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Faculty: Institute of Advanced Technology 

The need in detecting hazardous gases such as hydrogen has led to the 
development of simple, reliable and low cost of gas sensor for environmental 
monitoring and human safety. Excess amount of hydrogen in air can cause 
explosion, while longer exposure to the hydrogen can cause oxygen reduction in 
human body if the hydrogen replaces the oxygen in air. Therefore, the detection 
of hydrogen leakage has become essential issue in many industries. In detecting 
low concentration of hydrogen, a sensing material based on titanium dioxide (TiO2) 
nanoparticles has been proposed in this study. A glass powder, B2O3 also was 
added into TiO2 to obtain good adhesion of sensing film onto an alumina substrate. 
The TiO2-B2O3 paste was prepared by mixing the sensing material with the organic 
binder. The organic binder used in this study was prepared using linseed oil, m-
xylene and α-terpineol. The TiO2-B2O3 gas sensor was developed using screen-
printing technology to obtain porosity structures on the surface of the sensing film 
of a gas sensor, thus adsorption of the target gas will be increased and sensitivity 
of the gas sensor can be improved. Multi-walled carbon nanotube (MWCNT) and 
graphene nanoflakes with different ratios were added into TiO2-B2O3 paste to 
enhance the conductivity of the gas sensor and to investigate the characteristics 
of the gas sensor, in term of sensitivity, response time, recovery time, optimum 
operating temperature and repeatability and stability properties of gas sensor to 
the hydrogen. The fabricated gas sensor was exposed to 100 – 1000 ppm of 
hydrogen and tested at different operating temperature (28°C, 50°C, 100°C, 
150°C, 200°C and 250°C). Based on the TGA analysis, the optimum annealing 
temperature for the sensing film was achieved at 500°C with annealing time in 30 
minutes under ambient air. The crystallinity of the sensing film after annealing 
treatment has been verified using EDX and XRD. Results showed the optimum 
operating temperature for the TiO2-B2O3 gas sensor was occurred at 200°C. 
Additional of MWCNT into TiO2-B2O3 has reduced the operating temperature from 
150°C to 100°C, while addition of graphene nanoflakes has improved the 
sensitivity of TiO2-B2O3 gas sensor to hydrogen. This study suggests that TiO2-
G1-B2O3 gas sensor as a better gas sensor for 100 – 700 ppm of hydrogen, while 
TiO2-MWCNT5-B2O3 gas sensor as a better gas sensor for concentration above 
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of 1000 ppm of hydrogen. Overall, TiO2-MWCNT5-B2O3 gas sensor is chosen as 
a promising material for gas sensor in detecting 100 – 1000 ppm of hydrogen at 
operating temperature of 100°C. The highest sensitivity values for TiO2-MWCNT5-
B2O3 gas sensor was achieved at operating temperature of 250°C with sensitivity 
values are 6.97, 33.61, 67.64, 102.23 and 159.07 for 100 ppm, 300 ppm, 500 ppm, 
700 ppm and 1000 ppm of hydrogen, respectively. 
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April 2020 
 
 

