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Basal stem rot (BSR) disease, caused by Ganoderma boninense has been pinpointed to 
be one of the major factors that contribute to the decline in yield of oil palm. 
Hemibiotroph pathogen such as G. boninense manipulates the host defense mechanisms 
to strategically infect host plant by switching from biotrophic to necrotrophic phase. 
Recognizing the early infection phase of G. boninense by identifying phase-specific oil 
palm transcription factors (TFs) may offer opportunities to tackle or attenuate the 
progress of infection. The fragmentary information on molecular interactions between 
plant and hemibiotroph should be explicated to identify the key molecular mechanisms 
of pathogenesis and plant immunity. Thus, this study is an attempt to recognize specific 
TFs as ‘key’ biomarkers in identifying oil palm defense mechanisms during biotrophic 
and necrotrophic infection phases of G. boninense. Artificial infection of G. boninense 
on oil palm was performed by using Ganoderma-inoculated rubber wood blocks (RWBs) 
and bare RWBs serves as mock-treatment presenting abiotic stress. In order to identify 
oil palm defense response during early interaction with G. boninense, transcriptomic 
analysis of root tissues at different time points of 3, 7 and 11 days post inoculation (d.p.i) 
was carried out. High-throughput RNA-seq data analysis has revealed two 
distinguishable expression profiles of oil palm genes that formed the basis for deducing 
biotrophic phase at early interaction (3 d.p.i) which switched to initiation of necrotrophic 
phase at later stage (11 d.p.i) of infection. Based on the findings, the present study 
focused on identifying differentially expressed genes (DEGs) encoding TFs from the 
generated RNA-seq data. A total of 106 upregulated and 108 downregulated DEGs of 
TFs were identified. There are four established defense-related pathways that have been 
presented whereby reported genes involved in cell wall modification, reactive oxygen 
species (ROS)-mediated signaling, programmed cell death (PCD) and plant innate 
immunity were differentially expressed. The genes were found to be either upregulated 
or downregulated during the two distinct infection phases. Multiplex semi-quantitative 
RT-PCR was conducted to screen for defense-related TFs independent of abiotic stress. 
Normalized band intensity of Ganoderma-treated (GT) samples were compared to the 
mock-treated (MT) samples to estimate the mRNA expression level between groups. The 
expression patterns of eight candidate TFs genes including EgJUB1, EgERF113, 
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EgTCP15, EgNAC29, EgEIN3, EgMYC2, EgNAC83 and EgMYB122 were further 
quantified via quantitative Real-Time PCR (qPCR). Both EgJUB1 and EgERF113 were 
found to be specifically upregulated under biotic stress at all time points. The findings 
discovered upregulation of EgJUB1 during biotrophic phase while EgERF113 
demonstrated prominent upregulation as oil palm switches to defense against 
necrotrophic phase. Characterization of EgJUB1 and EgERF113 was performed via in 
vivo Yeast One-Hybrid (Y1H) assay and in vitro electrophoretic mobility shift assay 
(EMSA). JUB1 has been reported to bind to NAC binding site (NACBS) motif during 
abiotic stress. The present study is the first report on the binding activity of EgJUB1 to 
secondary wall NAC binding element 1 (SNBE1) which was present in the promoter 
region of EgHSFC-2b having similar expression profile as EgJUB1. SNBE1 motifs with 
