Hasilnya, hubung kait di antara norma dan konguren modulo
n̄≡ n mod (ρ0 +ρ1τ)( τm−1

τ−1 ) diperolehi.

Selain itu, satu algoritma digunakan dalam mentransformasikan kembangan TNAF
kepada suatu unsur dalam Z(τ). Dengan menggunakan algoritma tersebut, kami
menganalisis dan membina usulan berkaitan kembangan yang mempunyai pemberat
Hamming yang kecil.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In this chapter, we give some terms and definitions that will be used in this research.
Next, we will state the problem statement, research objectives and the organization
of the thesis.

There are some terms that are commonly used in cryptography and definitions
are listed as follows.

1) Plain text : the original message that will be transferred or stored.

2) Cipher text : the transformed original message.

3) Encryption : the process of converting the plain text to cipher text.

4) Decryption : the process of converting the cipher text to original message.

5) Secret key : numbers or sequence of integer numbers for encryp-
tion/decryption that are known to some party or parties that exchange plain
text.

6) Public key : numbers or sequence of integer numbers that are publicly known.

7) Encryption key : secret key/public key that is used during the encryption pro-
cess.

8) Decryption key : secret key/public key that is used during the decryption pro-
cess.

9) Attacker: a third party(outsider) who wants to have the original message.

10) User: the person who has the access to the original message.

The following are some definitions from Koblitz (1987), Hankerson et al. (2006),
Rosen (1993), Solinas (1997, 2000), Yunos et al.(2014, 2015, 2016), Ali and Yunos
(2016) are used in our research.

Definition 1.1 : Koblitz curve is defined on F2m as follows

Ea : y2 + xy = x3 +ax2 +1

where a ∈ {0,1}.

1
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Definition 1.2 : The Frobenius mapping of τ : Ea(F2m)→ Ea(F2m) is defined by

τ(x,y) = (x2,y2), τ(O) = O

where O is the point at infinity. The mapping satisfies (τ2+2)(x,y) = tτ(x,y) for all
(x,y) ∈ Ea(F2m), where the trace, t = (−1)1−a and a ∈ {0,1}. It can be considered
as a multiplication over complex number, τ = t+

√
−7

2 .

Definition 1.3 : An element of the ring Z(τ) is represented as r+ sτ where r,s ∈ Z.

Definition 1.4 : A τ-adic Non-Adjacent Form (TNAF) of non zero n̄ is defined as
TNAF(n̄)=∑

l−1
i=0 ciτ

i where l is the length of the expansion TNAF(n̄), ci ∈ {−1,0,1}
and cici+1 = 0.

Definition 1.5 : A Reduced τ-adic Non-Adjacent Form (RTNAF) of non zero n̄ an
element of Z(τ) is defined as RTNAF(n̄)≡ ∑

l̄−1
i=0 ciτ

i modulo ( τm−1
τ−1 ) where l̄ is the

length of the expansion RTNAF(n̄),ci ∈ {−1,0,1},cl̄−1 6= 0 and cici+1 = 0.

Definition 1.6 : A Pseudo τ-adic Non-Adjacent Form (pseudoTNAF) of non
zero n̄, an element of Z(τ) is defined as pseudoTNAF(n̄) ≡ ∑

l̄−1
i=1 ciτ

i modulo
ρ( τm−1

τ−1 ) where l̄ is the length of the expansion pseudoTNAF(n̄),ρ ∈ Z(τ),ci ∈
{−1,0,1},cl̄−1 6= 0 and cici+1 = 0.

Definition 1.7 : A Hamming Weight (HW) is defined as the number of coefficients
1 and −1 in an expansion of an element of Z(τ).

Definition 1.8 : An operating cost is defined as the cost in terms of running time to
calculate of the scalar multiplication of the number of doubling and addition opera-
tions on the Koblitz curve.

Definition 1.9 : A density among TNAF for an element of Z(τ) having length l is
defined as Hamming weight of the TNAF expansion divided by l.

Definition 1.10 : An average of Hamming weight among TNAF expansion for an
element in Z(τ) that having length l is defined as the Hamming weight among TNAF
is devided by the number of combination of ci and t where ci is the coefficients of
TNAF expansion and t is the trace of Frobenius endomorphism.

