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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfillment of the requirement for the degree of Master of Science 

 

3D FACE RECOGNITION USING HOG FEATURES  

BASED ON FINE-TUNING DEEP RESIDUAL NETWORKS 

 

By 

 

SIMING ZHENG 

February 2020  

 

Chair :    Lili Nurliyana Binti Abdullah, PhD 
Faculty :    Faculty of Computer Science and Information Technology 
 
 
As the technology for 3D photography has developed rapidly in recent years, an 
enormous amount of 3D images has been produced, one of the researches for 
which is face recognition. Improving the accuracy of a number of data is crucial 
in the 3D face recognition problems. Traditional machine learning methods can 
be used to recognize 3D faces, but the face recognition rate has declined rapidly 
with the increasing number of 3D images. As a result, classifying large amounts 
of 3D image data is time-consuming, expensive, and inefficient. The deep 
learning methods have become the focus of attention in the 3D face recognition 
research. Current methods of assessing 3D face recognitions are limited and 
often subjective, complex or low accuracy. One of the most prominent methods 
for assessment showing great promise is residual neural network (ResNet), a 
shortcut connection way of training a very deep network by randomly dropping 
its layers during training and using the full network in testing time, which allows 
for a more quantitative evaluation. With the introduction of feature engineering 
of HOG method for extracting the discriminative information, and especially fine-
tuning method for reconstructing the ResNet learning model, we are able to 
calculate a relative high accuracy for the extracted face region. This allows also 
researchers to effectively assess on a continuous accuracy with fine-tuned 
ResNet learning model of different depths. However, shadow learning 
technology is not available in many settings (e.g. curse of dimensionality, 
accuracy decline) yet so there still exists a need for this quantitative assessment 
from deep learning methods. How to extract the important and discrimative 
information from the raw data and efficiently recognize a large number of 3D face 
images with fine-tuned learning framework at high accuracy was the main task 
of this research. In our experiment, the end-to-end face recognition system 
based on 3D face texture is proposed, combining the geometric invariants, 
histogram of oriented gradients and the fine-tuned residual neural networks. The 
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research shows that when the performance is evaluated by the FRGC-v2 dataset, 
as the fine-tuned ResNet deep neural network layers are increased, the best 
Top-1 accuracy is up to 98.26% and the Top-2 accuracy is 99.40%. The 
framework proposed costs less iterations than traditional methods. The analysis 
suggests that a large number of 3D face data by the proposed recognition 
framework could significantly improve recognition decisions in realistic 3D face 
scenarios. 
 
 
Keywords: 3D face recognition, image classification, feature engineering, 
histogram of oriented gradients, statistical deep learning, residual neural 
networks, fine-tuning, tensorboard. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Sarjana Sains 

 

PENGECAMAN WAJAH 3D MENGGUNAKAN CIRI HOG BERDASARKAN 

RANGKAIAN SISA YANG MENDALAM 

Oleh 

SIMING ZHENG 

   Februari 2020 
 
Pengerusi: Madya Dr. Lili Nurliyana Binti Abdullah, PhD 
Fakulti:  Fakulti Sains Komputer Dan Teknologi Maklumat 
 