single nucleotide change at either 5th or 18th position have been found in the promoter 
regions of a few TFs that co-expressed with EgJUB1, including EgHSFB-4b and 
EgGAMYB X2. Meanwhile EgERF113 binds to GCC-box and DRE/CRT motifs 
promoting plasticity in upregulating downstream defense-related genes against G. 
boninense attack. Sequence analysis revealed the presence of NAC DNA binding domain 
(DBD) in EgJUB1. Amino acid change from phenylalanine (F) to tryptophan (W) at 14th 
position of EgERF113 DBD proved the binding specificity to both GCC-box and 
DRE/CRT motifs. Prolonged treatment revealed oil palm seedlings succumbing to the 
G. boninense infection. Mature basidiomata of G. boninense was observed at 24 weeks 
post inoculation (w.p.i) and the infection culminated in plant death. Overall, our findings 
propose EgJUB1 and EgERF113 as key TFs in orchestrating the oil palm defense 
mechanisms during biotrophic and necrotrophic infection phases of hemibiotrophic G. 
boninense, respectively.  
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Penyakit reput pangkal batang (BSR), disebabkan oleh Ganoderma boninense telah 
ditunjukkan sebagai salah satu faktor utama yang menyumbang kepada penurunan hasil 
kelapa sawit. Patogen hemibiotrof seperti G. boninense memanipulasi mekanisme 
pertahanan perumah untuk menjangkiti perumah tumbuhan secara strategik dengan 
menukar fasa dari biotrofik kepada nekrotrofik. Mengenali fasa awal jangkitan G. 
boninense dengan mengenal pasti faktor transkripsi (TFs) kelapa sawit yang berfasa 
spesifik boleh menawarkan peluang untuk menangani atau melemahkan perkembangan 
jangkitan. Maklumat serpihan terhadap interaksi molekular antara tumbuhan dan 
hemibiotrof harus diperincikan untuk mengenalpasti mekanisme molekular yang utama 
daripada patogenesis dan imuniti tumbuhan. Oleh itu, kajian ini adalah percubaan untuk 
mengenal TFs spesifik sebagai ‘kunci’ penanda bio dalam mengenal pasti mekanisme 
pertahanan kelapa sawit semasa jangkitan fasa biotrofik dan nekrotrofik G. boninense. 
Jangkitan buatan G. boninense ke atas kelapa sawit telah dilakukan menggunakan blok 
kayu getah (RWB) terjangkit inokulum G. boninense dan RWB kosong sebagai rawatan 
olokan mewakili tekanan abiotik. Untuk mengenal pasti respon pertahanan kelapa sawit 
semasa interaksi awal dengan G. boninense, analisis transkriptomik pada tisu akar pada 
titik masa yang berlainan iaitu 3, 7, dan 11 hari-selepas-inokulasi (d.p.i) telah dijalankan. 
Analisis data RNA-seq keupayaan celusan tinggi telah mendedahkan dua profil ekspresi 
yang jelas daripada gen kelapa sawit yang membentuk asas kepada mendeduksi fasa 
biotrofik pada jangkitan awal (3 d.p.i) yang mana ditukar kepada permulaan fasa 
nektorofik pada peringkat kemudian (11 d.p.i). Berdasarkan kepada penemuan-
penemuan ini, kajian kini memfokuskan pada mengenal pasti gen diekspres secara ketara 
(DEGs) yang mengekod TFs dari data RNA-seq yang terhasil. Sejumlah 106 DEGs 
dikawal naik dan 108 DEGs dikawal turun daripada TFs telah dikenalpasti. Terdapat 
empat laluan berkaitan pertahanan yang kukuh telah dibentangkan yang mana gen yang 
dilaporkan terlibat dalam pengubahsuaian dinding sel, isyarat spesis oksigen reaktif 
(ROS)-perantara, kematian sel terprogram, dan keimunan semulajadi tumbuhan telah 
diekspres secara ketara. Gen ini didapati samada dikawal naik atau dikawal turun dalam 
dua fasa jangkitan yang berbeza tersebut. RT-PCR semi-kuantitatif multipleks telah 
dijalankan untuk menyaring TFs berkaitan pertahanan yang bebas tekanan abiotik. 