Definition 1.11 : An average density among TNAF for an element of Z(τ) having
length l is defined by as the average Hamming weight among TNAF is divided by
the length l.

2
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Definition 1.12 : Let m be a positive integer. If a and b are integers, we say that a
is congruent to b modulo m if m|(a−b). If a is congruent to b modulo m, we write
a≡ b (mod m) and say that a and b incongruent modulo m.

Definition 1.13 : The norm of α = r+ sτ ∈ Z(τ) is the integer product of α and its
complex conjugate ᾱ . Explicitly,

N(r+ sτ) = r2 + trs+2s2

where the trace t = (−1)(1−a).

1.2 Mathematical Background

In this subsection, we discuss some introduction of Elliptic Scalar Multiplication
(ECC), τ-adic Non-Adjacent Form (TNAF), Reduced τ-adic Non-Adjacent Form
(RTNAF) and Koblitz Curve.

1.2.1 Elliptic Scalar Multiplication

Elliptic curve has different kinds of forms. In this research, we focus on the curve
over F2m known as the Koblitz curve (Koblitz (1987)) defined as

Ea(F2m) : y2 + xy = x3 +ax2 +b (1.1)

where a ∈ {0,1} and b = 1.

The sets of point (x,y) that satisfy equation (1.1) are the points on the elliptic curve.

Scalar multiplication (SM) involved computing integer for multiple times for
a scalar n and a point P denoted as nP = P + P + ...+ P for n times such that
nP = Q where P and Q are points on the elliptic curve. Elliptic Curve Discrete
Logarithm Problem (ECDLP) is the problem of determining the value of n when
P and Q were given. Security systems based on elliptic curve cryptography (ECC)
rely on the hardness of these ECDLP. When computing SM, nP, n is referred as
the secret key and have different powers of τ . For example, TNAF expansion of
25, TNAF(25) = [1,0,0,1,0,0,−1,0,0,−1,0,0,−1]. It is also can be written as
25 = −τ12 − τ9 − τ6 + τ3 + 1. Since complex multiplication property is useful
for elliptic scalar multiplication by τ , being implemented by squaring is free. If
P = (x,y) is a point on the Koblitz curve then

25P =−(x4096,y4096)− (x512,y512)− (x64,y64)+(x8,y8)+(x,y)

Scalar multiplication can be achieved by addition and doubling operation.

3
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1. Point addition : Let G = (x1,y1), H = (x2,y2) and R = (x3,y3) are points on
Ea(F2m ). Point addition is the operation of adding two points of G and H
to obtain a new point (written as G+H = R). There are three cases for the
addition of points G and H.

i) First case is for G 6= ±H. For this case, x3 = λ 2 + λ + x1 + x2 + a,
y3 = λ (x1+x3)+x3+y1, and λ =

y1+y2
x1+x2

where a is one of the parameter
choosed based on the elliptic curve, Ea and λ is the gradient of the line
that passes the point G to H.

ii) The second case is for H =−G where H =(x1,x1+y1), then the addition
of G and H results in O (written as G+H = O).

iii) The third case is for H = G. Then G+H = 2G by using the concept
of doubling. Besides that, since all the elements in Ea(F2m ) satisfy the
commutative property, then H +G = G+H.

Figure 1.1 explains the point addition of G and H.

Figure 1.1: Point Addition of GGG and HHH

2. Point doubling : This operation involves adding a point G to itself having 2G
written as R = 2G. Consider point G = (x1,y1) with y1 6= 0. Let R = 2G with
R = (x3,y3) then x3 = λ 2+λ +a, y3 = x1

2+λ (x3+1), and λ = x1+
y1
x1

with
λ is the tangent from the point G and a is one of the parameter choosen based
on the elliptic curve. Figure 1.2 explains the point doubling geometrically.

1.2.2 Koblitz Curve

Koblitz curves are also known as the Anomalous Binary Curves (ABC) defined over
F2. Solinas (2000) introduced TNAF where it is one of the efficient algorithms to
calculate the scalar multiplication. We give a few basic properties of the Koblitz
curves based on Solinas (2000) and Hankerson et al. (2006).

