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The open photoacoustic cell (OPC) technique was used for measuring thermal
diffusivity of solid samples. It is based upon the measurement of the photoacoustic
signal as a function of the modulation frequency in the region where the thermal
diffusion length equals to thesample thiclness. The measurements were carried out
at room temperature for samples metal, alloy, semiconductor, polymer and
superconductor. The measured thermal diffusivity values for metal, semiconductor
and polymer samples are in good agreement with the values reported previously by
other researchers. The thermal diffusivity values of the AgiAu;., alloys decrease
from 1.48 cm?/s (pure Ag) to a minimum value at around x = 0.70 before increasing
towards the value of 1.28 cm?/s (pure Au). In AuCugo0-007A8100-903 alloy system,
the thermal diffusivity values decrease with the increasing of the weight fraction x

and reaching a minimum at around x =90 composition. Then, the thermal



diffusivity values tend to increase to the value of 1.28 cm¥/s for the pure Au
metal.  For superconductor samples in the nomal state, the measured thermal
diffusivity decreases with the increase of Zn content in the Bi;,Pbg ¢Sr,Ca;y.<ZnCusOs
system, However, the thermal diffusivity values increase with the increasing of Ba

dopant in the Bi,Pbg sS1,Ca; «Ba,Cu3Os system.

The OPC detection was also used to monitor the evaporation time of the liquid
samples. The evaporation time for 10.60 mm® of acetone, chloroform, methanol and
ethanol samples were recorded as 236.7 s, 578.8 s, 436.2 s and 869.2 s respectively.
The results also show that the liquid evaporation time is inversely proportional to the

laser power.

The laser beam power in the range of (2-16) mW was monitored by using OPC,
closed photoacoustic cell (CPC) and piezoelectric (PZT) detections. In each case,
the photoacoustic (PA) signals were found to be linear up to the laser power of 16
mW. In comparison, the power meter responsivity for CPC detection always higher

than OPC and followed by PZT detection.

Finally, the thermal lens technique was used to determine the thermal diffusivity of
liquid samples. The phenomenon of thermal lensing is due to the refractive index
change with temperature in a liquid medium causes by the periodic photothermal
heating. The change of the refractive index will turn the heated medium into a lens.

By measuring the time dependence of the laser intensity change after passed though

il



the thermal lens, the thermal diffusivity of the sample can be obtained. In this work,
the measurements were carried out for various solvents, fuel, palm oils and chitosan
at different concentration. It was found that the thermal lens technique was suitable

for measuring thermal diffusivity value of liquids in the range of (9.09 x 107 -

12.1x 10 cm’/s.
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Teknik fotoakustik sel terbuka (OPC) ditunjukkan untuk menentukan nilai pekali
resapan terma bahan pepejal. Konsepnya adalah berdasarkan pengukuran isyarat
akustik sebagai fungsi frekuensi termodulasi di mana jarak peresapan terma sama
dengan ketebalan sampel. Pengukuran dibuat pada suhu bilik bagi bahan-bahan
logam, aloi, semikonduktor, polimer and superkonduktor. Hasil nilai-nilai ukuran
bagi bahan-bahan logam, semikonduktor dan polimer amat menyetujui dengan nilai
yang telah dilaporkan oleh penyelidik-penyelidik lain. Nilai-nilai pekali resapan bagi
aloi Ag,Au;., berkurang dari 1.48 cm?’s (Ag tulen) ke suatu nilai minima lebih
kurang pada x = 0.70 sebelum meningat ke 1.28 cm?/s (Au tulen). Bagi sistem aloi
Auy,Cuqoo-xy0 7AL100-x)0.3, Nilai-nilai pekali resapan berkurangan dengan penambahan
nilai nisbah berat x dan mencapai nilai minimanya lebih kurang pada x = 90.

Kemudian, nilai-nilai ini bertambah sehingga mencapai 1.28 cm?s iaitu nilai



pekali resapan bagi sampel Au tulen. Bagi sampel superkonduktor pada keadaan
normal, nilai pekali resapan berkurangan dengan penambahan kandungan Zn pada
sistem Bi,Pbg¢Sr2Ca; «ZnyCuzOs.  Akan tetapi, nilai pekali resapan bertambah

dengan penambahan kanduangan Ba pada sistem Bi,Pbg ¢Sr2Ca;.xBayCu3Os.

Teknik OPC juga digunakan untuk mengukur masa pengewapan bagi bahan-bahan
cecair. Masa pengewapan untuk 10.60 mm’ acetone, chloroform, methanol dan
ethanol masing-masing dicatatkan sebagai 236.7 s, 578.8 s, 436.2 s and 869.2 s.
keputusan juga menunjukkan bahawa masa pengewapan adalah berkadar songsang

terhadap kuasa laser.