 
Oleh kerana teknologi untuk fotografi 3D telah berkembang dengan pesat dalam 
beberapa tahun kebelakangan ini, sejumlah besar imej 3D telah dihasilkan, 
salah satu daripada penyelidikan yang merupakan pengiktirafan muka. 
Memperbaiki ketepatan beberapa data adalah penting dalam masalah 
pengenalan wajah 3D. Kaedah pembelajaran mesin tradisional boleh digunakan 
untuk mengenali wajah 3D, tetapi kadar pengiktirafan wajah telah menurun 
dengan cepat dengan peningkatan bilangan imej 3D. Kesimpulnya, 
mengklasifikasikan sejumlah besar data imej 3D adalah memakan masa, mahal, 
dan tidak cekap. Kaedah pembelajaran mendalam telah menjadi tumpuan 
perhatian dalam penyelidikan pengenalan wajah 3D. Kaedah semasa menilai 
pengiktirafan muka 3D adalah terhad dan seringkali subjektif, kompleks atau 
ketepatan yang rendah. Salah satu kaedah yang paling menonjol untuk penilaian 
yang menunjukkan janji besar ialah rangkaian saraf residual (ResNet), cara 
sambungan pintas latihan rangkaian yang sangat mendalam dengan secara 
rawak menjatuhkan lapisan semasa latihan dan menggunakan rangkaian penuh 
dalam masa ujian, yang membolehkan lebih banyak penilaian kuantitatif. 
Dengan pengenalan kejuruteraan ciri kaedah HOG untuk mengekstrak 
maklumat diskriminatif, dan terutama kaedah penalaan halus untuk membina 
semula model pembelajaran ResNet, kita dapat mengira ketepatan yang relatif 
tinggi untuk kawasan wajah yang diekstrak. Ini membolehkan para penyelidik 
untuk menilai secara berkesan dengan ketepatan yang berterusan dengan 
model pembelajaran ResNet yang diperhalusi dengan teliti yang berbeza. Walau 
bagaimanapun, teknologi pembelajaran bayangan tidak tersedia dalam banyak 
tetapan (mis. Laknat kepincangan, kemerosotan ketepatan) namun masih 
terdapat keperluan penilaian kuantitatif ini daripada kaedah pembelajaran 
mendalam. Bagaimana untuk mengekstrak maklumat penting dan diskriminatif 
dari data mentah dan mengiktiraf sejumlah besar imej wajah 3D dengan rangka 
kerja pembelajaran terperinci dengan ketepatan yang tinggi adalah tugas utama 
penyelidikan ini. Dalam eksperimen kami, sistem pengenalan wajah akhir-ke-
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akhir berdasarkan tekstur muka 3D dicadangkan, menggabungkan invari 
geometrik, histogram kecerunan berorientasikan dan rangkaian saraf sisa yang 
sihat. Penyelidikan menunjukkan bahawa apabila prestasi dinilai oleh dataset 
FRGC-v2, apabila ResNet digunakan dalam rangkaian Rangkaian neural yang 
ditala dengan baik, peningkatan ketepatan Top-1 terbaik adalah 98.26% dan 
ketepatan Top-2 adalah 99.40%. Rangka kerja kos yang dicadangkan kurang 
daripada lelaran tradisional. Analisis menunjukkan bahawa sejumlah besar data 
wajah 3D oleh rangka kerja pengiktirafan yang dicadangkan dapat 
meningkatkan keputusan pengiktirafan secara nyata dalam senario wajah 3D 
yang realistik. 
 
 
Kata kunci: Pengiktirafan wajah 3D, klasifikasi imej, ciri kejuruteraan, histogram 
kecerunan berorientasikan, pembelajaran mendalam statistik, rangkaian saraf 
residual, penalaan halus, tensorboard. 
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CHAPTER 1 

 
 

INTRODUCTION 
 
 
1.1  Background of the Study 
 
 
3D face recognition is a classical research topic in the field of computer vision, 
and its essence is image classification. The recognition rate is the goal of 
human face recognition tasks. The traditional face recognition exists many 
problems, such as illumination change, head posture change, foreign body 
occlusion, and so on. At present, although there were many ways to solve 
these problems, the main challenges remain. To address these concerns, this 
research proposes an end-to-end fine-tuned deep learning model for face 
recognition based on 3D face textures images. 
 
 
In recent years, the Convolutional Neural Network (CNN) has dramatically 
developed in various fields of computer vision, and the recognition algorithm 
based on convolutional neural network gradually applied in recognition tasks. 
The surveys (Karen Simonyan & Andrew Zisserman, 2015) found increasing of 
computing resources and the emergence of a large number of data sets, the 
deep learning method of the convolutional neural network provides many 
possibilities to improve the accuracy of 3D face recognition. With the gradual 
improvement of performance requirements for specific scene applications, 
designing a reasonable structure of the deep neural network has become a 
critical factor in determining network performance (Y. Sun et al., 2015).   
 
 
With the rapid growth of the Internet, the smart computing equipment and 
social networking applications were increasingly used. There were hundreds of 
millions of 3D images uploaded every day to platforms such as Snapchat and 
Alipay, on which a large number of 3D face images were generated. Three 
main problems in creating 3D face recognition systems were that many 
researchers report were the 3D face pose, illumination changes, and variations 
in facial expression. Extracting better features were a key process for 3D face 
recognition (Parama Bagchi et al., 2015; Jian Zhang et al., 2016; Gawed M et 
al., 2013, Xueqiao Wang et al., 2015; Xiangyu Zhu et al., 2016). Furthermore, 
shallow learning (such as machine learning) including only one or no layer of 
hidden units leads to lack of ability to deal with large-scale data. These 
challenges have caused persistent problems for the robustness and reliability 
of such systems, which has driven many researchers to use deep learning for 
3D face recognition tasks. 
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1.2  Problem Statement 
 
 
In recent years, considerable attention has been directed to the application of 
Statistical methods of both machine learning and deep learning models in 
computer vision tasks. These methods have been used in 3D face recognition 
and prediction in numerous 3D face research works. However, predicting the 
probability of 3D face images for a large number setting remains a challenging 
task for many researchers. 
 