4
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Figure 1.2: Point Doubling of GGG

1. Group orders: The group order of F2m is denoted by Ea(F2m) where it is
the points on the extension field F2m . Group F2m is choosen to perform the
encryption and decryption process. The group order #Ea(F2m) is a prime or a
product of a prime with small integer. #Ea(F2m) = gh where h is prime and
g = 4 if a = 0 or g = 2 if a = 1. h is prime when m is prime. One of the criteria
to perform the process by choosing a prime m.

2. Complex Multiplication: Since the Koblitz curves are defined over F2m , they
have the following properties.

i) If P = (x,y) is a point on Ea then so is the point (x2,y2). Besides, it is
proven that

(x4,y4)+2(x,y) = t · (x2,y2)

for every (x,y) on Ea.

ii) Let τ refer to Frobenius endomorphism. Frobenius mapping τ :
Ea(F2m) 7→ Ea(F2m) for point P = (x,y) on Ea(F2m) defined by

τ(x,y) = (x2,y2),τ(O) = O

with O point at infinity.

iii) If (τ2 + 2)P = tτP for all P ∈ Ea(F2m), with the trace, t = (−1)1−a.
Therefore Ea has complex multiplication with the number τ = t+

√
−7

2 .

3. Lucas sequence: Lucas sequence are the sequences of integers that will help
in computations involving quadratic irrationals. We summarize the relevant
properties as follows:

i) There are two Lucas sequences Ui and Vi, defined by:

U0 = 0,U1 = 1 and Ui = tUi−1−2Ui−2 for i≥ 2;
V0 = 2,V1 = t and Vi = tVi−1−2Vi−2 for i≥ 2.

5
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ii) It has been proved

Ui =
τi−τ̄i
√
−7

;

Vi = τ i + τ̄ i.

4. Norm: the norm of an element α ∈ Z(τ) is the product of α and its conjugate
ᾱ . The norm of α = α1 +α2τ is N(α) = α1

2 + tα1α2 +2α2
2. The following

are the properties of norm.

i) 1 and −1 are the only elements of Z(τ) having norm 1.
ii) N(τ) = 2 and N(τ−1) = h for h = 4 if a = 0 or h = 2 if a = 1 whereby

a is a parameter choose for Koblitz curve.
iii) The norm function is multiplicative; that is N(α1α2) = N(α1)N(α2) for

all α1 and α2 are element of Z(τ).

1.2.3 τ-adic Non-Adjacent Form

For any α = c+ dτ an element of Z(τ) it can be written as α = ∑
l−1
i=0 ciτ

i for ev-
ery ci ∈ {−1,0,1}. The following theorem discuss the properties of τ-adic Non-
Adjacent Form (TNAF).

Theorem 1.1 : Let α ∈ Z(τ) and α 6= 0 then

(i) TNAF(α) is a unique digit representation.

(ii) If the length l(α) is greater than 30, then

log2(N(α))−0.55 < l(α)< log2(N(α))+3.52.

where N(α) is the norm of α .

iii) The average density of non zero digits in the expansion of l is approximately
1
3 .

TNAF representation of α can be written as TNAF(α) = [c0,c1,c2, ...,cl−2,cl−1].
The coefficients, ci of TNAF are generated by repeatedly dividing α with τ such
that c and d are equal to 0. If α is not divisible by τ then it can have the remainder,
ci ∈ {−1,1} so that the quotient α−ci

τ
is divisible by τ . The next coefficient, ci+1

of TNAF expansion should have the value 0 since cici+1 = 0. We show the example
of finding TNAF(25) where α = 25+ 0τ , c = 25,d = 0,a = 1 and τ̄ = 1− τ is the
conjugate of τ . First, we show that τ · τ̄ = 2.

τ · τ̄ = τ(τ−1)

= τ
2− τ

= τ− τ +2
= 2.

6
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We proceed with the steps in obtaining TNAF(25).

Step 1: Since 25 is not divisible by τ , we choose c0 = 1. The remainder can

either be 1 or −1. Since the next coefficient must be 0, c0 is 1 so that

cici+1 = 0.

25−1
τ

=
24
τ
· τ̄

τ̄

=
24 · τ̄

2
= 12 · τ̄
= 12(1− τ)

= 12−12τ.

