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Oil palm (Elaeis guineessis) Malaysian Palm Oil Board (MPOB) Angolan 
germplasm materials were evaluated for their potential use in oil palm breeding 
programmes. Large fruit characteristic of some Angola dura palms has provided 
breeders with a source of favourable traits for introgression into the current 
planting materials. With the aim of understanding molecular regulation during 
mesocarp development, maturation and ripening of Angola dura palms, efforts 
were initiated to profile the expression of transcripts across nine different 
developmental stages of mesocarp tissues. The second objective of this study 
was to identify differentially expressed genes associated with lipid metabolism, 
carbohydrate metabolism, transcription factors and plant hormone metabolism 
in mesocarp. The final objective was to profile the expression of selected 
WRINKLED1 transcripts across different developmental stages of mesocarp, 
endosperm and vegetative tissues. A total of 36,675 genes were identified from 
RNA-Sequencing with 24,226 transcripts successfully annotated with the Plant 
Reference Sequence Database using BLASTX. Pairwise T-test was performed 
using TIGR Multiexperiment Viewer and a total of 21,261 transcripts were 
identified as significantly differentially expressed across all the pairwise 
comparisons. BLAST2GO analysis assigned 13,996 unigenes with various GO 
terms. Transcripts associated with lipid metabolic process were highly 
expressed during lag phase preceding the lipid biosynthesis [(10 to 12 Week 
After Anthesis (WAA)] and fruit maturation (18 to 20 WAA) stages. Meanwhile, 
transcripts linked with carbohydrate metabolic process were up regulated 
during transition of fruit developmental stages from 10 to 12 WAA. Further 
annotation of the unigenes with KEGG pathway identified 279, 757 and 142 
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transcripts related to lipid, carbohydrate and hormone metabolisms, 
respectively. Additionally, plant RefSeq database annotated 272 transcripts 
encoding transcription factors.  The most stable reference genes for RT-qPCR 
were selected based on RefFinder software. Twenty-seven transcripts from the 
RNA-Seq data of nine developmental stages associated with lipid, 
carbohydrate, plant hormone metabolism and transcription factors were chosen 
for validation of expression levels using Fluidigm 48.48 Real-Time qPCR. 
Transcripts such as KAS I, FATA, DGAT, ENR, WRI1 and bZIP showed different 
expression profiles in the MPOB-Angola dura as compared to the previously 
reported data. WRI1-2 was highly expressed in the mesocarp of MPOB-Angola 
dura at the beginning of oil accumulation from 20 WAA to 24 WAA with log2 
(fpkm) of 4.7, together with the up-regulation of FA (and TAG biosynthetic 
genes  In contrast, WRI1-4 was highly expressed in the endosperm of MPOB-
Angola dura from 8-15 WAA and decreased at 18 WAA with a fold change of 
4.9 which corresponded with the expression profiles of KAS I in the endosperm 
tissues. The availability of these transcriptome datasets gives an insight into the 
transcriptional mechanisms controlling the Angolan dura fruit development, 
maturation and ripening. 
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Kelapa sawit (Elaeis guineessis) Lembaga Minyak Sawit Malaysia (MPOB) 
daripada bahan germplasma Angolan telah dinilai untuk kegunaan dalam 
program pembiakbakaan kelapa sawit. Ciri buah yang besar pada sesetengah 
palma dura Angola telah memberikan sumber ciri-ciri yang menarik untuk 
para pembiakbaka melakukan introgresi ke dalam bahan penanaman semasa. 
Dengan tujuan untuk memahami pengawalaturan molekul semasa 
perkembangan, pematangan dan keranuman mesokarpa palma Angola dura, 
usaha telah dimulakan untuk memprofil pengekspresan transkrip di sembilan 
peringkat perkembangan tisu mesokarpa yang berbeza. Objektif kedua kajian 
ini adalah untuk mengenalpasti pengekspresan gen yang berkaitan dengan 
metabolisme lipid, metabolisme karbohidrat, faktor transkripsi dan 
metabolisme hormon tumbuhan di dalam mesokarpa. Objektif terakhir adalah 
untuk memprofil pengekspresan transkrip terpilih WRINKLED1 merentasi 
pelbagai peringkat perkembangan tisu-tisu mesokarpa, endosperma dan 
vegetatif. Sejumlah 36,675 gen telah dikenalpasti daripada penjujukan RNA di 
mana 24,226 transkrip tersebut telah berjaya dianotasikan dengan Pangkalan 
Data Rujukan Tumbuhan menggunakan BLASTX. Ujian T-test berpasangan 
dilakukan menggunakan TIGR Multiexperiment Viewer dan sejumlah 21,261 
transkrip telah dikenalpasti sebagai transkrip yang diekspres secara signifikan 
merentasi kesemua perbandingan berpasangan. Analisa BLAST2GO 
menghasilkan anotasi 13,996 unigen dengan pelbagai istilah GO. Transkrip 
yang berkaitan dengan proses metabolik lipid telah diekspres secara tinggi 
semasa fasa lag sebelum biosintesis lipid (10 hingga 12 WAA) dan pada 
peringkat pematangan buah (18 hingga 20 WAA). Sementara itu, transkrip 
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yang berkaitan dengan proses metabolik karbohidrat meningkat semasa 
peralihan peringkat perkembangan buah dari 10 hingga 12 WAA. Seterusnya, 
anotasi ke atas unigen menggunakan tapakjalan KEGG telah mengenalpasti 
279, 757 dan 142 transkrip yang masing-masing berkaitan dengan 
metabolisme lipid, karbohidrat dan hormon. Tambahan pula, anotasi ke atas 
unigen menggunakan pangkalan data RefSeq tumbuhan telah menunjukkan 
bahawa 272 transkrip adalah berkaitan dengan faktor transkripsi. Gen rujukan 
yang paling stabil untuk RT-qPCR telah dipilih berdasarkan perisian 
RefFinder dan penilaian komprehensif. Dua puluh tujuh transkrip daripada 
data penjujukan RNA ke atas sembilan peringkat perkembangan yang 
berkaitan dengan metabolisme lipid, karbohidrat, hormon tumbuhan dan 
faktor transkripsi telah dipilih untuk pengesahan tahap pengekspresan 
menggunakan Fluidigm 48.48 qPCR masa nyata. Transkrip seperti KAS I, 
FATA, DGAT, ENR, WRI1 dan bZIP menunjukkan profil pengekspresan 
berbeza di antara MPOB-Angola dura jika dibandingkan dengan data yang 
telah dilaporkan sebelum ini. WRI1-2 telah diekspres secara tinggi di dalam 
mesokarpa MPOB-Angola dura pada peringkat permulaan pengumpulan 
minyak iaitu daripada 20 hingga 24 WAA dengan peningkatan log2(fpkm) 
sebanyak 4.7, bersamaan dengan peningkatan pengekspresan gen-gen yang 
berkaitan dengan biosintesis asid lemak dan TAG. Sebaliknya, WRI1-4 telah 
diekspres di dalam endosperma MPOB-Angola dura dari 8 hingga 15 WAA 
dan menurun sebanyak 4.9 perubahan lipatan pada 18 WAA di mana profil 
pengekspresan tersebut adalah berpadanan dengan KAS I dalam tisu 
endosperma. Ketersediaan dataset transkriptom ini meningkatkan 
pemahaman terhadap mekanisme transkripsi yang mengawalatur fasa 
perkembangan, pematangan dan keranuman buah Angola dura. 
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CHAPTER 1 

