

UNIVERSITI PUTRA MALAYSIA

GROWTH AND PRODUCTION OF SEAGRASS CYMODOCEA SERRULATA (R. BR.) ASCHERS ET MAGNUS AND THALASSIA HEMPRICHII (EHRENB.) ASCHERS IN PORT DICKSON, NEGERI SEMBILAN, MALAYSIA

ABU HENA MUSTAFA KAMAL

FSAS 2000 20

GROWTH AND PRODUCTION OF SEAGRASS CYMODOCEA SERRULATA (R. BR.) ASCHERS ET MAGNUS AND THALASSIA HEMPRICHII (EHRENB.) ASCHERS IN PORT DICKSON, NEGERI SEMBILAN, MALAYSIA

BY

ABU HENA MUSTAFA KAMAL

Thesis Submitted in Fulfillment of the Requirements for the Degree of Master of Science in the Faculty of Science and Environmental Studies Universiti Putra Malaysia

July 2000

Dedication to the Departure Memory of My Grandfather And Beloved Parents

.

Abstract of thesis presented to the Senate of the Universiti Putra Malaysia in fulfilment of requirements for the degree of Master of Science

GROWTH AND PRODUCTION OF SEAGRASS CYMODOCEA SERRULATA (R. Br.) ASCHERS ET MAGNUS AND THALASSIA HEMPRICHII (EHRENB.) ASCHERS IN PORT DICKSON, NEGERI SEMBILAN, MALAYSIA

By

ABU HENA MUSTAFA KAMAL

July 2000

Chairman: Dr. Misri bin Kusnan

Faculty: Science and Environmental Studies

Seagrass is one of the valuable components which contribute significantly in coastal productivity and stabilizing sea floor sediments in the shallow marine water ecosystems. Investigation on the shoot density, biomass, leaf growth, leaf production and habitat of two seagrasses, *Cymodocea serrulata* and *Thalassia hemprichii*, in a sparse, mixed stand and monospecific patches of Batu Tujuh, Port Dickson coastal area Negeri Sembilan, Malaysia are reported. Shoot density and biomass of these species was detected by placing 20 x 20 cm quadrat. Leaf growth and production was detected by leaf marking method.

The mean shoot density was 950 ± 136.42 shoots/m² and 632.14 ± 113.77 shoots/m² for *C. serrulata* and *T. hemprichii*, respectively. Above ground biomass of *T. hemprichii* was lower (13.878 ± 1.173 g AFDW/m²) when compared to those of *C. serrulata* (20.250 ± 4.053 g AFDW/m²). The mean leaf growth of *C. serrulata* was higher (7.66 mm/shoot/day) compare to *T. hemprichii* (7.04 ± 1.35 mm/shoot/day). The present study indicates that the seagrass *C. serrulata* and *T. hemprichii* contributes a countable portion (0.961 ± 0.227 g AFDW/m²/day for *C. serrulata* and 0.563 ± 0.172 g AFDW/m²/day for *T. hemprichii*) of organic matter, together with

phytoplankton and macro algae, to the total primary production in Port Dickson marine water. Relative production rates (RPR) was 0.057 ± 0.014 g/g AFDW/day for *C. serrulata* and 0.058 g/g DW/day for *T. hemprichii*. This result indicated that *T. hemprichii* produce more organic matter daily than *C. serrulata* in this marine area. The plastochrone interval of *C. serrulata* leaves was higher (14.74 ± 1.89 days) than *T. hemprichii* (12.03 ± 1.01 days), whereas, short plastochrone interval of leaves (PIL) allows a faster plant response than the long PIL.

Dissolved oxygen and pH value of seawater of Batu Tujuh seagrass bed ranged between 7.8 - 8.8 mg/l and 8.0 - 8.5, respectively. The range of salinity and light intensity were 24.0-30.0 ppt and 25.0- $1805.2 \ \mu mol/m^2/s$, respectively. Concentrations of nutrients were greater in pore water than overlying seawater of this seagrass bed.

Total nitrogen content of plant tissue varied between 0.349 ± 0.024 and $1.110 \pm 0.067\%$ of DW in *C. serrulata* and $0.195 \pm 0.036 - 1.586 \pm 0.041\%$ of DW in *T. hemprichii*. Total phosphorus was highest in leaves ($0.276 \pm 0.022 - 0.377 \pm 0.034\%$ of DW), intermediate values in rhizomes ($0.157 \pm 0.004 - 0.196 \pm 0.021\%$ of DW) and lowest in roots ($0.100 \pm 0.004 - 0.114 \pm 0.003\%$ of DW). Potassium content was relatively higher in *C. serrulata* leaves ($2.267 \pm 0.058\%$ of DW) and roots ($2.20 \pm 0.50\%$ of DW) in *T. hemprichii*.