Therefore, TNAF(25)= [1,c1,c2, ...,cl−1].

Step 2: Since 12−12τ is divisible by τ , then c1 = 0.

12−12τ

τ
=

12
τ
−12

=
12
τ
· τ̄

τ̄
−12

=
12 · τ̄

2
−12

= 6 · τ̄−12
= 6(1− τ)−12
=−6−6τ.

Thus, TNAF(25)= [1,0,c2, ...,cl−1].

Step 3: Since −6−6τ is divisible by τ , then c2 = 0.

−6−6τ

τ
=
−6
τ
−6

=
−6
τ
· τ̄

τ̄
−6

=
−6 · τ̄

2
−6

=−3 · τ̄−6
=−3(1− τ)−6
=−9+3τ.

7
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Thus, TNAF(25)= [1,0,0,c3, ...,cl−1].

Step 4: Since −9+3τ is not divisible by τ , then c3 = 1.

−8+3τ−1
τ

=
−10

τ
+3

=
−10

τ
· τ̄

τ̄
+3

=
−10 · τ̄

2
+3

=−5τ̄ +3
=−5(1− τ)+3
=−2+5τ.

Thus, TNAF(25)= [1,0,0,1,c4, ...,cl−1].

Step 5: Since −2+5τ is divisible by τ , then c4 = 0.

−2+5τ

τ
=
−2
τ

+5

=
−2
τ
· τ̄

τ̄
+5

=
−2 · τ̄

2
+5

=−τ̄ +5
=−1+ τ +5
= 4+ τ.

Thus, TNAF(25)= [1,0,0,1,0,c5, ...,cl−1].

Step 6: Since 4+ τ is divisible by τ , then c5 = 0.

4+ τ

τ
=

4
τ
+1

=
4
τ
· τ̄

τ̄
+1

=
4 · τ̄

2
+1

= 2 · τ̄ +1
= 2(1− τ)+1
= 3−2τ.
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Thus, TNAF(25)= [1,0,0,1,0,0,c6, ...,cl−1].

Step 7: Since 3−2τ is not divisible by τ , we choose the next coefficient

c6 =−1.

3−2τ− (−1)
τ

=
4
τ
−2

=
4
τ
· τ̄

τ̄
−2

=
4 · τ̄

2
−2

= 2 · τ̄−2
= 2(1− τ)−2
= 2−2τ−2
=−2τ.

Thus, TNAF(25)= [1,0,0,1,0,0,−1,c7, ...,cl−1].

Step 8: Since −2τ is divisible by τ , then c7 = 0.

−2τ

τ
=−2.

Thus, TNAF(25)= [1,0,0,1,0,0,−1,0,c8, ...,cl−1].

Step 9: Since −2 is divisible by τ , then c8 = 0.

−2
τ

=
−2
τ
· τ̄

τ̄

=
2 · τ̄

2
= τ̄

= 1− τ.

Thus, TNAF(25)= [1,0,0,1,0,0,−1,0,0,c9, ...,cl−1].
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Step 10: Since 1− τ is not divisible by τ , we choose c9 =−1.

1+ τ− (−1)
τ

=
2+ τ

τ

=
2+ τ

τ
· τ̄

τ̄
+1

=
2 · τ̄

2
+1

= τ̄ +1
= 1− τ +1
= 2− τ.

Thus, TNAF(25)= [1,0,0,1,0,0,−1,0,0,−1,c10, ...,cl−1].

Step 11: Since 2− τ is divisible by τ , then c10 = 0.

2− τ

τ
=

2
τ
−1

=
2
τ
· τ̄

τ̄
−1

=
2 · τ̄

2
−1

= τ̄−1
= 1− τ−1
=−τ.

Thus, TNAF(25)= [1,0,0,1,0,0,−1,0,0,−1,0,c11, ...,cl−1].

Step 12: Since −τ is divisible by τ , therefore c11 = 0.

−τ

τ
=−1.

Thus, TNAF(25)= [1,0,0,1,0,0,−1,0,0,−1,0,0,c12, ...,cl−1].

Step 13: Since −1 is not divisible by τ , then we choose c12 =−1.

−1− (−1)
τ

= 0

Thus, TNAF(25)= [1,0,0,1,0,0,−1,0,0,−1,0,0,−1].

