EXPRESSION OF SELECTED PATHOGENESIS-RELATED PROTEINS AT EARLY STAGE OF *Ganoderma boninense* INFECTION IN *Elaeis guineensis* Jacq. SEEDLINGS

REDZYQUE RAMZA BIN RAMLI

IPTSM 2020 3
EXPRESSION OF SELECTED PATHOGENESIS-RELATED PROTEINS AT EARLY STAGE OF *Ganoderma boninense* INFECTION IN *Elaeis guineensis* Jacq. SEEDLINGS

By

REDZYQUE RAMZA BIN RAMLI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Master of Science

December 2019
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

This thesis is dedicated to all I love, especially my dearest Mummy, Lijah Zainab for her endless support, love throughout my whole life. Also to my dear brothers and sisters, Ramiza, Ridza, Ramzan, Rudynata, Ruhaniza, Ruzaimi and Robaeha Ramza for their continuous support in terms of moral and financial in this long and adventurous journey. Last but not least, this is my tribute to my inspiring late Dad, Ramli, for everything he provided and supported me until he passed away. I remembered his jokes and laugh like it was yesterday. InshaAllah, I hope the best in life provided for my family and friends and hopefully my research will benefit others eventually.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

EXPRESSION OF SELECTED PATHOGENESIS-RELATED PROTEINS AT EARLY STAGE OF *Ganoderma boninense* INFECTION IN *Elaeis guineensis* Jacq. SEEDLINGS

By

REDZYQUE RAMZA RAMLI

December 2019

Chairman : Profesor Siti Nor Akmar Abdullah, PhD
Faculty : Institute of Tropical Agriculture and Food Security

Basal stem rot (BSR) is the most devastating oil palm disease caused by *Ganoderma boninense*. It is only evident when the infection has progressed by 60–70% which is too late to cure the palm. Studies on early defense responses are required to provide insightful information on the initiation of defense signaling networks upon recognition of pathogen. Thus, information on early interactions of plant-pathogens is crucial to allow screening for detection of the potential threat of BSR, especially on young palms. This study was conducted to isolate and detect the presence of *G. boninense* within infected oil palm seedlings, and to identify the differentially expressed genes (DEGs) which related to pathogenesis (PR) as well as to analyse PR genes expression in oil palm roots as a result of oil palm-*G. boninense* interaction. Oil palm seedlings were artificially infected with *G. boninense* inoculums. Deoxyribonucleic acid (DNA) samples were taken from infected palms (T1) and *G. boninense* pure culture for detection using polymerase chain reaction (PCR), multiple sequence alignment (MSA) and basic local alignment search tool (BLAST) via NCBI. Polymerase chain reaction (PCR) and nested PCR produced amplicon with the expected size of 200 base pairs (bp) for 3 days post-inoculation (DPI) and *G. boninense* pure culture, as well as 100 bp for 7 and 11 DPI. MSA showed the presence of the conserved sequence and ≥95% identity generated via BLAST for all amplicons of T1 samples and *G. boninense* pure culture. Ribonucleic acid (RNA) samples were extracted from the root tissues at different periods (0, 3, 7, 11 DPI) and used for ribonucleic acid sequencing (RNASeq) analysis. DEGs were identified. DEGs analyses displayed that several PR proteins were expressed as a result of the defense mechanism of oil palm against *G. boninense* including chitinase 1 isoform X3 (*EgChi1X3*), germin-like 8-14 (*EgGer8*), glu S. griseus protease inhibitor (*EgGlup*), glucan endo-1,3-beta-glucosidase 3-like (*EgGlu3*) and subtilisin-like protease SBT1.9 (*EgPro1.9*). These genes were searched for primary structural homology via BLAST, based on size and exon count. Homology searches for selected PR genes with their respected PR groups generated. The conserved domain for each PR gene was analysed to determine their functions in terms of plant defense. MSA was done and generated a phylogenetic tree for each PR gene to check their related grouping based on the conserved domain. MSA generated ≥ 90% of primary
structural homology among selected genes with their respected PR groups. Based on conserved domains, each PR gene function was determined which is related to plant defense. EgChi1X3 may be involved in the production of elicitor compounds and the degradation of fungal chitins. EgGer8 is probably involved in oxidative degradation of oxalate and preventing plant cell wall hydrolysis. EgGluP may be involved in promoting inhibition of pathogen proteolytic enzymes. EgGlu3 is possibly related directly to the activity of degradation and rendering fungal cell walls susceptible to plant responses and cell lysis. EgPro1.9 may be involved in extracellular protein secretion and mature peptide degradation. The defense response obtained from DEG analyses showed immense upregulation of EgChi1X3, EgGer8 and EgGluP with an average of 12, 3 and 32-fold higher than control at 3 DPI. While EgGlu3 and EgPro1.9 significantly expressed with 218 and 6-fold at 11 DPI when compared to control. The phylogenetic tree showed that the selected PR genes were clustered together with date palm due to probable motif similarity and sequence homology. Based on this study, these selected PR genes will be potential candidates in developing biomarkers for early phase detection of G. boninense infection.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