Pengerusi: Prof. Mohd Nizar bin Hamidon, PhD 
Fakulti: Institut Teknologi Maju 

Keperluan dalam mengesan gas-gas berbahaya seperti hidrogen telah 
membawa kepada pembangunan penderia gas yang mudah, boleh dipercayai 
dan kos rendah bagi pemantauan alam sekitar dan keselamatan manusia. 
Lebihan kuantiti hidrogen di udara boleh menyebabkan letupan, sementara itu 
pendedahan yang lebih lama terhadap hidrogen dapat menyebabkan 
pengurangan oksigen dalam tubuh manusia jika hidrogen menggantikan oksigen 
di udara. Oleh itu, pengesanan kebocoran hidrogen telah menjadi isu penting 
dalam banyak industri. Dalam mengesanan kepekatan hidrogen yang rendah, 
bahan penderiaan berdasarkan nanopartikel titanium dioksida (TiO2) telah 
dicadangkan di dalam kajian ini. Serbuk kaca, B2O3 juga telah dimasukkan ke 
dalam TiO2 bagi mendapatkan lekatan filem penderiaan yang baik pada substrat 
alumina. Adunan TiO2-B2O3 telah disediakan dengan mencampurkan bahan 
penderiaan dengan pengikat organik. Pengikat organik yang digunakan dalam 
kajian ini disediakan menggunakan minyak biji rami, m-xylene dan α-terpineol. 
Penderia gas TiO2-B2O3 telah difabrikasi dengan menggunakan teknologi 
percetakan skrin bagi mendapatkan struktur keliangan pada permukaan filem 
pendria gas, maka penyerapan gas sasaran akan dapat ditingkatkan dan 
kepekaan penderia gas dapat dipertingkatkan. Nanotiub karbon multidinding 
(MWCNT) dan kepingan nano grafin dengan nisbah yang berbeza telah 
ditambah ke dalam adunan TiO2-B2O3 bagi meningkatkan konduktiviti dan 
menyiasat ciri-ciri penderia gas khususnya kepekaan, masa tindak balas, masa 
pemulihan, suhu operasi optimum, sifat kebolehulangan dan kestabilan penderia 
gas terhadap hidrogen. Penderia gas telah didedahkan kepada 100 - 1000 ppm 
hidrogen dan diuji pada suhu operasi yang berbeza (28°C, 50°C, 100°C, 150°C, 
200°C dan 250°C). Berdasarkan analisis TGA, suhu optimum bagi filem 
penderiaan telah dicapai pada 500°C dan masa penyepuh adalah 30 minit 
dibawah udara persekitaran. Pengkristalan yang tinggi bagi filem penderiaan 
selepas rawatan penyelepuhlindapan telah disahkan menggunakan EDX dan 
XRD. Keputusan menunjukkan suhu operasi optimum bagi penderia gas TiO2-
B2O3 berlaku pada 200°C. Penambahan MWCNT ke dalam TiO2-B2O3 telah 
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dapat mengurangkan suhu operasi dari 150°C kepada 100°C, manakala 
penambahan kepingan nano grafin telah meningkatkan kepekaan penderia gas 
TiO2-B2O3 terhadap hidrogen. Kajian ini menunjukkan bahawa penderia gas 
TiO2-G1-B2O3 adalah penderia gas yang lebih baik bagi 100 - 700 ppm hidrogen, 
sementara penderia gas TiO2-MWCNT5-B2O3 adalah penderia gas yang lebih 
baik bagi kepekatan gas di atas 1000 ppm hidrogen. Secara keseluruhan, 
penderia gas TiO2-MWCNT5-B2O3 dipilih sebagai bahan yang menjanjikan bagi 
penderia gas dalam mengesan 100 - 1000 ppm hidrogen pada suhu operasi 
100°C. Nilai kepekaaan tertinggi bagi penderia gas TiO2-MWCNT5-B2O3 telah 
dicapai pada suhu operasi 250 °C dengan nilai kepekaan adalah 6.97, 33.61, 
67.64, 102.23 dan 159.07 bagi 100 ppm, 300 ppm, 500 ppm, 700 ppm dan 1000 
ppm hidrogen, masing-masing. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