In situ photosynthesis varied at different depths. The highest rate of photosynthesis of both species was higher at 0.5 m depth than at 2.0 m and this could be attributed to relatively higher light intensity at depth of 0.5 m. The respiration rate remained uniform at different depths for both species. Experimental photosynthesis study showed that the light saturation was reached at 200 – 800 and 400–800 μ mol/m²/s for *C. serrulata* and *T. hemprichii*, respectively. The compensation light intensity was 20 – 40 μ mol/m²/s for *C. serrulata* and around 20

 μ mol/m²/s for *T. hemprichii*. Comparing these results to *in situ* light measurements from the seagrass bed, it may be assumed that both seagrasses could penetrate deeper area in this seagrass bed. However, the photosynthesis produced at light intensity below 2.0 m depth (<108.33 ± 9.177 μ mol/m²/s for *C. serrulata* and <115 ± 1.512 μ mol/m²/s for *T. hemprichii*) probably could not support the requirement during dark period, albeit lower light compensation (20-40 μ mol/m²/s for *C. serrulata* and ± 20 μ mol/m²/s for *T. hemprichii*) showed in the experimental study.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

PERTUMBUHAN DAN PENGELUARAN RUMPUT LAUT *CYMODOCEA SERRULATA* (R.Br.) ASCHERS ET MAGNUS DAN *THALASSIA HEMPRICHII* (EHRENB.) ASCHERS DI PORT DICKSON, NEGERI SEMBILAN, MALAYSIA

Oleh

ABU HENA MUSTAFA KAMAL

Julai 2000

Pengerusi	:	Dr. Misri Bin Kusnan
Fakulti	:	Sains dan Pengajian Alam Sekitar

Rumput laut adalah merupakan satu komponen penting yang menyumbang dengan signifikan pengeluaran persisiran pantai dan penstabilan dasar laut ekosistem pantai. Kajian terhadap kepadatan pucuk, biojisim, pertumbuhan daun, pengeluaran daun dan habitat dua rumput laut, *Cymodocea serrulata* dan *Thalassia hemprichii*, di satu kawasan terpencil, dirian bercampur dan tapak monospesifik telah dilakukan di kawasan persisiran pantai Batu Tujuh, Port Dickson, Negeri Sembilan, Malaysia. Kepadatan pucuk dan biojisim kedua-dua spesis telah ditentu menggunakan kuadrat 20 x 20 cm. Pertumbuhan dan pengeluaran daun telah ditentu menggunakan kaedah penanda daun.

Min kepadatan pucuk masing-masing bagi *C. serrulata* dan *T. hemprichii* ialah 950 ± 136.42 dan 632.14 ± 113.77 pucuk/m². Min biojisim *T. hemprichii* (13.878 ± 1.173 g Berat Kering Bebas Abu/m²) adalah lebih rendah bila dibandingkan dengan *C. serrulata* (20.25 ± 4.05 g Berat Kering Bebas Abu/m²). Min pertumbuhan daun *C. Serrulata* (7.66 mm/pucuk/hari) adalah lebih tinggi bila dibanding dengan *T. hemprichii* (7.04 ± 1.35 mm/pucuk/hari). Kajian ini menunjukkan rumput laut *C. serrulata* dan*T*.

hemprichii menyumbang sebahagian (0.961 \pm 0.227 g Berat Kering Bebas Abu/m²/hari bagi *C. serrulata* dan 0.563 \pm 0.172 g Berat Kering Bebas Abu/m²/hari bagi *T. hemprichii*) bahan organik, bersama-sama fitoplankton dan makro alga, kepada total pengeluaran primer di perairan marin Port Dickson. Kadar Pengeluaran Relatif (KPR) ialah 0.057 \pm 0.014g/g Berat Kering Bebas Abu/hari bagi *C. serrulata* dan 0.058 Berat Kering Bebas Abu/hari bagi *T. hemprichii*. Keputusan tersebut menunjukkan *T. hemprichii* mengeluarkan lebih banyak bahan organik harian dari *C. serrulata* di kawasan marin yang sama. Selang plastokron daun *C. serrulata* adalah lebih tinggi (14.74 \pm 1.89 hari) dari *T. hemprichii* (12.03 \pm 1.01 hari), dimana, selang plastrokron daun pendek (SLP) merangsang pertumbuhan yang lebih pantas dari SLP panjang.