EKSPRESI PROTEIN-BERKAITAN PATOGENESIS YANG TERPILIH PADA PERINGKAT AWAL SERANGAN Ganoderma boninense TERHADAP ANAK POKOK Elaeis guineensis Jacq.

Oleh

REDZYQUE RAMZA RAMLI

Disember 2019

Pengerusi : Professor Siti Nor Akmar Abdullah, PhD
Fakulti : Institut Pertanian Tropika dan Sekuriti Makanan

Reput pangkal batang (BSR) adalah penyakit kelapa sawit yang paling membisaskan disebabkan Ganoderma boninense. Ianya hanya jelas kelihatan apabila jangkitan telah mara sebanyak 60 hingga 70 peratus yang mana sudah terlambat untuk mengubati palma tersebut. Kajian ke atas tindak balas pertahanan awal diperlukan agar dapat memberi maklumat yang mendalam tentang permulaan rangkaian isyarat pertahanan apabila patogen dikenalpasti. Oleh itu, maklumat interaksi awal tumbuhan-patogen adalah penting untuk membolehkan saringan dilakukan untuk mengesakan potensi ancaman BSR terutama pada pokok kelapa sawit muda. Kajian ini dijalankan untuk mengasingkan dan mengesan kehadiran G. boninense dalam anak pokok kelapa sawit yang dijangkiti dan mengidentifikasi gen yang terekspres dengan ketara (DEGs) berkaitan patogenesis (PR) dan juga menganalisa ekspresi gen PR dalam akar pokok kelapa sawit hasil dari interaksi kelapa sawit dengan G. boninense. Anak pokok kelapa sawit telah dijangkiti secara buatan menggunakan inokulum G. boninense. Sampel asid dioksiribonukleik (DNA) telah diambil dari pokok yang dijangkiti (T1) dan kultur tulen G. boninense untuk proses pengesanan menggunakan tindak balas rantai polimerase (PCR), penjajaran jujukan berbilang (MSA) dan pencari alatan tempatan asas (BLAST) melalui NCBI. PCR dan PCR bersarang menghasilkan amplikon dalam saiz jangkaan iaitu 200 pasangan bes (bp) untuk 3 hari selepas-inokulasi (DPI) dan kultur tulen G. boninense, serta 100 bp untuk 7 dan 11 DPI. MSA menunjukkan kehadiran jujukan terabadi dan persamaan sebanyak ≥95% dihasilkan melalui BLAST untuk semua amplikon dari sampel T1 dan kultur tulen G. boninense. Sampel asid ribonukleik (RNA) diekstrak daripada tisu akar pokok pada tempoh masa yang berbeza (0, 3, 7, 11 DPI) dan digunakan untuk analisa penjajaran asid ribonukleik (RNaseq). DEGs telah dikenalpasti. Analisis DEG menunjukkan beberapa protein PR diekspres berpuncak daripada mekanisme pertahanan kelapa sawit terhadap G. boninense termasuk chitinase 1 isoform X3 (EgChi1X3), germin like 8-14 (EgGer8), glu S. griseus protease inhibitor (EgGluP), glucan endo-1,3-beta-glucosidase 3-like (EgGlu3) dan subtilisin-like protease SBT1.9 (EgPro1.9). Homologi struktur utama gen-gen tersebut dihasilkan melalui BLAST, berdasarkan saiz dan jumlah ekson. Pencarian homologi bagi gen PR yang terpilih dengan kumpulan PR masing-masing dihasilkan. Domain terabadi