10
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It is also can be written as 25 = −τ12− τ9− τ6 + τ3 + 1. We use the concept of
division of an integer 25 with τ in obtaining the expansion of TNAF (25). It is much
more efficient by using the following Lemma 1.1 that given by Solinas(1997).

Lemma 1.1 : Let α = c+dτ ∈ Z(τ).

(i) α is divisible by τ if and only if c is even. That is

α

τ
= (d +

tc
2
)− (

c
2
)τ (1.2)

where t is a parameter that is chosen. If c is not even, then the remainder is
chosen between 1 or −1.

(ii) α is divisible by τ2 if and only if c≡ 2d (mod 4).

Based on Lemma 1.1, Solinas(1997) developed an algorithm for finding TNAF
expansion of α as shown in Algorithm 1.1.

Algorithm 1.1 :(TNAF)

Input : integers c, d;
Out put : T NAF(c+dτ);
Computation :

Set c0← c,c1← d
Set S← 〈〉
While c0 6= 0 or c1 6= 0

If c0 odd then
set u← 2− (c0−2c1 mod 4)
set c0← c0−u

else
set u← 0

Prepend u to S
Set (c0,c1)← (c1 +

tc0
2 ,− c0

2 )
End While
Output S

This algorithm has also been used by Yunos et al. (2015) in constructing the
programming as shown as in Figure 1.3.

We choose the parameter a = 0,c0 = 25 and c1 = 0. By using Algorithm 1.1, we
obtain TNAF(25)= [1,0,0,1,0,0,−1,0,0,−1,0,0,−1] and the length of the expan-
sion, (l) is 13 and the density, (d) is 5

13 respectively. This algorithm also can be used
to find TNAF expansion for integers, 16 n6 21.
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Figure 1.3: Programming for Algorithm 1.1

a := can be either 0 or 1;
t := (−1)1−a;
c[0] := any integer;
c[1] := any integer;
i := 0;
while c[0]<> 0 or c[1]<> 0 do

o := type(c[0],odd);
evalb(o)
if o then

f := c[0]−2 · c[1];
d := convert( f ,rational);
e := mod p(d,4);
v[i] := 2− e;
c := c− v[i];

else
v[i] := 0

end if;
R := c[0];
c[0] := c[1]+ tc[0]

2 ;
c[1] :=−R

2 ;
i := i+1;
j := i;

end do;
T NAF := seq(v[i], i = 0... j−1);
LengthT NAF := nops(T NAF);
NonzeroCoe f f icientForT NAF := remove(has,T NAF,0);
HammingWeightT NAF := nops(NonzeroCoe f f icientForT NAF);
If LengthT NAF <> 0 then

Density := HammingWeightT NAF
LengthT NAF ;

end if;
DensityT NAF := convert(Density, f loat,5);

1.2.4 Reduced τ-adic Non-Adjacent Form

Reduced τ-adic Non-Adjacent Form (RTNAF) is another form of TNAF ex-
pansion. RTNAF is an expansion of non zero element, n̄ of Z(τ), written as n̄
where RTNAF(n̄)≡ ∑

l̄−1
i=0 ciτ

i modulo ( τm−1
τ−1 ). l̄ is the length of the expansion

RTNAF(n̄),ci ∈ {−1,0,1},cl̄−1 6= 0, cici+1 = 0 and m is a prime number. The

expression of ( τm−1
τ−1 ) is first transformed into r + sτ ∈ Z(τ) by using Lucas

sequence. Then the modular reduction is performed by division and rounding off
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operation (refer to Routine 74 in Solinas(2000)) using the following algorithms. The
steps of finding the expansion RTNAF’s are similar as finding TNAF’s expansion.

Algorithm 1.2: Rounding off Algorithm

Input : rational numbers λ0, and λ1;
Out put : integers x and y such that x+ yτ is closed to the complex
numbers λ0 +λ1τ;
Computation :

1. For i from 0 to 1 do
1.1 fi← f loor(λi +

1
2 ).

1.2 ηi← λi− fi.
1.3 hi← 0.