Nilai oksigen terlarut dan pH bagi air laut di kawasan rumput laut di Batu Tujuh dalam julat 7.8-8.8 mg/l dan 8.0-8.5. Julat kemasinan dan kekuatan cahaya masingmasing ialah 24.0-30.0 bahagian per seribu dan 25.0-1805.2 µmol/m²/s. Kepekatan nutrien adalah lebih tinggi di dalam air tanah berbanding persekitaran air rumput laut di kawasan kajian.

Jumlah kandungan nitrogen tisu tumbuhan berbeza-beza antara 0.349 ± 0.024 dan 1.110 ± 0.067% berat kering bagi *C. serrulata* dan 0.195 ± 0.036-1.586 ± 0.041% berat kering bagi *T. hemprichii*. Nilai tertinggi fosforus didapati pada daun (0.276 ± 0.022-0.377 ± 0.034% berat kering) diikuti nilai perantaraan di rizom (0.157 ± 0.004-0.196± 0.021% berat kering) dan terendah (0.100 ± 0.004 – 0.114 ± 0.003% berat kering) di akar. Kandungan potassium adalah agak tinggi pada daun *C. serrulata* (2.267 ± 0.058% berat kering) dan akar *T. hemprichii* (2.20 ± 0.50% berat kering).

Fotosintesis In situ berbeza pada kedalaman berbeza. Kadar fotosintesis tertinggi bagi kedua-dua spesis ialah pada kedalaman 0.5 m dan ini mungkin

vii

disebabkan oleh kekuatan cahaya yang lebih tinggi pada kedalaman 0.5 m dari 2.0 m. Kadar respirasi adalah tetap pada kedalaman yang berbeza bagi kedua-dua spesis. Kajian fotosintesis mendapati ketepuan cahaya bagi *C. serrulata* ialah 200-800 μ mol/m²/s dan *T. hemprichii* ialah 400-800 μ mol/m²/s. Kekuatan cahaya pampasan masing-masing bagi *C. serrulata* dan *T. hemprichii* ialah 20-40 μ mol/m²/s dan sekitar 20 μ mol/m²/s. Berasaskan perbandingan keputusan ukuran cahaya ini dengan pengukuran *In situ* di tapak rumput laut, kedua-dua rumput laut ini mungkin berupaya menembus ke kawasan lebih dalam. Walau bagaimanapun, fotosintesis yang dihasilkan pada kekuatan cahaya melewati kedalaman 2 m (<108.33 ± 9.177 μ mol/m²/s bagi *C. serrulata* dan < 115 ± 1.512 μ mol/m²/s bagi *T. hemprichii*) berkemungkinan tidak berupaya menampung keperluan rumputlaut semasa tempoh gelap walhal nilai pampasan cahaya (20-40 μ mol/m²/s bagi *C. Serrulata* dan 20 μ mol/m²/s bagi *T. hemprichii*) diperolehi dalam kajian ini memadai keperluan tersebut.

ACKNOWLEDGEMENTS

All the praise and admiration for Allah, the Almighty, beneficial and the most merciful, who has enabled me to submit this thesis.

It is my pleasure to express my profound sense of gratitude and indebtedness to my respected research supervisor Dr. Misri bin Kusnan, the chairman of my supervisory committee for his guidance and inspiration during the research period. I am profound indebted to my co-supervisors Dr. Japar Sidik Bujang and Dr. Hishamuddin bin Omar, Department of Biology, Universiti Putra Malaysia for their kind supervision and suggestions to carry out my works properly.

I would like to express my sincere thanks to Mr. Hidir Hashim, Department of Biology for his active co-operation during my sampling period. I am also grateful to the Department of Biology, Faculty of Science and Environmental Studies for facilities and Malaysian Government for financial support through Intensification of Research in Priority Areas (IRPA) projects no. 08-02-04-019.

I declare my respect to my parents, elder brothers and sisters for their mental support and encouragement for my higher studies. Heartfelt thanks are due to all my friends for their suggestion and encouragement during the work especially; Kennedy, Farshad, Yap, Mahmud, Shirley, Kuen, Syed, Mitu and Hazel.