bagi setiap gen PR dianalisa untuk memahami fungsi mereka dalam pertahanan tumbuhan. MSA telah dilakukan dan menghasilkan pokok filogeneik bagi setiap gen PR untuk memeriksa pengelompokan berdasarkan domain terabadi. MSA menghasilkan sebanyak ≥ 90% homologi struktur utama dikalangan gen terpilih dengan kumpulan PR masing-masing. Berdasarkan domain terabadi, setiap fungsi gen PR ditentukan berkaitan dengan pertahanan tumbuhan. *EgChi1X3* mungkin terlibat dalam penghasilan sebatian elisitor dan degradasi kitin kulat. *EgGer8* mungkin terlibat dalam degradasi oksidatif oksalat dan menghalangi hidrolisis dinding sel tumbuhan. *EgGluP* mungkin terlibat dalam mempromosikan penghambatan enzim proteolitik patogen. *EgGlu3* mungkin berkait langsung dengan aktiviti degradasi dan menjadikan dinding sel kulat mudah terdedah kepada tindak balas tumbuhan dan lisis sel. *EgPro1.9* mungkin terlibat dalam rembesan protein ekstraselular dan degradasi peptida matang. Tindakbalas pertahanan yang diperoleh dari analisis DEG menunjukkan kawal naik *EgChi1X3*, *EgGer8*, dan *EgGluP* yang tinggi dengan purata sebanyak 12, 3 dan 32 kali ganda lebih tinggi daripada kawalan pada 3 DPI. Sedangkan *EgGlu3* dan *EgPro1.9* diekspres secara ketara dengan 218 dan 6 kali ganda pada 11 DPI apabila dibandingkan dengan kawalan. Pokok filogenetik yang dihasilkan menunjukkan gen PR yang terpilih telah dikelompokkan bersama dengan pokok kurma disebabkan berkemungkinan mempunyai kesamaan motif dan homologi jujukan. Berdasarkan kajian ini, Gen PR yang terpilih berpotensi sebagai calon dalam membangunkan bio-penanda untuk fasa awal jangkitan *G. boninense*.
ACKNOWLEDGEMENTS

Bismillahirrahmanirrahim.

I wish to express my deepest endless thanks to Allah who made it possible to complete another step of my life and best regards from Allah to the last Prophet, Mohammad and his family.

I would like my deepest gratitude to the numerous people who have walked with me along the journey of this thesis. First and foremost, I would like to express my deep gratefulness to my supervisor Prof. Datin Dr. Siti Nor Akmar Abdullah for her kind support, critical advice, encouragement, suggestions and direction throughout my research and preparation of this thesis.

I also wish to extend my sincere gratitude and appreciation to my supervisory committee, Dr. Huzwah Khaza’i for her support throughout the preparation and completion of this thesis. I would also like to express my gratitude towards Prof. Dr. Mohd Rafii Yusop for his kind support, cooperation and permission to work in their laboratory.

