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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Doctor of Philosophy

SOLVING CRACK PROBLEMS IN BONDED DISSIMILAR
MATERIALS USING HYPERSINGULAR INTEGRAL EQUATIONS

By

KHAIRUM BIN HAMZAH

November 2019

Chairman : Nik Mohd Asri Bin Nik Long, PhD
Faculty : Institute for Mathematical Research

Inclined or circular arc cracks problems and thermally insulated inclined or circu-
lar arc cracks problems subjected to remote stress in bonded dissimilar materials
are formulated. The modified complex variable function method with the continuity
conditions of the resultant force and displacement function are used to formulate the
hypersingular integral equations (HSIEs) for these problems. Whereas, the conti-
nuity condition of heat conduction function is utilized to formulate the HSIEs for
the thermally insulated cracks problems. The unknown crack opening displacement
(COD) function is mapped into the square root singularity function using the curved
length coordinate method. Then the appropriate quadrature formulas are used to
solve the obtained equations numerically, with the traction along the crack as the
right hand term. The obtained COD function is then used to compute the stress in-
tensity factors (SIF) in order to determine the stability behavior of bodies or materials
containing cracks or flaws. Numerical results of the nondimensional SIF at all the
cracks tips are presented. Our results are totally in good agreements with those of the
previous works. It is observed that the nondimensional SIF at the cracks tips depend
on the remote stress, the elastic constants ratio, the crack geometries, the distance
between each cracks and the distance between the crack and the boundary. Whereas
for thermally insulated cracks, the nondimensional SIF at the cracks tips depend on
the heat conductivity ratio and the thermal expansion coefficients ratio.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

PENYELESAIAN MASALAH RETAKAN DI DALAM DUA BAHAN
BERBEZA YANG TERCANTUM MENGGUNAKAN PERSAMAAN

KAMIRAN HIPERSINGULAR

Oleh

KHAIRUM BIN HAMZAH

November 2019

Pengerusi : Nik Mohd Asri Bin Nik Long, PhD
Fakulti : Institut Penyelidikan Matematik

Masalah retakan condong atau retakan tembereng membulat dan masalah haba ter-
aruh bagi retakan condong atau retakan tembereng membulat yang dibatasi oleh re-
gangan jauh di dalam dua bahan berbeza yang tercantum diformulasikan. Kaedah
fungsi pembolehubah kompleks terubah dengan syarat keselanjaran daya terhasil dan
fungsi anjakan digunakan untuk memformulasikan persamaan kamiran hipersingu-
lar (PKH) untuk masalah ini. Manakala syarat keselanjaran fungsi pengaliran haba
digunakan bagi merumuskan PKH untuk masalah retakan haba teraruh. Anu fungsi
anjakan bukaan retakan (ABR) dipetakan kepada fungsi singular punca kuasa dua
mengunakan kaedah koordinat panjang terlengkung. Kemudian rumus kuadratur
yang sesuai digunakan untuk menyelesaikan secara berangka persamaan terhasil dan
regangan di sepanjang retakan sebagai sebutan di sebelah kanan PKH. Fungsi ABR
yang diperoleh kemudian digunakan untuk mengira faktor keamatan regangan (FKR)
dalam menentukan tingkah laku kestabilan bahan yang mengandungi retakan atau
cacatan. Keputusan berangka terhadap FKR tak berdimensi di setiap hujung retakan
dibentangkan. Keputusan yang kami perolehi adalah selari dengan kerja sebelum-
nya. Dapat diperhatikan bahawa FKR tak berdimensi pada hujung retakan bersandar
kepada regangan jauh, nisbah pemalar elastik, kedudukan retakan, jarak antara re-
takan dan jarak antara retakan dan sempadan. Manakala, untuk retakan haba teraruh,
FKR tak berdimensi pada hujung retakan bergantung kepada nisbah kekonduksian
haba dan nisbah pemalar pengembangan haba.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Fracture mechanics is one of the engineering field of mechanics describe on the
behavior of solids or structures containing geometric discontinuity such as crack
propagation in materials. The force on the crack and those of the experimental
solid mechanics characterize the resistance of materials to fracture can be calculated
by using the methods of analytical solid mechanics. The geometric discontinuity
features may be in the form of line discontinuities for two dimensional plane and
surface discontinuities for three dimensional plane.