1 INTRODUCTION 

African oil palm (Elaeis guineensis) is a hyperefficient oil-bearing crop, yet 
ultimatum for edible oils and biofuels, consolidated with sustainability 
concerns over diminishing rainforest reserves, has led to intense pressure to 
improve oil palm yield. Despite the fact that it is originated from Africa, oil 
palm is extensively cultivated in almost 43 countries in the tropical regions of 
Southeast Asia, Africa, and South America (Koh and Wilcove, 2008). 
Indonesia and Malaysia monopolize the global production of palm oil, 
contributing to around 85% of the palm oil production worldwide (Sime 
Darby Plantation, 2012; Siregar et al., 2012). It was reported that Malaysian 
Palm Oil Board (MPOB)-Angola dura produced 144-150 kg palm-1 year-1 mean 
fresh fruit bunch (FFB), 50% mesocarp to fruit (M/F), 15% oil to bunch (O/B), 
23 kg palm-1 year-1 oil yield (OY) (Kushairi et al., 2003). Angola dura palm is 
well known for its large fruit characteristic with a mean fruit weight (MFW) 
between 24 to 34 g, apart from exhibiting comparable or more variable fatty 
acid compositions [palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1) 
and linoleic acid (C18:2)], iodine value and carotene content compared to the 
commercial dura x pisifera (DxP) materials (Kushairi et al., 2003; Rajanaidu et 
al., 1991). Noh et al. (2002) also reported that Angolan germplasm has lower 
(29.8% - 48.6%) content of palmitic acid than commercial DxP materials (41.8% 
- 46.8%). Therefore, there is a demand in increasing the oil price with lower 
content of palmitic acid and higher content of oleic acid (Noh et al., 2002). 
Iodine value for Angolan germplasm ranged between 49.6% - 67.4% which 
was considered as remarkable as compared to the commercial DxP materials. 
The most important application of the iodine value is to determine the amount 
of unsaturation contained in FA. It was also tabulated that the carotene 
content for Angolan germplasm started from 211 ppm to 2604 ppm, which 
indicated that the carotene levels in some of the Angolan progenies might be 
greater than the range of carotene content in E. guineensis materials (997 ppm 
for dura, 673 ppm for tenera and 428 ppm for pisifera) reported in this country 
(Noh et al., 2002). Due to their favourable variation and heritability for several 
important oil-related traits, Angolan germplasm can be exploited for the 
genetic improvement of existing planting materials (Noh et al., 2002). 