1.1  Research Background 

In recent years, hydrogen can be used as an alternative energy to replace fossil 
fuels for domestic and industrial and as a hydrogen fuel for transportation in 
rocket for space vehicle [1]. However, excessive amount of hydrogen in air, 
which exceed 4% can cause explosion because hydrogen is flammable [2]. As 
known, hydrogen is colorless, tasteless, and odorless, in which these 
characteristics make hydrogen cannot be detected by human senses. Even 
though hydrogen is a non-toxic gas, it also can cause oxygen reduction in human 
body if the hydrogen replaces the oxygen in air [3]. In other application, 
excessive amount of hydrogen in transformer oil, in the range of 700 – 1800 ppm 
indicates faults were occurred in a power transformer, whereas hydrogen 
concentration larger than 1800 ppm can cause transformer failure [4]. In year of 
2008 until 2019, the number of SCI publications in detecting the hydrogen has 
increased to 930 publications. This increment showed that the hydrogen gas 
sensor has received large attention by researchers in every year due to the 
sustainability and safety purposes. Therefore, research in hydrogen gas sensor 
should be continued and a system that able to detect hydrogen leakage should 
be developed to avoid unpredictable explosion. 
 

Various type of detection techniques in hydrogen gas sensor have been 
developed such as catalytic, thermal conductivity, electrochemical, resistance-
based, work-function based, mechanical, optical and acoustic [5]. Among them, 
resistance-based types are the most common technique in detecting hydrogen 
gas sensor because of simple, low cost, robustness, simple measurement 
technique and offer good stability [6]. Other than that, optical and electrochemical 
technique also received great attention compared to the others technique. 
Optical method can produce high accuracy, however sophisticated instrument is 
needed and high cost is involved to increase their sizes [7]. Meanwhile, 
electrochemical gas sensor can be developed in low cost, despite cross-
sensitivity and stability issue should be improved [8]. 
 

The most common material used in detecting of hydrogen is metal-oxide 
semiconductor such as tin dioxide (SnO2), zinc oxide (ZnO) and titanium dioxide 
(TiO2). It is because the ability of metal-oxide semiconductor to sense various 
type of gases, fast response and recovery time, low cost and easy fabrication 
process [9]. Reported that, metal-oxide also offers high sensitivity and good 
selectivity to the certain gases [10], [11]. Among metal-oxides gas sensor, TiO2 
has been reported in identifying low concentration of hydrogen as low as 1 ppm 
at room temperature [12]. Due to these advantages, TiO2 has been selected as 
a promising sensing material to sense low concentrations of hydrogen in this 
study. Besides, TiO2 also offers nontoxic, low cost, biocompatible and photo-
corrosion resistant, which is practical material for hydrogen detection [12]. 
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This thesis is concerned about the development of thick film gas sensor based 
on TiO2 nanoparticles via screen-printing technique. The capability of the TiO2 
gas sensor in identifying various concentration of hydrogen at different operating 
temperatures was investigated. The performance of the gas sensor will be 
evaluated according to the important characteristics in designing a gas sensor 
such as sensitivity, optimum operating temperature, response time and recovery 
time, and repeatability and stability properties. The analysis will be calculated 
based on the data of the experimental results. 
 

1.2  Problem Statement  

Over the years, gas sensor based on TiO2 has been used to detect various types 
of gases such as hydrogen, carbon monoxide, ammonia, nitrogen dioxide and 
volatile organic compounds. Different techniques have been applied to deposit 
a TiO2 on a substrate of a gas sensor such as sputtering [12]–[15], dip-coating 
[16]–[20], screen-printing [20]–[22], doctor blade [23], and pulse laser deposition 
[24]. Among them, sputtering and dip-coating are the most common deposition 
technique applied for sensing film of gas sensor. Sputtering become the main 
selection of deposition technique because of high density, high adhesion, high 
hardness and good thickness uniformity on a substrate [25], while dip coating 
offers low-cost processing and ability to coat large complex shape [26]. However, 
sputtering process is very expensive and may facing problem with composition 
inhomogeneity and poor capability to provide good coverage for topographies 
with high aspect ratio [26], while for dip coating technique, size and thickness of 
sensing material during synthesis process become critical parameters to achieve 
maximum sensitivity of gas sensor [26]. Other than that, a few studies reported 
that screen-printing technique has been used to fabricate a thick film gas sensor 
based on TiO2 to detect the hydrogen gas.  
 