The investigation on the behavior and life cycle of the crack components is
one of the most important tasks in the engineering fracture mechanics. The fracture
mechanics plays an important tool in improving the mechanical performance of
mechanical structures in terms of stability and safety of the materials. In order to
predict the mechanical failure of the structures, the stress and strain to the materials
was applied based on the theories of elasticity and plasticity. Fracture mechanics
can be divided into two main categories which is Linear Elastic Fracture Mechanics
(LEFM) and Elastic Plastic Fracture Mechanics (EPFM).

LEFM is the basic theory of fracture which deals with the cracks in elastic
plane. It is applicable to any materials as long as the material is elastic except in
a vanishingly small region at the crack tip, brittle or quasibrittle fracture, stable or
unstable crack growth. The stress field near the crack tip can be evaluated using the
theory of elasticity. If the plastic crack tip zone is too large, the stress and strain
fields from LEFM are not valid any more. This is also the case when the material
behavior is nonlinear elastic such as in polymers and composites. Crack growth
criteria are no longer be formulated with the stress intensity factor (SIF). In order to
overcome this limitation, EPFM will be used if large zones of plastic deformation
develop before the crack grows. EPFM is the theory of ductile fracture, usually
characterized by stable crack growth such as ductile metals, the fracture process is
accompanied by formation of large plastic zone at the crack tip.

The investigation on the effect of surface scratches on the mechanical strength
of solids and to understand about fracture mechanics based on linear elasticity
was developed from the pioneer researchers by Inglis (1913), Griffith (1920),
Westergaard (1939) and Muskhelishvili (1953) (Roylance, 2001; Pommier, 2017).
Inglis investigated the stress for an elliptical hole in an infinite linear elastic plate
and modeled the crack discontinuity by making the minor axis very much less
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than the major axis but the solution is limitated to a perfectly sharp crack only.
Griffith extended the previous work by Inglis to overcome the existence problem by
employed the energy balance approach compared to focus on the crack tip stresses
directly. Westergaard used the complex stress functions to develop the asymptotic
solution for a stationary crack loaded dynamically. His method provides a powerful
technique for solving the infinite linear elastic plane containing a crack or array
of cracks. Whereas, Muskhelishvili developed the complex potentials method for
solving all major problems of two dimensional linear elasticity by reducing the
plane problem to finite systems of linear algebraic equations singular kernels.

1.2 Stress function

The stress distribution, σi j near crack tip in polar coordinate system for an isotropic
linear elastic material shown in Figure 1.1 with origin at the crack tips is defined by
(Anderson, 1991)

yy

xy

xx

yy

xy

xx

2a



r

x

iy

z x iy 

Figure 1.1: Stress distribution for a crack in an isotropic linear elastic material.

σi j =
k√
r

fi j(θ)+
∞

∑
m=0

Amrm/2g(m)
i j (θ), i, j = x,y (1.1)

where σi j is the stress tensor, r and θ are defined in Figure 1.1, k is constant, fi j is

dimensionless function of θ in the leading term, Am is the amplitude and g(m)
i j is a

dimensionless function of θ for the higher-order terms.
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The equilibrium, compatibility and boundary conditions must be satisfied in order
to find the solution for two dimensional plane stress problem based on the theory of
elasticity. The equations of elasticity is reduced to two dimensional forms in three
special cases as follows

• For the case of plane strain the displacement component uz is identically equal
to zero, and none of the physical quantities depends on z.

• In a state of plane stress parallel to the xy-plane, the stress components σxz,
σyz and σzz all vanish but the components of the displacement vector are not
independent of z.

• Generalized plane stress is a state of stress in a thin plate −h ≤ z ≤ h when
σzz = 0 throughout the plate but σxz = σyz = 0 only on the surfaces z =±h of
the plate.

For two dimensional problems, the first two requirements can be automatically sat-
isfied by choosing an Airy stress function, Φ such that (Timoshenko et al., 1970)

σx =
∂ 2Φ

∂y2 , σy =
∂ 2Φ

∂x2 , σxy =−
∂ 2Φ

∂x∂y
(1.2)

where the stress function is bi-harmonic,

∂ 4Φ

∂x4 +2
∂ 4Φ

∂x2∂y2 +
∂ 4Φ

∂y4 = 0. (1.3)