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Keamatan jalur ternormalkan daripada sampel terawat Ganoderma (GT) dibanding 
dengan sampel olokan (MT) untuk menganggarkan tahap ekspresi mRNA antara 
kumpulan. Pola ekspresi lapan calon gen TFs termasuk EgJUB1, EgERF113, EgTCP15, 
EgNAC29, EgEIN3, EgMYC2, EgNAC83 dan EgMYB122 selanjutnya dikuantitikan 
melalui PCR-masa nyata kuantitatif (qPCR). Kedua-dua EgJUB1 dan EgERF113 telah 
dikesan dikawal naik secara spesifik di bawah tekanan biotik pada semua titik masa. 
Dapatan-dapatan tersebut menunjukkan kawalan naik EgJUB1 semasa fasa biotrofik 
sementara EgERF113 menunjukkan kawalan naik yang ketara apabila kelapa sawit 
menukar pertahanan menentang fasa nekrotrofik. Pencirian EgJUB1 dan EgERF113 
telah dijalankan melaui asai Yis Satu-Hibrid (Y1H) in vivo dan asai syif kegerakan 
elektroforesis (EMSA) in vitro. JUB1 telah dilaporkan mengikat kepada motif tapak 
ikatan NAC (NACBS) semasa tekanan abiotik. Kajian ini adalah laporan pertama ke atas 
aktiviti ikatan EgJUB1 kepada dinding sekunder element ikatan 1 NAC (SNBE1) yang 
mana berada dalam kawasan promoter EgHSFC-2b dengan profil ekspresi yang sama 
seperti EgJUB1. Motif SNBE1 dengan pertukaran nukleotida tunggal samada pada 
kedudukan kelima atau kelapan telah ditemukan dalam kawasan promoter beberapa TFs 
yang terekspres bersama EgJUB1, termasuk EgHSFB-4b dan EgGAMYB X2. Sementara 
itu EgERF113 mengikat pada kotak GCC dan motif DRE/CRT yang menggalakkan 
keplastikan dalam mengawal naik gen berkaitan pertahanan hilir melawan serangan G. 
boninense. Analysis jujukan menunjukkan kehadiran domain ikatan DNA (DBD) NAC 
dalam EgJUB1. Perubahan asid amino daripada fenilalanina kepada triptofan pada 
kedudukan ke-14 DBD EgERF113 membuktikan kespesifikan ikatan pada kedua-dua 
kotak GCC dan motif DRE/CRT. Rawatan berpanjangan menyebabkan anak benih 
kelapa sawit alah kepada jangkitan G. boninense. Basidiomata matang G. boninense 
telah diperhati pada 24 minggu selepas inokulasi (w.p.i) dan jangkitan tersebut berakhir 
dengan kematian tumbuhan. Kesimpulannya, penemuan kami mencadangkan EgJUB1 
dan EgERF113 sebagai TFs utama dalam mengatur mekanisme pertahanan kelapa sawit 
masing-masing semasa fasa jangkitan biotrofik dan nekrotrofik oleh hemibiotrofik G. 
boninense. 
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AP2/ERF transcription factor. AP2/ERF transcription factors 
are divided into three group based on the binding specificities; 
GCC-box binding only, DRE/CRT binding only, both GCC-
box and DRE/CRT binding. Amino acid and the position which 
regulates the specific binding to downstream cis-element is 
shown in the box. Source: Phukan et al. (2017). 
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2.5 Schematic illustration of NAC transcription factor DNA 
binding domain. Typical NAC transcription factors consist of 
five subdomains in the N-terminal region and a C-terminal 
transcription activator/repressor. Source: Tweneboah and Oh 
(2017). 
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2.6 Illumina sequencing by synthesis. (A) DNA fragments fitted 
with adapters are hybridized on lanes of flowcell with 
complementary oligos. Polymerases complete the extension 
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and amplification of the DNA fragments through bridge 
amplification to develop clusters of identical fragments. (B) 
The fragments are sequenced via reversible terminator 
nucleotides. Each base pair is excited with laser beam and 
subsequent fluorescence signals emitted are read. Source: 
Chaitankar et al. (2016). 
 