Advances in next-generation sequencing technologies have resulted in RNA 
Sequencing (RNA–Seq) being widely used for transcriptome profiling. This 
approach provides more precise measurement of transcript levels and enables 
the discovery of gene isoforms as compared to other approaches such as 
microarray and expressed sequence tags (EST) (Wang et al., 2009). RNA-Seq 
can also be used to investigate splicing variants, gene isoforms, and single 
nucleotide polymorphisms and post transcriptional modifications (Lalonde et 
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al., 2011). Through 454 or Illumina sequencing, comprehensive transcriptome 
sequences were generated for several oil crops such as sesame (Wei et al., 
2011), coconut (Fan et al., 2013), avocado (Kilaru et al., 2015) and oil palm 
(Tranbarger et al., 2011). These data proved useful for gene discovery and 
development of molecular markers. 

Transcriptome analysis across oil palm mesocarp collected from dura palms of 
different origin was performed previously by Tranbarger et al. (2011), 
whereby a 454 pyrosequencing-derived transcriptome was assembled for 
developmental phases preceding and during maturation and ripening. They 
concentrated on the fatty acid and triacylglycerol assembly pathways and 
during carotenogenesis as high rates of lipid and carotenoid biosynthesis were 
detected. Guerin et al. (2016) also detected tight transcriptional coordination 
of fatty acid biosynthesis (FAS) in the plastid with sugar sensing, plastidial 
glycolysis, transient starch storage and carbon recapture pathways via 
coexpression network. Recently, oil palm gene model was updated by 
detailed classification of the oil palm stearoyl-ACP desaturases (SAD) and 
acyl-acyl carrier protein (ACP) thioesterases (FAT) genes (Rosli et al. 2018a). 
Transcriptome analysis across oil palm has enabled the discovery of various 
isoforms within the four families of acyl-CoA: diacylglycerol acyltransferase 
(DGAT) genes (Rosli et al. 2018b). Evaluation of the E. guineensis DGAT gene 
expression in different tissues and developmental stages suggests that DGAT 
have distinctive physiological roles. Moreover, it was reported that DGAT 
plays a significant role in developmental processes in reproduction, such as 
flowering, and in fruit/seed formation, particularly in the mesocarp and 
endosperm tissues (Rosli et al. 2018b). Identification of differentially 
expressed genes such as DGAT, SAD, FatA and FatB which are associated with 
lipid metabolism would be possible through transcriptome profiling of 
MPOB-Angola dura in mesocarp tissues. 

Accumulation of up to 90% of oil in the mesocarp involves coordinated 
regulation of key FAS genes by WRINKLED1 (WRI1) transcription factor. 
Tranbarger et al. (2011) reported that WRI1 has been described with a 
transcript profile combined with those of many FAS genes and high lipid 
accumulation levels, indicating certain specific regulatory characteristics 
between seeds and fruits. Although it is now confirmed that WRI1 regulates 
oil synthesis in both seed and non-seed tissues (Ma et al., 2013; Singh et al., 
2013), the master regulators that control the expression of WRI1 in the oil palm 
mesocarp remain unclear. Common regulators in seed tissues such as LEAFY 
COTYLEDON (LEC1 and LEC2), ABSCISIC ACID INSENSITIVE3 (ABI3) and 
FUSCA3 (FUS3) genes were not detected. Bourgis et al. (2011) showed that 
transcripts representing an ortholog of the WRI1 transcription factor were 57-
fold higher in oil palm relative to date palm and displayed a temporal pattern 
similar to its target genes. Jin et al. 2017 found that the ectopic expression of 
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EgWRI1-1 in Arabidopsis plants dramatically increased the seed mass and oil 
content. Their findings showed that EgWRI1 is the key gene that contributed 
to the hybrid vigor of lipid biosynthesis trait in hybrid tenera fruit form. Apart 
from WRI1, two novel transcription factors (TFs), termed NF-YB-1 and ZFP-1, 
were also found at the core of the FAS regulatory module in oil palm (Guerin 
et al., 2016). Through transcriptome profiling, idenfication of differentially 
expressed genes associated with TFs in MPOB-Angola dura mesocarp would 
be possible. 