1.3 Stress intensity factors

There are three types of modes in fracture mechanics on SIF for a crack in the materi-
als such as tensile opening (Mode I), in plane shear (Mode II) and out of plane tearing
(Mode III) as shows in Figure 1.2. The Mode I SIF represented as KI , whereas KII
and KIII represented the SIF for Mode II and Mode III, respectively. The Mode I
SIF corresponds to normal separation of the crack faces under the action of tensile
stresses, which is by far the most widely encountered in practice. The difference be-
tween Mode II and Mode III is that the shearing action in the former case is normal
to the crack front in the plane of the crack whereas the shearing action in Mode III
is parallel to the crack front. A cracked body in reality can be loaded in any one
of these three modes or a combination of these three modes. For an isotropic linear
elastic material the stress fields ahead of a crack tip can be defined as follows

lim
r→0

σ
(I,II,III)
i j =

K(I,II,III)√
2πr

f (I,II,III)
i j (θ), i, j = x,y (1.4)
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Figure 1.2: Three types of modes in fracture mechanics.

where the three SIF can be defined by

KI = lim
r→0

√
2πrσyy(r,0),

KII = lim
r→0

√
2πrσxy(r,0),

KIII = lim
r→0

√
2πrσyz(r,0).

Once the value of SIFs (KI , KII , KIII) are obtained, we can determine the crack
stability by comparing KI , KII and KIII with critical SIF KIC, KIIC and KIIIC which
depend on the type of materials, respectively, called the fracture toughness of the
material. If the value of SIFs less than value of critical SIFs then the crack will
not propagate. Whereas the crack will propagate if the value of SIFs greater than
or equals to value of critical SIFs (Petersen, 2013). According to Wang (2003) the
strength of the materials more stronger when the value of SIF at crack tip approaches
to zero.

1.4 Integral equation in elasticity

The boundary integral equations (BIE) are used to solve the crack problems in elas-
ticity such as an infinite plane, half plane or bonded dissimilar materials, and these
BIE may be generally expressed as∫

L
K(t, t0) f (t)dt = p(t0), (or p(t0)+ c, t0 ∈ L) (1.5)

where K(t, t0) is the kernel, f (t) is the unknown function, p(t0) is the right hand
term for the known function and L is the configuration of a single or multiple cracks

4
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(Chen et al., 2003). The displacement jump or the dislocation distribution can be
chosen as the unknown function in the Equation (1.5) since the displacements are
discontinuous along the crack L. Therefore, two possibilities exist to choose the
known function at the right hand term which are traction and the resultant force
functions along the crack.

Table 1.1: The classification of the BIE for crack problems in elasticity.

Type f (t) p(t0) Property of K(t, t0)

WSIE Dislocations Resultant force Weakly singular
CSIE1 Dislocations Traction Cauchy singular
CSIE2 Displacement jump (COD) Resultant force Cauchy singular
HSIE Displacement jump (COD) Traction Hypersingular

FIE1A Dislocations - Fredholm/Regular
FIE1B Traction Traction Fredholm/Regular
FIE2 Displacement jump (COD) - Fredholm/Regular

The classification of the BIE for crack problems in elasticity are listed in Table 1.1.
For the type of weakly singular integral equations (WSIE), the dislocation distribu-
tion and resultant force function are chosen for the unknown function f (t) and the
right hand term p(t0), respectively. This BIE is named as WSIE since the kernel is
a logarithmic function which has a weaker singularity for integration. Cheung and
Chen (1987) used the type of WSIE to solve the crack problem in elasticity. For
the type of Cauchy singular integral equation (CSIE1), the dislocation distribution
and the traction are chosen for f (t) and p(t0), respectively. This BIE is named as
CSIE1 since the integral in the equation is a Cauchy principle value integral. The
CSIE1 was developed by researchers to investigate the relevant numerical solution
technique in crack problems elasticity (Erdogan et al., 1973; Panasyuk et al., 1977).
For the type of CSIE2, the crack opening displacement (COD) and the resultant force
are chosen for f (t) and p(t0), respectively. The CSIE2 posseses a Cauchy principle
value integral in the integral equation. Chen (1993) and Chen (1999) used the CSIE2
to analyze the crack problems elasticity. For the hypersingular integral equations
(HSIE), the COD and traction are chosen for f (t) and p(t0), respectively. This BIE
is named as HSIE since the kernel in the integral equation is hypersingular. This type
of BIE have particular advantage since the COD function can be obtained directly
from the solution. The HSIE get more attention from the researchers to solve cracks
problems in elasticity and it was used by Nied (1987) and Ioakimidis (1988). For the
type of Fredholm integral equations (FIE1A), the dislocation distribution is chosen
for f (t) and it is obtained from a regularization of the singular integral equation of
type CSIE1. This BIE is named as FIE1A since the kernel in the integral equation is
regular. Chen and Hasebe (1992a) used the type of FIE1A to solve the crack problem
in elasticity. For the type of FIE1B, the traction applied on the crack and the traction
in the actual problem are chosen for f (t) and p(t0), respectively. Chen (1984) used
the type of FIE1B to solve the crack problem in elasticity. Whereas for type of FIE2,
it is obtained from generalized of the singular integral equation of type CSIE2 (Chen,
1993).