3.1 Artificial infection of oil palm seedling with Ganoderma 
boninense. (A-B) Roots of oil palm seedling are placed in direct 
contact with G. boninense inoculum (rubber wood block as 
carrier). (C-D) G. boninense-inoculated oil palm seedling is 
placed in quarter-filled clay pot and topped up with sterilized 
soil to cover the bole of seedlings. 
 

30 

3.2 Time course sampling and outline of experiments. (A) Roots of 
control, mock-treated (MT) and Ganoderma-treated (GT) oil 
palm seedlings were harvested at 3, 7 and 11 days post 
inoculation, each with two pooled biological replicates. Each 
pooled biological replicate consisted of roots harvested from 
six individual oil palm seedlings. Prolonged treatment 
consisted of six untreated seedlings (control) and six 
Ganoderma-treated seedlings. (B) Flow diagram illustrating 
the outline of experiments from plant treatment to datasets. 
 

33 

3.3 Roots of oil palm seedlings colonized with Ganoderma 
boninense at 3 days post inoculation. Bar = 1 cm. 
 

41 

3.4 Scanning electron microscopy of oil palm roots. Root of (A) 
control and (B-D) Ganoderma-treated samples at 3, 7 and 11 
days post inoculation (d.p.i), respectively were imaged at 
maximum magnification of 1,000X.  Clamp connection was 
observed on GT sample at 11 d.p.i. Bar = 10 µm. 
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3.5 Prolonged infection of Ganoderma boninense on oil palm 
seedlings. (A) Budding of Ganoderma basidiomata at 12 weeks 
post inoculation (w.p.i). Left; yellowing foliar of oil palm 
seedlings. Right; white color and button shaped of young 
basidiomata. (B) Formation of fruiting body at 24 w.p.i. Left; 
completely browning foliar of oil palm seedlings. Right; 
reddish brown and bracket-shaped pileus of mature 
basidiomata. (C) Cross-sectioned of stem bulb oil palm 
seedlings. Left; Stem bulb of healthy oil palm seedlings. Right; 
Necrosis lesions on stem bulb of Ganoderma-treated oil palm 
seedlings. Bar = 1 cm. 
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3.6 RNA Integrity Number (RIN) generated by Agilent 2100 
Bioanalyzer. (A) Densitometry plot. (B) Electropherogram 
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summary analysis. RNA samples of control and Ganoderma-
treated at 3, 7 and 11 days post inoculation were validated. 
Integrity assessment of total RNA was performed on two 
pooled biological replicates of each sample. 
 

3.7 Summary of high throughput RNA-seq data. Colored bars (blue 
and yellow) represent two pooled biological replicates of 
control and Ganoderma-treated samples at 3, 7 and 11 days post 
inoculation (d.p.i). 
 

47 

3.8 Base-calling quality scores across all sequence reads. Per base 
sequence quality of samples (A) pooled biological replicate 1 
and (B) pooled biological replicate 2 was generated using 
FastQC. 
 

48 

3.9 Gene Ontology (GO) functional categorization of differentially 
expressed genes (DEGs). The pie charts represent top 
distribution by number of sequences of upregulated and 
downregulated DEGs categorized into GO terms (A) biological 
process, (B) molecular function and (C) cellular component of 
Ganoderma-infected oil palm roots at 3, 7 and 11 days post 
inoculation as compared to control. 
 

52 

3.10 Differentially expressed genes (DEGs) encoding transcription 
factors during early interaction with Ganoderma boninense at 
3, 7 and 11 days post inoculation (d.p.i). (A) Heatmap 
clustering of upregulated transcription factor genes. Colored 
blocks indicate ascending expression level from green (0) to red 
(6). (B) Heatmap clustering of downregulated transcription 
factor genes. Colored blocks indicate descending expression 
level from green (0) to red (-8). For RNA-seq data analysis, 
each pooled biological replicate consisted of pooled roots from 
six plants. Each heatmap data was constructed using average of 
two pooled biological replicates. Pairwise comparison of RNA-
seq data was evaluated according to cut-off values of log2 fold 
change (FC) ≥ |1.0| and P-value < 0.01. 
 

56 

3.11 Differentially expressed genes (DEGs) during early interaction 
with Ganoderma boninense at 3, 7 and 11 days post inoculation 
(d.p.i). Heatmap clustering of upregulated DEGs commonly 
expressed during biotic interaction. Colored blocks indicate 
ascending expression level from white (0) to blue (4). For 
RNA-seq data analysis, each replicate consisted of pooled roots 
from six plants. Each heatmap data was constructed using 
average of two pooled biological replicates. Pairwise 
comparison of RNA-seq data was evaluated according to cut-
off values of log2 fold change (FC) ≥ |1.0| and P-value < 0.01. 
BFN: Bifunctional nuclease; CDPK: Calcium-dependent 
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protein kinase; CESA: Cellulose synthase A; CML: 
Calmodulin-like; CSLD: Cellulose synthase-like protein D; 
ETI: Effector-triggered immunity; GST: Glutathione S-
transferase; NPR1: NONEXPRESSOR OF PATHOGENESIS-
RELATED GENE 1; SOD: Superoxide dismutase; RBOH: 
Respiratory burst oxidase homolog protein; ROS: Reactive 
oxygen species; MC9: Metacaspase 9; PTI: PAMP-triggered 
immunity. 
 