 
With the development of imaging technology, the resolution of 3D face images 
was getting higher and higher, and the amount of information contained was 
also increasing, this put pressure on the work of the image recognition stages. 
However, different learning models have different generalization ability for 
extracting images features. When processing a large number of image data, 
the problems like curse of dimensionality increasing was caused because of a 
large number of non-discriminative data (Sima Soltanpour et al., 2017). The 
performance of 3D face recognition was sensitive to unimportant background 
information, the best way is to eliminate the influence of noisy on testing data. 
Besides, some factors such as posture, expression, and background 
information can still affect the result of 3D face recognition. As a result, the 
model training and testing becomes unstable due to the non-discriminative data 
generated in the pre-processing phases. 
 
 
Quite a few researches have been conducted on the application of CNN 
structures in 3D face recognition tasks. When the deeper the layers of learning 
model are, the more problems like recognition accuracy decline, due to the 
network limitations of gradient vanishing and exploration. Nevertheless, no 
work has been done on reconstructing learning model by different fine-tuning 
strategies for modeling the extracted data. A literature review of some CNNs-
based models applied for the field of 3D face recognition that shadow learning 
has been caused to these problems, some examples were given from the 
researches of Huiying Hu et al., (2017) and S Sharma et al., (2016).  
 
 
These gaps encouraged this research to focus on the development of end-to-
end fine-tuning based deep residual learning framework for 3d face recognition 
by using Hog Features. This thesis concentrates also on the feature 
engineering and computation with the aim of reducing the effects of curse of 
dimensionality on the computing performance and increasing the whole 
accuracy while solving the gradient vanishing and gradient explosion problems. 
 
 
1.3  The Motivation and Significance of the Study 
 
 
The primary objective of approach was proposed that it was to create an end-
to-end face recognition system 3D textures-based with a high recognition 
accuracy, a satisfied performance and robustness while remaining practical. In 
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this system, a custom residual neural network model was developed base on 
ResNet architecture for the 3D face recognition task. This model was fine-
tuned with different depth using HOG features of 3D face images. The primary 
aim was to solve problems of gradient vanishing and gradient exploration. In 
this work, the fine-tuned ResNet models was trained with different depth using 
HOG based 3D texture images, maintaining faster calculations and the high 
accuracy of the growth of images. 
 
 
When deep learning methods were applied in realistic 3D face scenarios, two 
challenges confronted were as follows: Firstly, the accuracy becomes unstable 
as 3D face images were added, this was because different deep learning 
networks have different generalization ability for extracting images features (Y. 
Sun et al., 2015). When processing a large number of image data, the deeper 
the layers of deep learning model were, the more problems such as gradient 
vanishing and gradient exploration will be caused (Christian Szegedy et al., 
2015; Y. Sun et al., 2015); Secondly, as more and more complex deep learning 
models will be applied to the actual scenario, the recognition rate may be 
affected by the depth of a complex model. In this research, the research 
explored both issues. How to recognize a large number of 3D face graphics 
with high precision is the main task of this experiment. 
 
 
1.4  The Objectives of the Study 
 
 
The main purpose of this thesis is to investigate the effect of our 3D face 
recognition framework towards achieving the high recognition rate that 
outperform the accuracy in the state-of-the-art researches. The primary aim is 
to make contribution to the development of fine-tuned ResNet learning model 
for 3D face texture data in term of recognizing and predicting the outcome of 
individual face images. It is important to highlight that this study also intends to 
fill the gap in comparative studies by developing strategies that directly 
incorporate feature engineering in the process of constructing a 3D face 
recognition learning framework. More specifically, the foremost objectives of 
our research can be outlined systematically as follows: 
 

1. To develop new robust face detection and alignment approaches in pre-
processing stage to improve the framework efficiency, reduce the 
effects of curse of dimensionality and select the important data 
variables in each individual 3D image for the learning model. 
 