5
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1.5 Research problem

Fracture mechanics is very important in the field of engineering structures and one
of the subarea is crack problems. The study on crack geometry make more interest-
ing due to the existence of the cracks may jeopardise the materials strength, stability
and safety. This situation makes more worsen when the structures are exposed to the
thermal. This phenomenon has lead to many research works in order to investigate
the behavior of SIF at the crack tips in order to identify the strength and stability
behavior of engineering structures containing cracks or flaws and predict life cycles
of the structures. To this end, an efficient and accurate method is needed to evaluate
the SIF at the crack tips. Thus, the main idea of this research is to analyze the behav-
ior of SIF for the crack problems and thermally insulated crack problems in bonded
dissimilar materials. The previous works were solved for these problems by using
singular integral equation, Fredholm integral equation, continuous distributions of
the body force method, boundary integral method and the other methods as reviews
in Chapter 2. Therefore, this research analyze these problems using the new system
of hypersingular integral equations (HSIEs) by applying the modified complex vari-
able function method with the help of the continuity conditions of the resultant force
and displacement function. Whereas, the continuity condition of heat conduction
function is utilized for the thermally insulated cracks problems.

1.6 Research objectives

The main objectives of this research are:

1. To analyze the systems of HSIEs for a crack and two cracks in the upper part of
bonded dissimilar materials.

2. To analyze a system of HSIEs for two cracks in both upper and lower parts of
bonded dissimilar materials.

3. To analyze the systems of HSIEs for a thermally insulated crack and two thermally
insulated cracks in the upper part of bonded dissimilar materials.

1.7 Scope of the study

This research will focus on formulation the HSIEs for the crack problems in bonded
dissimilar materials and thermally insulated crack problems in bonded dissimilar

6
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materials subjected to remote stress using the modified complex variable function
method with the continuity conditions of the resultant force and displacement func-
tion, and the continuity condition of the heat conduction function for the thermally
insulated cracks problems. The system of HSIEs for these problems are solved using
the appropriate quadrature formulas, then we use FORTRAN software to find the
numerical solution for these problems.

1.8 Structure of the thesis

This thesis contains seven chapters which are structured as follows:

Chapter 1 describes the general information on fracture mechanics, crack problems
and stress intensity factors at the crack tips. The research objectives, motivation and
scope of the study are also covered in this chapter.

In Chapter 2, we review the complex variable function method to solve crack
problems in elasticity. The previous work done by many researchers on the crack
problems in bonded dissimilar materials and thermoelastic fields are discussed.

In Chapter 3, we discuss the methodology used in this research based on the
modified complex variable function methods. The general formulation for crack
problems in bonded dissimilar materials and thermally insulated crack problems in
bonded dissimilar materials in term of HSIEs is also described. The basic quadrature
formulas are included in this chapter in order to solve HSIEs.

The main problems in this thesis are discussed in Chapters 4, 5 and 6. For
Chapter 4, we analyze the behavior of SIF for an inclined crack and a circular arc
crack in the upper part of bonded dissimilar materials subjected to various stresses.
Then we analyze the interaction between two inclined cracks, two circular arc cracks
and an inclined and a circular arc cracks in the upper part of bonded dissimilar
materials subjected to remote stress.

Chapter 5, is focused on the interaction between two cracks in both upper
and lower parts of bonded dissimilar materials subjected to remote stress. We
analyze the interaction between two inclined cracks, two circular arc cracks and an
inclined and a circular arc cracks.

In Chapter 6, we analyze the behavior of SIF for a thermally insulated circu-

7
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lar arc crack and a thermally insulated inclined crack in the upper part of bonded
dissimilar materials. Then we analyze the interaction between two thermally
insulated cracks in the upper part of bonded dissimilar materials subjected to remote
stress. The comparison of nondimensional SIF for cracks with and without thermal
is also illustrated.

Finally, Chapter 7 presents the summary of this thesis and some recommen-
dations for future works.

8
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