Last but not least, I am thankful to all my well-wishers whom helped me in any form.

ix

TABLE OF CONTENTS

DEDICATIONi	ii
ABSTRACTi	iii
ABSTRAK	vi
ACKNOWLEDGEMENTS	ix
APPROVAL SHEETS	X
DECLARATION FORM	xii
LIST OF TABLES	xvi
LIST OF FIGURES	xix
LIST OF PLATES	xxi

CHAPTER

1		1
	Objectives	4
		5
	Seagrass Parameters	5
	Shoot Density	5
	Biomass	8
	Leaf Growth	12
	Leaf Production and Turnover Rate	13
	Relative Production rate and Plastochrone Interval of Leaf	15
	Environmental Factors of Seagrass Bed	17
	Nutrients	17
	Light on Seagrass Bed	18
	Water Temperature	20
	Salinity	22
	Hydrogen Ion Concentration (pH)	24
	Dissolved Oxygen	25
	Seagrass Tissue Nutrients	26
	Photosynthesis of Seagrass	27
	MATERIALS AND METHODS	30
	Location of the Study Area	30
	Timing of Study	30
	Description of Seagrass Bed	30
	Collection of Samples	31
	Shoot Density	31
	Biomass	31
	Seagrass Study from Different Habitats	33
	Grazing Evidence	35
	Leaf Growth	35
	Leaf Production	36
	Leaf Biomass	36
	Turnover Rate	37
	Relative Production Rate	37
	Plastochrone Interval of Leaf	37

	Seagrass Tissue Nutrients	37
	Preparation of Sample	37
	Determination of Total Nitrogen	38
	Determination of Total Phosphorus	38
	Determination of Potassium Content	39
	Overlying Seawater Parameters	39
	Detection of Water Parameters	39
	Seawater and Pore Water Nutrients	40
	Collection of Samples	40
	Analysis of Seawater and Pore water Nutrients	40
	Nitrate Analysis	40
	Phosphate Analysis	41
	Ammonium Analysis	41
	Photosynthesis of Seagrass	41
	Photosynthesis Study in Different Depth	41
	Photosynthesis Study in Laboratory	42
	Detection of Total Chlorophyll Content	42
IV	RESULTS AND DISCUSSION	44
	Shoot Density	44
	Seagrass Biomass	47
	Seagrass from Different Habitat	54
	Grazing Evidence	57
	Leaf Growth	60
	Leaf Production	65
	Turnover Rate	70
	Relative Production Rate	73
	Plastochrone Interval of Leaf	76
	Socarase Tissue Nutrients	76
	Develop Chamical Easters of Sacaroas Red Water	00
	Modes Terrenerature	00
		80
	Salinity	81
	Dissolved Oxygen and pH	82
	Light	83
	Seawater and Pore water Nutrients	84
	Photosynthesis of Seagrass	85
	Photosynthesis in Different Depth	85
	Experimental Photosynthesis Study	88
V	SUMMARY	94
REFER	ENCES	99
	אור	114
AFFENL		114
A ₁	Shoot Density, Above Ground Biomass and Below Ground Biomass of Seagrass <i>C. serrulata</i> and <i>T. hemprichii</i> in Batu	
	Tujuh Seagrass at Port Dickson, Malaysia	114
A ₂	Morphometric Parameters of Seagrasses from Different	
	Habitats	116

	A ₃	Leaf Growth, Leaf Production, Shoot Biomass, Turnover Rate, Relative Production Rate and Plastochrone Interval of Leaf of Seagrass from Port Dickson	122
	A4	Recorded Hydrological Factors and Seawater and Pore water Parameters of Seagrass Bed at Batu Tujuh, Port Dickson	128
	A ₅	Photosynthesis Rate in Different Depths of Seagrass <i>C. serrulata</i> and <i>T. hemprichii</i>	129
	A ₆	Analysis of Variance of Different Parameters	133
BIC	DA	ΤΑ	135