Initialization process also one of the important process that should be conducted 
in the early stage of gas sensor measurement in determining the important 
parameters in a gas sensor such as cycling time for carrier gas and target gas. 
Usually, the exposing time for the target gas is chosen longer, in which not 
regarding to the value of the response time of the gas sensor as reported in [12]. 
Other than that, shorter cycling time of the target gas also has been used, in 
which not observing until the saturated response was achieved [13]. Choosing 
suitable time to expose the target gas is important, in order to save time during 
the gas sensor measurement. Therefore, the suitable cycling time to flow of the 
target gas and carrier gas according to the value of response time and recovery 
time will be suggested in this study.  
 

In a thick film gas sensor, usually a binder is needed to improve the mechanical 
strength of the film [27].  Common binder used in the thick film was based on the 
ethyl cellulose, however a few studies reported that a gas sensor based on the 
ethyl cellulose does not fully recover after exposed to the target gas [27]. Other 
than a binder, a small amount of glass powder also has been added into the 
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paste of thick film gas sensor to improve the cohesion of particles and adhesion 
of the sensing film on a substrate [28]. The common glass powder used basically 
consists of PbO, where it requires higher firing temperature, in the range from 

650℃ to 800℃, in other to be melted [29]–[31]. Higher firing temperature can 
remove the binder in the paste and melting the glass powder on a substrate, 
despite it also will make the size of nanostructures becomes larger, which it will 
affect the sensing mechanism of a gas sensor. Decrement of surface area will 
cause the capability of gas adsorption is getting difficulty on the surface of 
sensing film, thus the sensitivity of gas sensor will be reduced [32]. Therefore, 
an alternative of binder that able to produce good characteristic of gas sensor 
and a glass powder that has low melting point and also not affected the 
properties of TiO2 should be suggested in this study. Boron oxide (B2O3) with 

melting point at 450℃ will be used as a glass powder in this study as an 
alternative to the conventional glass powder (PbO), in order to avoid high 
annealing temperature on the sensing film of a gas sensor, thus higher surface 
area can be achieved on the surface of the gas sensor. 
 

Even though TiO2 showed good response to hydrogen and able to work below 

operating temperature of 400℃, its low electrical n-type conductivity made it has 
higher resistivity, thus expensive equipment is needed to sense the target gas 
[33]. Various doping materials has been added to improve the conductivity and 
sensitivity of TiO2 such as MWCNTs [18], [20] and chromium [34] to the target 
gas. Sonication [35], stirring [36], sonication and stirring [20], and sol-gel [34], 
[37] are the most common doping methods used to mix TiO2  with additional 
material in a TiO2 thick film gas sensor. However, limited studies were found 
based on paste-based and using the screen-printing technique. Thus, a simple 
method is needed to mixing the TiO2 with doping material in the paste-based and 
applied for screen-printing technique without change of its properties and 
producing high sensitivity, faster response time and recovery time and reducing 
the operating temperature of TiO2 gas sensor. 
 

The work behind this research was initiated from the need to develop a low-cost, 
high sensitivity and able to operate at low operating temperature of TiO2 gas 
sensor via screen-printing technology. Screen-printing technology has been 
chosen in this study because the ability of this deposition technique to produce 
porosity on the structure of the sensing film as compared with doctor blade and 
drop-casting in the thick film gas sensor. Porosity on the surface of the gas 
sensor is needed to increase adsorption of the target gas, thus enhance the 
sensitivity of the gas sensor. With this background and abstraction, a research 
work is needed to develop a high sensitivity gas sensor based on TiO2, in which 
able to sense low concentration of hydrogen as low as 100 ppm and able to 
operate at low operating temperature as low as 100°C. This research work 
certainly can bring contribution to many application of hydrogen detection in 
many fields such as hydrogen fuel cell, dissolved gases in transformer oil and 
safety in vehicle. 
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1.3 Objectives of Study  