My sincere appreciation goes to all of my lab mates, staff and friends, who helped and supported me in the laboratory which are like a family to me; Nazri, Shafika, Engku, Luqman, Shahrul, Hazwan, Hanan, Kak Reen, Kak Rozila, Kak Ani and many more if I write here it will be more than one page. Last but not the least, my heart-full gratitude and love to my parents and my loving brother and sister whose unconditional support, patience and understanding made this dream come true for me as well letting me to pursue my dream to become a better educator and researcher.
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Siti Nor Akmar Abdullah, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Huzwah Khaza’ai, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

ZALILAH MOHD SHARIFF, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 08 October 2020
Declaration by graduate student

I hereby confirm that:
- this thesis is my original work.
- quotations, illustrations and citations have been duly referenced.
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions.
- intellectual property from the thesis and copyright of thesis are fully owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012.
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012; there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: _______________________ Date: __________________

Name and Matric No.: Redzyque Ramza Ramli (GS40919)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ________________________________
Name of Chairman of Supervisory Committee: Siti Nor Akmar Abdullah

Signature: ________________________________
Name of Member of Supervisory Committee: Huzwah Khaza’ai
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Oil Palm Production Scenario</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Background of Ganoderma</td>
<td>5</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Life Cycle of G. boninense with BSR</td>
<td>5</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Mode of Spreading of Ganoderma BSR Disease</td>
<td>6</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Development and Progress of BSR in Oil Palm Roots</td>
<td>7</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Disease Severity Index (DSI) for BSR</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Plant-pathogen Interactions</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Pathogenesis-related Gene Expression in Early Stage of G. boninense infection</td>
<td>9</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Pathogenesis-related 1 (PR-1) Gene Expression</td>
<td>11</td>
</tr>
<tr>
<td>2.4.2</td>
<td>β-1,3-glucanases (GLU) Gene Expression</td>
<td>11</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Chitinase (CHI) Gene Expression</td>
<td>12</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Germin-like protein (GLP) and Germin (GER) Gene Expression</td>
<td>12</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Lipid transfer protein (LTP) Gene Expression</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Ganoderma Detection and Control</td>
<td>13</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Early Ganoderma Detection and Marker Development</td>
<td>13</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Ganoderma Control and Suppression</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>METHODOLOGY</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Host Plant and Fungal Isolates Preparation</td>
<td>17</td>
</tr>
<tr>
<td>3.2</td>
<td>Artificial Inoculation of Oil Palm Seedlings with G. boninense</td>
<td>17</td>
</tr>
<tr>
<td>3.3</td>
<td>Cultivation of pure culture of Ganoderma boninense and DNA Extraction of pure culture and T1 oil palm roots</td>
<td>19</td>
</tr>
<tr>
<td>3.4</td>
<td>Isolation and Detection of G. boninense within T1 oil palm seedlings via PCR</td>
<td>20</td>
</tr>
<tr>
<td>3.5</td>
<td>Total RNA Extraction from roots of oil palm seedlings</td>
<td>21</td>
</tr>
<tr>
<td>3.6</td>
<td>mRNA library Construction using Next-generation Sequencing (NGS)</td>
<td>22</td>
</tr>
<tr>
<td>3.7</td>
<td>Transcriptome assembly and Analysis of differentially</td>
<td>22</td>
</tr>
</tbody>
</table>
expressed genes (DEGs)

3.8 Experimental Validation via qRT-PCR
3.9 Statistical Analysis
3.10 Gene Structure, Sequence Alignment and Phylogenetic

4 RESULTS AND DISCUSSION

4.1 Detection of *G. boninense* Presence in Oil Palm using PCR
4.2 Transcriptomes of T1 oil palm roots at 3, 7, and 11 DPI
4.3 Significant changes of Gene Expressions (PR proteins)
4.3.1 Identification and categorization of *EgChi1X3* involved in defense response against *G. boninense*
4.3.2 Identification and categorization of *EgGer8* involved in defense response against *G. boninense*
4.3.3 Identification and categorization of *EgGluP* involved in defense response against *G. boninense*
4.3.4 Identification and categorization of *EgGlu3* involved in defense response against *G. boninense*
4.3.5 Identification and categorization of *EgPro1.9* involved in defense response against *G. boninense*
4.4 Validation of selected PR gene expressions in T1 oil palm roots via Comparison between qRT-PCR and RNA-seq analyses
4.5 Discussion