LIST OF TABLES

	Table	Page
1.	Comparison of Shoot Density, Above Ground Biomass and Below Ground Biomass of <i>Cymodocea serrulata</i> from Batu Tujuh, Port Dickson Seagrass Bed	45
2.	Comparison of Shoot Density, Above Ground Biomass and Below Ground Biomass of <i>Thalassia hemprichii</i> from Batu Tujuh, Port Dickson Seagrass Bed	46
3.	Comparison of Leaf Growth Rate, Leaf Production, Shoot Biomass, Turnover Rate, Relative Production Rate and Plastochrone Interval of Lea of <i>Cymodocea serrulata</i> in Batu Tujuh, Port Dickson Seagrass Bed	f 61
4.	Comparison of Leaf Growth Rate, Leaf Production, Shoot Biomass, Turnover Rate, Relative Production Rate and Plastochrone Interval of Lea of <i>Thalassia hemprichii</i> in Batu Tujuh, Port Dickson Seagrass Bed	f . 62
5.	Shoot Density, Above Ground Biomass and Below Ground Biomass of Seagrass <i>Cymodocea serrulata</i> from Batu Tujuh, Port Dickson, Malaysia	114
6.	Shoot Density, Above Ground Biomass and Below Ground Biomass of Seagrass <i>Thalassia hemprichii</i> from Batu Tujuh, Port Dickson, Malaysia	115
7.	Seagrass <i>Cymodocea serrulata</i> Under Shading Condition and Rhizome Uncovered by Sediment	116
8.	Seagrass <i>Cymodocea serrulata</i> Under Shading Condition and Rhizome Covered by Sediment	116
9.	Seagrass <i>Cymodocea serrulata</i> Without Shading Condition and Rhizome Uncovered by Sediment	117
10.	Seagrass <i>Thalassia hemprichii</i> Without shading and Rhizome Covered by Sediment	117
11.	Seagrass <i>Thalassia hemprichii</i> Under Shading Condition and Rhizome Covered by Sediment	118
12.	Grazing of Seagrasses by Fish	118
13.	Frequency of Fish Bite Marks on Seagrasses Leaf Blades	118
14.	Ash Free Dry Weight of Leaf Production, Shoot Biomass, Turnover Rate, Relative Production Rate of <i>Cymodocea serrulata</i>	119

15	Ash Free Dry Weight of Leaf Production, Shoot Biomass, Turnover Rate, Relative Production Rate of <i>Thalassia hemprichii</i>	120
16	. Tissue Nutrient Content from Different Plant Parts of Seagrasses (% of Dry Weight)	121
17.	Leaf Growth, Leaf Production, Shoot Biomass, Turnover Rate, Relative Production Rate and Plastochrone Interval of Leaf of <i>Cymodocea</i> <i>serrulata</i> in Port Dickson	122
18.	Leaf Growth, Leaf Production, Shoot Biomass, Turnover Rate, Relative Production Rate and Plastochrone Interval of Leaf of <i>Thalassia</i> <i>hemprichii</i> in Port Dickson	125
19.	Recorded Hydrological Parameters of Overlying Water of Seagrass Bed at Batu Tujuh, Port Dickson, Malaysia	128
20.	Seawater and Pore water Nutrients from Seagrass Bed of Port Dickson	128
21.	Photosynthesis Rate in Different Depths of Seagrass <i>Cymodocea</i> serrulata	129
22.	<i>In situ</i> recorded Light Intensity of Bed Water During the Study Period of Seagrass <i>Cymodocea serrulata</i>	129
23.	Photosynthesis Rate in Different Depths of Seagrass <i>Thalassia</i> hemprichii	129
24.	<i>In situ</i> recorded Light Intensity of Bed Water During the Study Period of Seagrass <i>Thalassia hemprichii</i>	129
25.	Photosynthesis Rate (In Fresh Weight) of Seagrass <i>Cymodocea serrulata</i> in Different Light Intensity	130
26.	Photosynthesis Rate (In Leaf Surface Area) of Seagrass <i>Cymodocea</i> serrulata in Different Light Intensity	130
27.	Photosynthesis Rate (In Chlorophyll Content) of Seagrass <i>Cymodocea</i> serrulata in Different Light Intensity	131
28.	Photosynthesis Rate (In Fresh Weight) of Seagrass <i>Thalassia hemprichii</i> in Different Light Intensity	131
29.	Photosynthesis Rate (In Leaf Surface Area) of Seagrass <i>Thalassia hemprichii</i> in Different Light Intensity	131
30.	Photosynthesis Rate (In Chlorophyll Content) of Seagrass <i>Thalassia hemprichii</i> in Different Light Intensity	132
31.	Respiration Rate of Leaf and Rhizome of Seagrass	132