Kuasa alur laser dalam julat (2-16) mW juga dikaji dengan menggunakan teknik
OPC, teknik fotoakustik sel tertutup (CPC) dan teknik piezoelekirik (PZT).
Dalam setiap kes, isyarat akustik didapati berkadar terus dengan kuasa laser sehingga
16 mW. Secara perbandingan, kuasa tindakan bagi CPC telanik sentiasa lebih

daripada teknik OPC and diikuti oleh teknik PZT.

Akhirnya, teknik kanta terma digunakan untuk menentu nilai pekali resapan terina
bagi bahan-bahan cecair. Fenomena kanta terma adalah berdasarkan perubahan
indek biasan terhadap suhu pada suatu medium cecair akibat pemanasan fotothemal
secara berkala. Perubahan indek biasan akan mengubah medium yang telah
dipanaskan ke suatu kanta. Oleh itu, dengan mengukur perubahan keamatan laser

terhadap masa selepas menembusi kanta terma, pekali resapan terma bagi sampel



cecair boleh diperolehi. Dalam kajian ini, pengukuran telah dilakukan terhadap
pelbagai pelarut, bahan api kenderaan, minyak kelapa sawit and chitosan. Teknik

kanta terma ini didapati amat sesuai untuk mengukur nilai pekali resapan terma bagi

sampel cecair dalam julat (9.09 x 10— 12.1 x 10*) cm%/s.
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CHAPTER 1

INTRODUCTION

Photothermal and Photoacoustic

Photothermal science is a cumulative name for a class of phenomena that
involve the generation of heat caused by the absorption of modulated optical energy.
In fact, when the optical energy is absorbed, the excited states in atoms or molecules
loose their excitation energy by a series of non-radiative transitions that result in a

general heating in the material.

The early concept of the photoacoustic effect (as cited by Favier, 1997) was
discovered by Alexander Graham Bell in 1880 when he tried to explain the operation
of his photophone. It was named photoacoustic because the photothermal heating
effect was detected by an indirect acoustic method. He also studied the
photoacoustic effect in solids, liquids and gases where the modulated light was used
to illuminate the sample. Among the scientists who involved in studying this
studying phenomena were Rayleigh, Rontgen, Mercadier and Tyndall. Due to the
limitation of hearing tubes used as detectors in the early experiments, interest in the
field of photoacoustic died down. However, some interesting conclusions could be
made. For example, Mercadier who performed photoacoustic spectroscopic studies

on various materials, came to the conclusion that the maximum effect was found to



be produced by the red rays and by the invisible ultra red rays. Likewise, Rontgen
stated that the sounds in question are due to the bending of the plates under unequal

heating.

It was only at beginning of the 1970s that the photothermal and photoacoustic
research was rediscovered mainly due to three major factors:
1. Development of intense light sources; such as lasers and high pressure arc
lamps, such as xenon lamps.
2. Development of fast and sensitive detection equipment; such as electret
microphones and piezoelectric detectors.
3. Development of more sensitive signal processing equipment; such as
filters, phases sensitive detectors and ultimately lock-in amplifiers.
The improvements in the above three areas enabled the photoacoustic phenomena to
be explored and studied further as partly shown in the present work, and hence
higher sensitivity and greater selectivity photoacoustic spectroscopy could be

performed.

Now, further development of the photoacoustic spectroscopy techniques and
their applications become more interesting for measuring the optical properties and
thermal characterization of various materials. The attractive features of photoacoustic
spectroscopy can be listed as follows:

1. Requires minimal sample preparation

2. Enables measurements of thermal and optical properties on highly

absorbing and scattering media

3. Non-contact and non-destructive



4. Measurements can be carried out on a broad range of material (gases,
liquids, solids, powders, gels, thin films, etc.)

5. Can be used to deterinine a very wide range of absorption coefficient
magnitudes (10° to 10° m™)

6. A range of complimentary photothermal detection methods

7. An increase in signal-to-noise ratio with data processing capability and

increasing in input light power.

Photothermal Detection Schemes

The heat generated in sample results in physical changes in and around the
sample. Figure 1.1 shows the resulting of the phenomena caused by illunination of a
surface by a modulated beam of light. Beside the change in temperature of the
sample, it’s also produced infrared, acoustic waves, thermal waves, thermoelastic
waves; surface expansion, surface reflectivity modulation and refractive index
gradient in the medium in contact with the heated surface. All of these effects have
been used to probe the photothermal response of an enormous number of materials —

solids, liquids and gases.

The thermal wave detection techniques were classified into three groups i.e.
acoustic, thermal and optical. Acoustic detection techniques employ either a gas
condenser microphone for the detection of pressure variations in air or a piezoelectric
transducer for the detection of thermoelastic waves in solid media.  Thermal

detection methods include the use of thermocouples, thermistors, infrared detectors