2. To propose the HOG strategies for extracting the discriminate 3D face 
data in experimental learning models rather than simply inputting 
extracted data. 

 
3. To propose a specifically designed fine-tuned ResNet learning models 

that are able to predict the probability of the extracted HOG-based face 
images, which is efficient in predicting the outcome at each epoch. 
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4. To analyze the experimental data using the fine-tuned ResNet models 
with different depth and using the Tensorboard to compare the 
probability results with standard evaluation metrics of accuracy.  

 
 
1.5  The Research Scope 
 
 
The focus of this thesis is on development deep learning-based framework for 
recognizing the 3D face texture images. More specifically, the aim is to develop 
fine-tuned CNNs architecture that are able to receive gray image as input data 
instead of the raw data from the FRGC 2.0 dataset. Face recognition can be 
viewed as a classification problem by establishing recognition framework 
according to the particular situation. Focus will be restricted to constructing 
fine-tuned Deep Residual Learning classification model that predict the 
precision and accuracy of events occurring during one or more fixed time 
intervals. In other words, 3D face recognition is considered as a classification 
problem in this research. The experiments also focus on the feature extraction 
process as a pre-processing technique for handling the computation workload 
and curse of dimensionality problems. By using image pre-processing, the fine-
tuned model is able to process some information about the extracted raw data. 
The gathered information helps the framework to effectively learn and 
recognize the discriminate information for reducing actual computation and 
increasing the recognition rate. For this purpose, we use the custom HOG 
extraction method. 
 
 
1.6 The Research Contributions 
 
 
The following list demonstrates the contributions of the research: 
 
• Proposed a 68 key points for detecting the exact face area, including 

eyebrows, eyes, nose, mouth, chin, etc. This method effectively 
improves detection precision rate for recognizes face images. 

 
• Proposed a custom HOG algorithm for extracting the discriminate 

feature effectively reduce image dimensions and size. 
 
• Proposed a new method of fine tuning based ResNet learning model 

which is useful for fixing the input data and recognizing the 3D face 
texture datasets.  
 

• The result found a relationship between the comparison matrices and 
the proposed learning model with different depth layers. The 
relationship can help researchers better to evaluate the robustness of 
learning models and the effects of each epoch on the further 
experiments.  
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1.7  The Structure of the Dissertation 
 
 
This thesis was mainly discussed in six large chapters, the remainder of this 
work is prepared as follows:   
 
Chapter one: The introduction of 3D face recognition. The research 
background, research objectives and significance of the thesis were discussed. 
The development of deep learning was expounded.  
 
Chapter two: Showing a comparison of shallow learning and deep learning 
and explains the content of deep network theory. This chapter summarizes the 
theoretical knowledge of deep learning, the convolution network and the 
principle of residual networks. 
 
Chapter three: The robust 3D face detection and alignment modules were 
implemented and flexibly applied in 3D face raw data. In addition, the detailed 
steps of HOG feature extraction and the classification with the fine-tuned 
residual neural network were presented, an extraction pattern was proposed by 
combining the HOG features to the our fine-tuned of ResNet model. This 
chapter has carried out experiments on FRGC 2.0 database. 
 
Chapter four: Using different test metrics to evaluate the performance of our 
proposed model and analyzed the performance values for each phase on the 
visualization tool of Tensorboard. 
 
Chapter five: This section discusses the use of more specific performance 
indicators to evaluate proposed models, such as Top1 and Top2. Analyzing the 
performance of each stage on the model and finally compare it with related 
research. 
 
Chapter six: A conclusion and outlook were made in our research. The 
research results in the postgraduate stage and the innovations of this thesis 
were comprehensively summarized. At the same time, this study analyzes the 
shortcomings of the research and the direction of future improvement. 
 
 
1.6  Summary 
 
 
Face recognition is the most typical pattern recognition. The feature information 
of the face can be extracted in different ways, and the collected information 
was compared or verified with the original information, thereby realizing the 
recognition of the human identity. The first chapter mainly introduces the 
research background and significance of 3D face recognition, then analyze 
various difficulties and challenges encountered in our research, and then 
propose the research object to the problems. The next chapter introduces the 
relevant research work, and gradually explains the application of contemporary 
machine learning methods and the basis of deep neural network algorithms in 
the 3D face recognition. 
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