This thesis focuses on the development of thick film gas sensor based on TiO2 

nanoparticles via screen-printing technique. The objectives in this study as 
follows: 

i. To find the optimum annealing temperature of sensing film for gas 
sensor based on TiO2-B2O3  

ii. To develop a thick film gas sensor using screen-printing technique to 
monitor the various concentrations of hydrogen at different operating 
temperatures 

iii. To investigate the characteristic of gas sensor in term of sensitivity, 
operating temperature, response and recovery time, and repeatability 
and stability properties by doping TiO2-B2O3 with MWCNTs and 
graphene nanoflakes 

 
 
1.4 Scope of work 

In this study, fabrication of the gas sensor was developed using screen-printing 
technology with mesh thickness in the range of 8 – 12 μm and deposited on the 
96% alumina substrate with thickness of 1 mm. The dimension of interdigitated 
electrode and sensing film were fixed to 4.0 mm x 4.0 mm and 4.5 mm x 4.5 mm, 
respectively, to compare the characteristic of gas sensor based on the different 
design of interdigitated electrode.  The measurement of a gas sensor was 
conducted in a gas chamber. Concentrations of hydrogen was flowed in the 
range of 100 – 1000 ppm, while the synthetic air was flowed at 50 000 sccm. 
Minimum setting for mass flow controller is 5 sccm, where this value also equals 
to 100 ppm when mixed with the synthetic air, thus the lowest concentration of 
hydrogen used in this study is 100 ppm. The gas sensor also was tested at 
different operating temperatures which are 28°C, 50°C, 100°C, 150°C, 200°C 
and 250°C to investigate the characteristics of gas sensor to the hydrogen, in 
term of sensitivity, operating temperature, response and recovery time, and 
repeatability and stability properties. Maximum operating temperature for the 
temperature controller is 300°C, however the heating stage in the gas chamber 

is made by silicone, where it will start to deform at 280℃ and can cause 
temperature inconsistency on the heating stage. Therefore, the maximum 
operating temperature of the gas sensor used in this study is fixed to 250°C. 
 
 
1.5  Thesis Outline 

This thesis consists of six chapters. Chapter 1 describes the research 
background of the project, problem statement, objectives of study, scope of work 
and thesis outline. Chapter 2 provides a detailed review on the different types of 
detection method and deposition technique in a thick film gas sensor, relevant 
literatures relating to the current gas sensor used in detecting hydrogen and 
selection of TiO2 as a sensing material for the gas sensor. Besides, mechanism 
of metal-oxide gas sensor to detect the hydrogen also will be discussed in this 
chapter. 
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Chapter 3 gives the details of the sensing materials and the fabrication of the 
gas sensor including the preparation of organic binder and TiO2-B2O3 paste. 
Different design of interdigitated electrode and design of sensing film used for 
TiO2-B2O3 gas sensor also will be proposed in this chapter. The experimental 
setup for measurement of gas sensor also has been explained in this chapter. 
Chapter 4 discusses the current-voltage characteristics for different designs of 
the interdigitated electrode on the sensing film for TiO2-B2O3 gas sensor. The 
characterizations of organic binder, TiO2-B2O3 paste and sensing materials also 
will be presented in this chapter.  
 

Chapter 5 presents the characteristics of gas sensor to the various 
concentrations of hydrogen at different operating temperatures. The important 
characteristics in evaluating the performance of gas sensor such as sensitivity, 
optimum operating temperature, response time, recovery time and repeatability 
and stability properties were analyzed. The results of the best TiO2-B2O3 gas 
sensor was compared with TiO2-MWCNT-B2O3 gas sensor and TiO2-G-B2O3 gas 
sensor. The best ratios of MWCNT and graphene nanoflakes added into TiO2-
B2O3 also will be suggested in this chapter. Finally, Chapter 6 concludes all the 
research findings and recommendation to the future project. 
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