5 CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

REFERENCES
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The disease scoring (0 to 4) based on symptoms of infected plants</td>
</tr>
<tr>
<td>3.1</td>
<td>Primers used for detection of G. boninense DNA in oil palm roots</td>
</tr>
<tr>
<td>3.2</td>
<td>Primers used for qualitative real-time PCR (RT-qPCR) analysis</td>
</tr>
<tr>
<td>4.1</td>
<td>Quality assessment for the DNA samples based on concentration and purity</td>
</tr>
<tr>
<td>4.2</td>
<td>The output from BLASTn searches which used nucleotide sequences to be aligned and compared to nucleotide collection, nr/nt, which is the non-redundant nucleotide database managed by NCBI. The output also summarised the sequences which produced significant alignments based on BLAST scores, identity scores and E values, as well as the accession number of each sequences (only the 10 highest-scoring hits are displayed). i) 3 DPI, ii) 7 DPI, iii) 11 DPI</td>
</tr>
<tr>
<td>4.3</td>
<td>Summary of NGS data of replicate 1 and 2 of treated samples</td>
</tr>
<tr>
<td>4.4</td>
<td>A summary of gene expression profiles of individual defence related genes in treated oil palm seedlings with control of oil palm seedlings</td>
</tr>
<tr>
<td>4.5</td>
<td>The BLASTp output for EgChi1X3 protein (XP_010941401.1)</td>
</tr>
<tr>
<td>4.6</td>
<td>Summary of gene structures, chromosome and locus of chitinases similar to EgChi1X3 (Top 10 hits using BLAST)</td>
</tr>
<tr>
<td>4.7</td>
<td>The BLASTp output for EgGer8 protein (XP_010917183.1)</td>
</tr>
<tr>
<td>4.8</td>
<td>Summary of gene structures, chromosome and locus of germin-like proteins similar to EgGer8 (Top 10 hits using BLAST)</td>
</tr>
<tr>
<td>4.9</td>
<td>The BLASTp output for EgGluP protein (XP_010932900.1)</td>
</tr>
<tr>
<td>4.10</td>
<td>Summary of gene structures, chromosome and locus of glu S. griseus protease inhibitor proteins similar to EgGluP (Top 10 hits using BLAST)</td>
</tr>
<tr>
<td>4.11</td>
<td>The BLASTp output for EgGlu3 protein (XP_010926119.1)</td>
</tr>
<tr>
<td>4.12</td>
<td>Summary of gene structures, chromosome and locus of glucan endo-1,3-beta-glucosidase proteins similar to EgGlu3 (Top 10 hits using BLAST).</td>
</tr>
</tbody>
</table>
4.13 The BLASTp output for *EgPro1.9* protein (XP_010912031.1)

4.14 Summary of gene structures, chromosome and locus of subtilisin-like proteases proteins similar to *EgPro1.9* (Top 10 hits using BLAST)