Genes associated with carbohydrate metabolism was also described by 
Bourgis et al. (2011). Plastid isoforms of ATP-dependent phosphofructokinase 
(PFK) and pyruvate kinase (PK) have been shown to be up regulated in oil 
palm and during ripening stage. Additionally, a hike in glutamic pyruvate 
transaminase (GPT2) and phosphoenolpyruvate (PEP) transporter palmitoyl-
protein thioesterase (PPT1) were also reported. Meanwhile, according to 
Singh et al. (2013), in oil palm, genes implicated in the oxidation of sucrose 
and the oxidative pentose phosphate pathway were more heavily composed 
than date palm. To charge glycolytic pathways, pentose phosphates are 
reprocessed into glucose 6-phosphate, and imports of these cytosolic 
metabolites involve different transporters on the plastide envelope. Therefore, 
the accumulation of 90% oil in the mesocarp was strongly due to the 
channelling of sugars which is destined for oil synthesis. Identification of 
differently expressed genes associated with carbohydrate such as PK would 
be possible with transcriptome profiling in MPOB-Angola dura in mesocarp 
tissues.   

In oil palm mesocarp, auxin, gibberellic acid and cytokinin rise during the 
early phase at 60 days after pollination (DAP) and dwindle during 100–120 
DAP. Both ethylene (ABA) hormones reach a peak during fruit maturation to 
ripening phases at 120–160 DAP (Tranbarger et al., 2011). It was also revealed 
that 1-aminocyclopropane-1-carboxylate oxidase 3 (EgACO3) transcript 
increased between 120 and 160 DAP (Tranbarger et al., 2011) as the EgACO 
expression trend correlates with the rise in ethylene observed between 120 and 
160 DAP (Tranbarger et al., 2011). Methyl jasmonate (MeJA) which is a methyl 
ester of jasmonic acid (JA) plays a role a plant growth regulator whereby it has 
been reported to play an important role in the plant’s response to pathogens 
and wound (Creelman et al., 1992). Interestingly, MeJA also elevated after oil 
biosynthesis initiated until ripeness in oil palm and 12-oxophytodienoate 
reductase 3, lipoxygenase 7, jasmonateinduced protein, and allene oxide 
synthase 1 and 2 are expressed at a higher level in contrast to other jasmonic 
acid biosynthesis genes (Teh et al., 2014). Identification of differentially 
expressed genes associated with plant hormone metabolism would be 
possible with transcriptome profiling of MPOB-Angola dura in mesocarp 
tissues.  
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Although several research teams have embarked on the journey to gain 
further understanding on the molecular regulation during development of 
dura fruit form, the transcriptional changes during oil synthesis in this fruit 
remain limited and restricted to certain genetic background such as Deli and 
Deli Dabou origin. At MPOB, MPOB-Angola dura is being used by breeders 
as a mother palm for improvement of the current planting materials. 
However, research thus far has focused on the application of this population 
for identification of DNA marker related to height increment (Ong et al., 2018). 
Till date, no research has been carried out to profile the expression of 
transcripts across MPOB-Angola dura fruits. The availability of higher 
coverage of transcriptome datasets from nine different developmental stages 
of mesocarp will be able to provide an insight into the transcriptional 
mechanisms controlling the dura fruit development, maturation and ripening. 

The specific objectives of this research are: 

I. To examine transcriptome profiling across nine different 
developmental stages of mesocarp from MPOB-Angola dura; 

II. To identify differentially expressed genes associated with lipid 
metabolism, carbohydrate metabolism, transcription factors and plant 
hormone metabolism in mesocarp; 

III. To profile expression of selected WRINKLED1 transcripts across 
different developmental stages of mesocarp, endosperm and 
vegetative tissues. 
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