2. η ← 2η0 + tη1.
3. If η ≥ 1 then

3.1 If η0−3tη1 <−1 then h1← t; else h0← 1
else
3.2 If η0 +4tη1 ≥ 2 then h1← t.

set u← 2− (c0−2c1 mod 4)
set u← 2− (c0−2c1 mod 4)

4. If η <−1 then
4.1 If η0−3tη1 ≥ 1 then h1←−t; else h0←−1

else
4.2 If η0 +4tη1 <−2 then h1←−t.

5. x← f0 +h0,y← f1 +h1.
6. Return to (x,y)

Algorithm 1.3: Division in Ring of Z(τ)
Input : dividend a+bτ and divisor c+dτ 6= 0.
Output: quotient x+ yτ and the remainder w+ zτ .
Computation :

Set k← ac+ tad +2ad,
l← bc−ad

Set N← c2 + tcd +2d2

Set λ0← k
N ,

λ1← l
N

Use Algorithm 2.2 to calculate (x,y)← Round(λ0,λ1)
Set w← a− cx+2dy,

z← b−dx− cy− tdy
Output x, y, w, z

Both of the Rounding off Algorithm and the Division Algorithm are used in the
process of division in Z(τ). The output x + yτ is the final product of these two
algorithms where it is the result of modular reduction integer n. These two algorithms
are used in Chapter 3 to find n̄ such that n̄≡ n mod ( f + eτ).

13
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1.3 Problem Statement

The RTNAF and pseudoTNAF systems have approximately been equivalent oper-
ating cost as TNAF. The average density among TNAF, RTNAF, and pseudoTNAF
for an element of Z(τ) is approximately 1

3 .

Yunos et al. (2015) has proposed two properties for ρ = ρ1 + ρ2τ where n̄ ≡ n̄
mod ρ

τm−1
τ−1 . Based on these two traits, it can be used to predict the output of the

transformation of ρ
τm−1
τ−1 . The first property is when ρ0 is even and the second

property is when both ρ0 and ρ1 are even. It gives us an idea to expand the properties
of ρ0 and ρ1. We will consider the properties of ρ for n̄ ≡ n̄ mod ρ(τm− 1) and
n̄≡ n̄ mod ρ

τm−1
τ−1 .

Solinas in 1997 has introduced the TNAF expansion of n̄ = r + sτ for
an element of Z(τ) and can be written as TNAF(n̄) = ∑

l−1
i=0 ciτ

i or
TNAF(n̄ = [c0,c1,c2, ...,cl−2,cl−1]) for l is the length of the expansion and
ci ∈ {−1,0,1}. We focus on the three cases of the first coefficient, c0 of TNAF
expansion. By developing an algorithm for the transformation of the TNAF
expansion into an element of Z(τ), we identify TNAF expansions having the least
number of Hamming weight, (HW). Having smaller number of HW means the
TNAF expansion have small operational cost.

1.4 Research Objective

The objectives of this research are as follows:

1. To develop several properties of ρ in the ring of Z(τ) in the form of pseudoT-
NAF expansion. The properties of ρ affect the selection of n of the multiplier
SM.

2. To find a new approach to predict value of n of the multiplier SM.

3. To find a general form of TNAF expansion having small number of Hamming
weight indirectly have low operation cost.

1.5 Organization of Thesis

In Chapter 2, we give the mathematical background of elliptic scalar multiplication,
τ-adic non adjacent form, reduced τ-adic non adjacent form, pseudo τ-adic non
adjacent form and the koblitz curve. We also give the literature review that is related
to this project.

In Chapter 3, we give three properties regarding ρ . The first case is where ρ0
is odd and ρ1 is even, the second case is where ρ0 is even and ρ1 is odd and the third
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case is where ρ0 and ρ1 are odd. We also provide proof for each cases. Then, we
give some properties regarding the norm of an element in Z(τ). The three properties
are important in understanding the behaviour of n1 and n2 when using n̄≡ n1 +n2τ

mod ρ(τm−1) and n̄≡ n1 +n2τ mod ρ( τm−1
τ−1 ).

In Chapter 4, we identify cases for integers that have differerent values for c0
for TNAF expansion where c0 can have the values −1, 0 or 1. Then we proceed
to the TNAF expansion that have the least number of Hamming weight. The last
chapter is where the conclusion are made and the future research is proposed.
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