4.15 Validation of RNA-Seq data using qPCR. Each treatment consisted of pooled root from six plants. Pairwise comparison of RNA-seq data was evaluated according to cut-off values of log₂ fold change (FC) ≥ |1.0| and *P*-value < 0.01. Data of qPCR are expressed as fold change mean ± SEM of three individual technical replicates of T0 and T1 samples compared to control. The fold expressions of each gene were normalised by housekeeping genes; *GAPDH* 2 and *NADH 5* expression levels. Significant differences between qPCR groups were determined using one-way ANOVA analysis followed by Tukey's test. * indicate significant different compared to corresponding control at: *P* < 0.01 and log₂ FC ≥ |1.0| for RNA-seq; and *P* < 0.01 for qPCR. Different superscript letters between samples (within treatment) indicate significant different at: *P* < 0.01 and log₂ FC ≥ |1.0| for RNA-seq; and *P* < 0.01 in mean values for qPCR. ND: not detected
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Flow chart of sampling design. Treatment groups were based on two factors.</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>First factor has two levels, and second factor has three and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>formed a ((3 \times 2 = 6)) different treatment groups. T0 = Mock-treated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>seedlings, T1 = G. boninense-treated seedlings, 3DPI = 3 days post-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>inoculated, 7DPI = 7 days post-inoculated, 11DPI = 11 days post-inoculated.</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Flow diagram of methodology.</td>
<td>19</td>
</tr>
<tr>
<td>4.1</td>
<td>Analysis of PCR product obtained using Ganoderma species-specific</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>primer pairs on a 1% agarose gel. Lane T1 3dpi, normal PCR for T1 (3dpi);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lane T1 7dpi, nested PCR for T1 (7dpi); lane T1 11dpi, nested PCR for T1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(11dpi), lane Pure culture, normal PCR for cultured G. boninense (PER71)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Lane Control. The generated fragments are ~200bp (T1 3dpi and Control)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and ~100bp (T1 7dpi and T1 11dpi).</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Multiple sequence alignment of putative G. boninense sequence</td>
<td>27-28</td>
</tr>
<tr>
<td></td>
<td>from T1 samples generated using ClustalW in MEGA-X.</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Number of DEGs in the G. boninense-treated oil palm roots compared to</td>
<td>34-39</td>
</tr>
<tr>
<td></td>
<td>control roots samples that are related to pathogenesis related proteins in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>oil palm defense mechanisms. Histograms and in blue, red and green colours</td>
<td></td>
</tr>
<tr>
<td></td>
<td>represent the number of DEGs in 3 DPI (Blue), 7 DPI (Red) and 11 DPI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Green), respectively. The groups of pathogenesis-related protein of DEGs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>are shown based on their putative functions. Those groups were</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pathogenesis-related protein 1 (PR-1), Glucanases (PR-2), Chitinases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(PR-3,4,8,11), Thetaumatin-like proteins (PR-5), Protein Kinases (PTKs),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cysteine-rich receptor-like protein kinases (CRKs), Subtilisin-like proteins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(PR-7a), Aspartic Protease (PR-7b), Peroxidases (PR-9), non-specific</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lipid transfers proteins or NsLTPs (PR-14), Oxalate oxidases (PR-15),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Germin-like proteins or GLPs (PR-16).</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Heat map of DEGs in the 3 DPI, 7 DPI and 11 DPI treated oil palm roots</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>compared to control roots. The heat map was generated by Graph Pad Prism 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>software for the oil palm defense specifically in pathogenesis related</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mechanisms. The panels in red and green represent DEGs (P-value < 0.05)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>with Log2 (fold change) value ≥ 1 (up-regulation in treated oil palms) and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Log2 (fold change) value ≤ 1 (down-regulation in treated oil palms),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>correspondingly. Black panels represent DEGs with Log2 (fold change)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>value between -1 and 1.</td>
<td></td>
</tr>
</tbody>
</table>
4.5 Multiple alignment of five chitinase 1-like protein sequence using T-coffee software. Dashes are the gaps between amino acids while the continuous pink colour shows good alignment quality; yellow is moderate; blue is bad alignment qualities. Eg, *Elaeis guineensis*; Pd, *Phoenix dactylifera*. The symbols below each amino acid in the sequence represents the level of conservation (*'**, Exact; ':', Conserved substitution, '.', Semi-conserved substitution).