3.12 Screening of defense-related transcription factors during early 
interaction of Ganoderma boninense via multiplex semi-
quantitative RT-PCR. Two biological replicates of pooled six 
roots of oil palm seedlings from mock-treated (MT) and 
Ganoderma-treated (GT) samples were used. Multiplex semi-
quantitative RT-PCR reaction was conducted using cDNA 
samples at (A) 3 and (B) 11 days post inoculation for both MT 
and GT groups. Each lane represents one biological replicate 
for each treatment. A reference gene of either EgActin or 
EgNADH5 was used as expression control in each multiplex 
PCR reaction. Band intensity was quantitated using ImageJ 
software of National Institute of Health (NIH), USA. Each band 
intensity of the gene of interest was normalized to the 
respective internal control and presented underneath each 
image. GeneRuler DNA Ladder Mix (Thermo Fisher Scientific, 
USA) was used as a DNA ladder. 
 

60 

3.13 Expression patterns of transcription factor genes in response to 
Ganoderma boninense infection at different time points. Each 
gene expression was normalized by expression levels of three 
reference genes; EgGAPDH2, EgNADH5 and Egß-actin. 
Quantitative Real-time PCR was carried out on control (C), 
mock- (MT) and Ganoderma-treated (GT) samples at 3, 7 and 
11 days post inoculation. Colored bars represent expression 
levels of two pooled biological replicate 1 (blue) and replicate 
2 (red). Each biological replicate consisted of pooled roots from 
six oil palm seedlings. Error bars represent the mean ± SEM of 
three technical replicates of each sample. The statistical 
analyses were performed by comparing expression levels of 
different treatments at all time points to control, using one-way 
ANOVA analysis followed by Tukey’s test. Significantly 
different expression level as compared to control are measured 
according to *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 
0.0001. ns is defined as not significant. 
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4.1 Deduced nucleotide and amino acid sequence of EgJUB1. 
Translation of nucleotide to amino acid sequence was carried 
out using translate tool in ExPASy 
https://web.expasy.org/translate/. The basic amino acids of 
putative nuclear localization signal are underlined with red. 
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4.2 Multiple sequence alignment of the deduced amino acid 
sequence of EgJUB1 protein with other JUB1-related proteins. 
Structure based alignment was constructed using mode 
Expresso of T-Coffee software 
http://tcoffee.crg.cat/apps/tcoffee/do:expresso. The asterisks 
indicate fully conserved residues. The colons indicate 
conservation of strong group. The full stops indicate the 
conservation of weak group. The dashes indicate no consensus. 
The red shadings indicate reliable and consistent alignment. 
Yellow and green shadings indicate average reliability while 
blue shadings indicate very poor alignment. Highly conserved 
NAC subdomains (A to E) are indicated by black lines. The 
putative nuclear localization signal is shown by double-headed 
arrow below the sequences. The deduced amino acids 
sequences of JUB1 are derived from different species; Elaeis 
guineensis (Eg), Phoenix dactylifera (Pd), Nicotiana tabacum 
(Nt), Ananas comosus (Ac), Musa acuminate (Ma), Ziziphus 
jujube (Zj), Setaria italic (Si), Phalaenopsis equestris (Pe), 
Panicum hallii (Ph) and Arabidopsis thaliana (At). 
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4.3 Predicted protein structure of EgJUB1 by SWISS-MODEL. 
Protein 3D model structure is generated and retrieved from: 
https://swissmodel.expasy.org/interactive. 
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4.4 Minimal inhibitory concentration (MIC) of Aureobasidin A 
(AbA) on bait-reporter constructs (pBaits-AbAi). MIC of AbA 
to suppress basal expression of each bait and control construct 
was determined for; (A) pNACBS-AbAi, (B) pmNACBS-
AbAi, (C) pSNBE1-AbAi, (D) pmSNBE1-AbAi, (E) pSNBE2-
AbAi, (F) pmSNBE2-AbAi and (G) p53-AbAi (control). 
 

89 

4.5 EgJUB1 interacts with secondary wall NAC binding element 1 
(SNBE1). (A) Prediction of binding motifs for EgJUB1 derived 
from Plant Transcription Factor Database (PlantTFDB) version 
5.0. http://planttfdb.cbi.pku.edu.cn/ (B) Yeast One-Hybrid 
analysis reveals binding activity of EgJUB1 to SNBE1 motif. 
No binding activity was observed on both NACBS and SNBE2 
motifs. Transformed yeast cells were cultured on SD/-
Leu/AbA†, wherein † denotes different minimal inhibitory 
concentration of antibiotic Aureobasidin A (AbA) for each 
motif. 
 