32.	Analysis of Variance of Leaf Growth of <i>Cymodocea serrulata</i> in Different Quadrats	133
33.	Analysis of Variance of Leaf Growth of <i>Thalassia hemprichi</i> in Different Quadrats	133
34.	Analysis of Variance of Leaf Production of <i>Cymodocea serrulata</i> in Different Quadrats	133
35.	Analysis of Variance of Leaf Production of <i>Thalassia hemprichi</i> in Different Quadrats	133
36.	Analysis of Variance of Turnover Rate of <i>Cymodocea serrulata</i> in Different Quadrats	134
37.	Analysis of Variance of Turnover Rate of <i>Thalassia hemprichi</i> in Different Quadrats	134
38.	Analysis of Variance of Relative Production Rate of <i>Cymodocea serrulata</i> in Different Quadrats	134
39.	Analysis of Variance of Relative Production Rate of <i>Thalassia hemprichii</i> in Different Quadrats	134

LIST OF FIGURES

	Figure	Page
1.	Seagrass Ecosystem and Their Functions in a Tropical Marine Environment	2
2.	Study Area Map Showing the Study Area Location	33
3.	Diagrammatic Presentation of Clark Oxygen Electrode Chamber Assembly Used to Measure Photosynthesis in Different Light Intensity	y 43
4.	Relationship Between Above Ground Biomass and Shoot Density of Seagrass <i>Cymodocea serrulata</i>	48
5.	Relationship Between Above Ground Biomass and Shoot Density of Seagrass <i>Thalassia hemprichii</i>	48
6.	Relationship Between Below Ground Biomass and Shoot Density of Seagrass Cymodocea serrulata	49
7.	Relationship Between Below Ground Biomass and Shoot Density of Seagrass <i>Thalassia hemprichi</i> i	49
8.	Relationship Between Total Biomass and Shoot Density of Seagrass Cymodocea serrulata	50
9.	Relationship between Total Biomass and Shoot Density of Seagrass Thalassia hemprichii	50
10	Relationship Between Below Ground Biomass and Above Ground Biomass of Seagrass <i>Cymodocea serrulata</i>	55
11.	Relationship Between Below Ground Biomass and Above Ground Biomass of Seagrass Thalassia hemprichii	55
12.	Relationship Between Leaf Growth and Leaf Production of Seagrass	66
13.	Relationship Between Leaf Growth and Leaf Production of Seagrass Thalassia hemprichii	66
14.	Relationship Between Leaf Growth and Shoot Biomass of Seagrass	67
15.	Relationship Between Leaf Growth and Shoot Biomass of Seagrass	67
16.	Relationship Between Leaf Production and Shoot Biomass of Seagrass <i>Cymodocea serrulata</i>	69

.

17.	Relationship Between Leaf Production and Shoot Biomass of Seagrass Thalassia hemprichii	69
18.	Relationship Between Turnover Rate and Leaf Production of Seagrass Cymodocea serrulata	71
19.	Relationship Between Turnover Rate and Shoot Biomass of Seagrass of <i>Cymodocea serrulata</i>	71
20.	Relationship Between Turnover Rate and Leaf Production of Seagrass Thalassia hemprichii	72
21.	Relationship Between Relative Production Rate and Shoot Biomass of Seagrass Cymodocea serrulata	72
22.	Nutrient Content of Different Plant Components of Seagrass Cymodocea serrulata	78
23.	Nutrient Content of Different Plant Components of Seagrass Thalassia hemprichii	78
24.	Photosynthesis Rate of Fresh Leaf Weight of Seagrass Cymodocea serrulata at Different Light Intensities	90
25.	Photosynthesis Rate of Leaf Surface Area of Seagrass Cymodocea serrulata at Different Light Intensities	90
26.	Photosynthesis Rate of Leaf Chlorophyll Content of Seagrass Cymodocea serrulata at Different Light Intensities	90
27.	Photosynthesis Rate of Fresh Leaf Weight of Seagrass <i>Thalassia hemprichii</i> at Different Light Intensities	92
28.	Photosynthesis Rate of Leaf Surface Area of Seagrass <i>Thalassia hemprichii</i> at Different Light Intensities	92
29.	Photosynthesis Rate of Leaf Colorophyll Content Seagrass <i>Thalassia hemprichii</i> at Different Light Intensities	92