91 

4.6 Electrophoretic mobility shift assay (EMSA) of EgJUB1 with 
SNBE1 probe. Lane 1 to 3: EBNA control system. Lane 4 to 8: 
EgJUB1 test system. Lane 2 and 3 were positive and negative 
control for EMSA, respectively. Shifted band in lane 6 
indicated direct binding of EgJUB1 to biotinylated SNBE1 
probe, but none when tested with untransformed nuclear extract 
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in lane 5. EgJUB1 was unable to bind to biotinylated mutant 
SNBE1 (mSNBE1) probe in lane 4. Successful binding of 200-
fold molar excess of unlabeled SNBE1 probe (competitor) with 
EgJUB1 was shown in lane 7.  Lane 1 and 8: Blank. 
 

4.7 Deduced nucleotide and amino acid sequence of EgERF113. 
Translation of nucleotide to amino acid sequence was carried 
out using translate tool in ExPASy 
https://web.expasy.org/translate/. The pink shading indicates 
specific amino acid predicted for binding to both GCC-box and 
DRE/CRT motifs. The basic amino acids of putative nuclear 
localization signal PWGKWAAEIRDPRKAARV is 
underlined with red. 
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4.8 Multiple sequence alignment of the deduced amino acid 
sequence of EgERF113 protein with other ERF113-related 
proteins. Structure based alignment was constructed using 
mode Expresso of T-Coffee software 
http://tcoffee.crg.cat/apps/tcoffee/do:expresso. The asterisks 
indicate fully conserved residues. The colons indicate 
conservation of strong group. The full stops indicate the 
conservation of weak group. The dashes indicate no consensus. 
The red shadings indicate reliable and consistent alignment. 
Yellow and green shadings indicate average reliability while 
blue shadings indicate very poor alignment. Pink shadings 
indicate specific amino acid for binding to both GCC-box and 
DRE/CRT motifs at specific location. The putative nuclear 
localization signal is shown by double-headed arrow below the 
sequences. The deduced amino acids sequences of ERF113 are 
derived from different species; Elaeis guineensis (Eg), Musa 
acuminata (Ma), Phoenix dactylifera (Pd), Ananas comosus 
(Ac), Asparagus officinalis (Ao), Populus trichocarpa (Pt), 
Hevea brasiliensis (Hb), Theobroma cacao (Tc) and 
Arabidopsis thaliana (At). 
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4.9 Predicted protein structure of EgERF113 by SWISS-MODEL. 
Protein 3D model structure is generated and retrieved from:  
https://swissmodel.expasy.org/interactive. 
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4.10 Minimal inhibitory concentration (MIC) of Aureobasidin A 
(AbA) on bait-reporter constructs (pBaits-AbAi). MIC of AbA 
to suppress basal expression of each bait and control construct 
was determined for; (A) pGCC-AbAi, (B) pmGCC-AbAi, (C) 
pDRE/CRT-AbAi, (D) pmDRE/CRT-AbAi and (E) p53-AbAi 
(control). 
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4.11 EgERF113 interacts with GCC-box and DRE/CRT motifs. No 
binding activity was observed on both mutants, mGCC-box and 
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mDRE/CRT motifs. Transformed yeast cells were cultured on 
SD/-Leu/AbA†, wherein † denotes different minimal inhibitory 
concentration of antibiotic Aureobasidin A (AbA) for each 
motif. 
 

4.12 Electrophoretic mobility shift assay (EMSA) of EgERF113 
with GCC-box probe. Lane 1 to 3: EBNA control system. Lane 
4 to 8: EgERF113 test system. Lane 2 and 3 were positive and 
negative control for EMSA, respectively. Shifted band in lane 
6 indicated direct binding of EgERF113 to biotinylated GCC-
box probe, but none when tested with untransformed nuclear 
extract in lane 5. EgERF113 was unable to bind to biotinylated 
mutant GCC-box (mGCC-box) probe in lane 4. Successful 
binding of 200-fold molar excess of unlabeled GCC-box probe 
(competitor) with EgERF113 was shown in lane 7.  Lane 1 and 
8: Blank. 
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4.13 Electrophoretic mobility shift assay (EMSA) of EgERF113 
with DRE/CRT probe. Lane 1 to 3: EBNA control system. Lane 
4 to 8: EgERF113 test system. Lane 2 and 3 were positive and 
negative control for EMSA, respectively. Shifted band in lane 
6 indicated direct binding of EgERF113 to biotinylated 
DRE/CRT probe, but none when tested with untransformed 
nuclear extract in lane 5. EgERF113 was unable to bind to 
biotinylated mutant DRE/CRT (mDRE/CRT) probe in lane 4. 
Successful binding of 200-fold molar excess of unlabeled 
DRE/CRT probe (competitor) with EgERF113 was shown in 
lane 7.  Lane 1 and 8: Blank. 
 

107 

4.14 Proposed defense mechanisms of oil palm seedlings against 
hemibiotroph Ganoderma boninense during biotrophic and 
necrotrophic infection phases. Based on the NGS data on 
differentially expressed genes encoding TFs, two oil palm 
transcription factors (TFs), EgJUB1 and EgERF113 were 
discovered to regulate specifically under biotic stress during 
biotrophic and necrotrophic phases, respectively. The EgJUB1 
TF binds to SNBE motif and directly regulates EgGAMYB and 
EgHSFs. The EgERF113 TF binds to GCC-box and DRE/CRT 
motifs which promotes PR and calcium responsive genes. The 
oil palm defense pathways are identified based on established 
defense mechanisms and new findings from this study. Black 
arrows represent direct regulation by encoded proteins/genes; 
blue arrows with broken line suggest highly probable defense 
regulatory pathways; brown arrows indicate activation of 
downstream targets through binding to respective motifs. The 
question marks highlight the gaps in oil palm defense 
mechanism that need to be further elucidated. Ca: Calcium; 
CESA: Cellulose synthase A; CSLD: Cellulose synthase-like 
D; DAMPs: Damage-associated molecular patterns; 
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CHAPTER 1 
 

INTRODUCTION 
 

Oil palm (Elaeis guineensis) is economically important for countries especially in 
Southeast Asian region. Malaysia has become the world second largest palm oil exporter 
accounting 44% of world’s export and contributing 39% of world palm oil production 
(Malaysian Palm Oil Council, 2017). The country achieved the highest export revenue 
in 2017 from palm oil and palm oil products of approximately USD18.5 billion 
(Malaysian Palm Oil Board, 2018). Oil palm has been recognized as one of the world’s 
largest edible oil source as well as precursor of biodiesel fuel (Kurnia et al., 2016; 
Stichnothe et al., 2014). To date, oil palm is the most efficient oil-bearing crop with 5 to 
9 times higher yield per ha yearly than other vegetable oil crops such as soybean, 
sunflower and rapeseed (Lam et al., 2019).  
 

However, the sustainable production of palm oil is hampered severely due to basal stem 
rot (BSR) disease caused by pathogenic and destructive fungus, Ganoderma boninense. 
Malaysia and Indonesia have suffered highest economic loss from the disease ranging 
from RM225 million to RM1.5 billion (up to USD 361 million) per year in both countries 
(Morel et al., 2016, Arif et al., 2011). The vast spread of BSR from one oil palm 
plantation to another in both countries is so serious and almost uncontrollable. G. 
boninense is a basidiomycete soil-borne pathogen which is the prevalent species causing 
BSR in oil palm (Ishaq et al., 2014; Hushiarian et al., 2013). The spreading of G. 
boninense in oil palm plantation involves dikaryotic mycelium spreading through root-
to-root contact, dispersal of basidiospore and the presence of secondary inoculum in the 
soil (Isaac et al., 2018; Chong et al., 2017a).  
   

The main constraint in managing the BSR disease is the failure in identifying 
Ganoderma-infected palm trees at the earliest stage of infection since there is no visible 
symptoms. The pathogenic fungus is categorized as hemibiotroph wherein initial 
biotrophic lifestyle is needed for a period of time before switching to subsequent 
necrotrophic phase (Chong et al., 2017a). The dynamic intermediate lifestyle of 
hemibiotroph made it possible for G. boninense to adapt and manipulate the host plant 
defense mechanisms which almost ultimately result in the plant succumbing to the 
infection. During the biotrophic phase (early infection), G. boninense survives by 
parasitically extracting nutrients from the living host plant while keeping it viable. The 
earliest symptoms are only visible on the foliage as the infection progresses up to 60-
70%, reaching the later stage of necrotrophic phase with half of the stem base already 
ravaged (Chong et al., 2017a). BSR is the most common manifestation of G. boninense 
infection whereby it affects and decays the bole and produces multiple spears as well as 
fruiting bodies  (Hushiarian et al., 2013).   
 