LIST OF PLATES

Plate Pa	age
1. Study Area Seagrass Bed from Sea to Shore Ward View	32
2. Study Area Seagrass Bed from Shore to Seaward View	32
3. Monospecific Patch of Seagrass <i>Cymodocea serrulata</i> Growing at Batu Tujuh Seagrass Bed, Port Dickson, Negeri Sembilan	34
4. Monospecific Patch of Seagrass <i>Thalassia hemprichii</i> Growing at Batu Tujuh Seagrass Bed, Port Dickson, Negeri Sembilan	34
5. <i>Cymodocea serrulata</i> Leaf Blades Showing Semicircular Grazing Evidence	58
6. Thalassia hemprichii Leaf Blades Showing Grazing evidence	58
7. Semicircular Grazing Evidence of the Leaf Covering by Heavily Dense Epiphytized Leaf of <i>Cymodocea serrulata</i>	59
8. Grazing Evidence of <i>Thalassia hemprichii</i> Leaf Blade with heavily Epiphytes Covered	59

CHAPTER I

INTRODUCTION

Seagrasses are the pastures of the ocean and usually distributed in shallow soft or sandy bottom of estuaries and along the coastal margins of tropical, subtropical and temperate marine water. They are monocotyledon plants, which have numerous important ecological roles in the shallow marine water coasts, especially with regard to marine productivity (Figure 1).

Seagrasses are similar to flowering plants on terrestrial environment. Unlike marine algae they have roots systems to gain a foothold in drifting sand, which is subsequently stabilized. Due to the presence of extensive roots and rhizomes they are unique among the submerge marine and estuarine plants (Zieman, 1975a). They are able to adapt and survive in saline medium and able to withstand wave and tidal current. Besides this, they are also able to carry out hydrophilous pollination and seed dispersal when fully submerged (Arber, 1920; den Hartog, 1967, 1970).

The meadows of seagrass have been recognised as one of the richest and most productive marine ecosystems, reaching large biomass and being relatively long live components of coastal and estuarine ecosystems (Thayer *et al.*, 1977; Zieman and Wetzel, 1980). Their role in the cycling of essential elements (i.e. nitrogen and phosphorus) is important owing to their ability to accumulate these elements, affecting the nutrient turnover in these systems. The bed of seagrass is one of the most conspicuous and wide spread biotope types in the shallow marine environment throughout the world. A dense vegetation of seagrass produces a great

quantity of organic material by itself and also offers a good substrate for epiphytic smaller algae, diatoms and sessile fauna. The vegetation acts as traps for sediment and minute suspended particles, both organic and inorganic are deposited in this biotope. However, in marine water it also creates unique microhabitats for small animals.

Figure 1. Seagrass ecosystem and their functions in a tropical marine environment (Fortes, 1990)

The contribution of seagrasses in the estuarine and marine ecosystems summarised by wood *et al.* (1969) are as follows: (1) seagrasses have high growth rate and high organic productivity; (2) they act as food for only limited number of organisms while living (like turtles, dugong and parrot fish etc.), but supply huge

quantities of detrial materials to its resident microbes which provide a major food source for the estuarine ecosystem; (3) the leaves support large numbers of epiphytic organisms that create a favourable conditions and which are grazed extensively; (4) seagrass take part to sulphate reduction and maintains an activity of sulphur cycle in the estuarine sediments by providing organic matter; (5) the dense leaves promote sedimentation of organic and inorganic particles after reducing the current velocity near the sediment surface and (6) the roots and rhizomes bind the sediment together and with the additional protection given by the leaves, surface erosion in reduced.

In the past the significance of seagrasses for natural balance in shallow coastal waters has been grossly underestimated and has even been denied. Petersen (1918, In: Rasmussen, 1970) was the first to recognized the overall importance of seagrasses in the coastal ecosystems and in recent years it has become apparent that seagrasses contribute significantly to the maintenance of the coastal ecosystem of the tropics and near tropics in numerous way (Wood *et al.*, 1969; Zieman; 1974). Nowadays the conviction has grown that common plant with most productive in the ocean, as seagrasses must be of immense ecological importance. Consequently, "seagrass ecosystems" have become a popular focus for research (McRoy and McMillan, 1977).

The roles played by seagrass beds are diverse and economically significant in a number of ways. On the other hand, the marine resources of Malaysia greatly contribute to the national economy. Among the marine resources, seagrass ecosystems play an important role toward creating a good quality of marine environment. In this regard, the living marine resources as well as seagrasses are