Cultural practices including soil mounding, sanitation and trenching have been 
commonly applied as one of BSR disease management strategies although Chong et al. 
(2017b) has highlighted the risks of disease recurrence. Chemical control using 
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fungicides is the next choice of controlling BSR in oil palm. Studies on systemic 
fungicide such as hexaconazole have shown strong inhibition towards Ganoderma 
growth (Maluin et al., 2019; Mustafa et al., 2018). The application of fungicides on fields 
using trunk injection technique was also shown to have positive impacts in reducing the 
BSR incidence (Jelani et al., 2018). However, growing concerns on the negative impacts 
of fungicides on beneficial soil microbes, health and environmental hazards as well as 
development of fungicides resistance results in the intense need for green sustainable 
alternatives. As a result, anti-fungal compounds synthesized by bacteria (termed as 
biofungicides) are actively being studied as continuous efforts in reducing the use of 
synthetic fungicides (Lee et al., 2018; Pramudito et al., 2018). Alternatively, biocontrol 
agents (BCA) of soil-borne Trichoderma spp. have been numerously proven to exhibit 
antagonistic effect on G. boninense growth while promoting plant resistance against the 
fungal infection (Musa et al., 2018; Alizadeh et al., 2014; Priwiratama and Susanto, 
2014). However, little is known about the oil palm defense mechanisms during different 
infection phases staged by this hemibiotroph pathogen, G. boninense.  
 

The most promising molecular approach in managing Ganoderma-infected palm trees as 
well as minimizing the disease progress caused by G. boninense is most likely through 
identifying the infection at earlier stage (Kushairi et al., 2019). Phytohormones crosstalk 
of salicylic acid (SA) and jasmonic acid- ethylene (JA-ET) signalling has been widely 
studied to determine the fine-tuning defense response against biotrophic and 
necrotrophic infection phases, respectively (Häffner et. al., 2015). However, there is poor 
molecular information available explaining the defense regulation by transcription 
factors (TFs) during transition from biotrophic to necrotrophic state. The fragmentary 
information on molecular interactions between plant and hemibiotroph should be 
explicated to identify the key molecular mechanisms of both pathogenesis and plant 
immunity. A recent high-throughput RNA-seq analysis has pointed out the counter-act 
defense mechanisms executed by plant during transition from biotrophic to necrotrophic 
phase (Bahari et al., 2018). In the attempt of finding novel phase-specific biomarkers, 
this study focus on the regulation of defense-related TFs.  
 

TFs are the ‘master switches’, which regulate the downstream genes transcription 
processes. Alteration of the genes expression by the TFs may either over-express or 
suppress different stress-related genes (Ng et al., 2018; Tsuda and Somssich, 2015). 
These pathogen-defensive genes are responsible in the production of antimicrobial 
secondary metabolites and antifungal proteins (Pandey et al., 2016; Alves et al., 2014). 
There are six major families of TFs recognized to regulate defense response against 
pathogens including NAC, bHLH, MYB, WRKY, AP2/ERF and bZIP (Ng et al., 2018). 
To date, no study has reported comprehensive transcriptomic profiling of oil palm 
defense-related TFs against G. boninense. Recognizing the infection phase-specific TFs 
may enables researchers to underpin the regulation of downstream target genes and offer 
opportunities to tackle or attenuate the progress of infection. The TFs can be used as 
biomarkers in plant breeding and engineering to develop Ganoderma-resistant palms. 
Thus, this study aims to recognize specific oil palm TFs as ‘key’ biomarkers associated 
with biotrophic and necrotrophic infection phases of hemibiotroph G. boninense.  
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3 

The objectives of this study are; 
1. To perform high-throughput transcript analysis via Next Generation 

Sequencing (NGS) and to determine differentially expressed genes (DEGs) of 
TFs during early infection of G. boninense  
 

2. To identify oil palm TFs regulated specifically under biotic stress via 
quantitative Real-Time PCR (qPCR) 

 
3. To carry out molecular characterization of an oil palm TF with potential in 

regulating defense response during the biotrophic and necrotrophic infection 
phase of G. boninense, respectively. 
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