4.6 A graphical summary of conserved domains from oil palm Chi1X3 protein (Accession No.: XP_010941401); each domain is illustrated via the different colours of ribbon along the sequence such as brown and yellow. The gaps signify the gaps between the domains. Metadata on each domain is obtained from NCBI’s conserved domain database.

4.7 Phylogenetic tree inferred using the Maximum Likelihood method and JTT matrix-based model as well as applying Neighbour-Joining analysis of conserved Chi1 motifs from 20 Chi1 genes. Varying colour indicated the difference in organisms and *Chi1* from *E. guineensis* were marked with green circles including the *EgChi1X3*. Bootstrap tests also were done (500 replicates) and only topology with significant log likelihood value were selected. These analyses were carried out using MEGA X.

4.8 Multiple alignment of five germin-like protein sequence using T-coffee software. Dashes are the gaps between amino acid while the continuous pink colour shows good alignment quality; yellow is moderate; blue and green are bad alignment qualities. Eg, *Elaeis guineensis*; Os, *Oryza sativa*; Pd, *Phoenix dactylifera*; Ac, *Ananas comosus*. The symbols below each amino acid in the sequence represented the level of conservation (*'**, Exact; ':', Conserved substitution, '.', Semi-conserved substitution).

4.9 A graphical summary of conserved domains from oil palm EgGer8 protein (Accession No: XP 010917183.1); each domain was illustrated via the different colours of ribbon along the sequence such as brown and yellow (The gaps signify the gaps within the domain). Metadata on each domain presented via NCBI’s conserved domain database or CDD.

4.10 Phylogenetic tree inferred using the Maximum Likelihood method and JTT matrix-based model as well as applying Neighbour-Joining analysis of conserved Germin motifs from 20 GLP genes. Varying colour indicated the difference in organisms and *GLP* from *E. guineensis* were marked with green circles including the *EgGer8*. Bootstrap tests also were done (500 replicates) and only topology with significant log likelihood value were selected. These analyses were carried out using MEGA X.
4.11 Multiple alignment of five glu S. griseus protease inhibitor protein sequence using T-coffee software. Dashes are the gaps between amino acids while the continuous pink colour shows the good alignment quality; yellow are moderate. Eg, *Elaeis guineensis*; Pd, *Phoenix dactylifera*; Gm, *Glycine max*; Mt, *Medicago truncatula*; Pt, *Populus trichocarpa*. The symbols below each amino acid in the sequence represented the level of conservation (*'*', Exact; ':' Conserved substitution, '.', Semi-conserved substitution).

4.12 A graphical summary of conserved domains from oil palm *EgGluP* protein (Accession No: XP_010932900.1); each domain was illustrated via the different colours of ribbon along the sequence such as blue and dark blue (The gaps signify the gaps within the domain). Metadata on each domain presented via NCBI’s conserved domain database.

4.13 Phylogenetic tree inferred using the Maximum Likelihood method and JTT matrix-based model as well as applying Neighbour-Joining analysis of conserved GluP motifs from 20 GluP genes. Varying colour indicated the difference in organisms and *GluP* from *E. guineensis* were marked with green circles including the *EgGluP*. Bootstrap tests also were done (500 replicates) and only topology with significant log likelihood value were selected. These analyses were carried out using MEGA X.

4.14 Multiple alignment of five glucan endo-1,3-beta-glucosidase 3-like protein sequence using T-coffee software. Dashes are the gaps between amino acids while the pink colours shows the good alignment quality; yellow are moderate; green were bad alignment quality. Eg, *Elaeis guineensis*; Pd, *Phoenix dactylifera*; Ma, *Musa acuminata*. The symbols below each amino acid in the sequence represented the level of conservation (*'*', Exact; ':' Conserved substitution, '.', Semi-conserved substitution).

4.15 A graphical summary of conserved domains from oil palm Glu3 protein (Accession No: XP_010926119.1); each domain was illustrated via the different colours of ribbon along the sequence such as green and purple (The gaps signify the gaps within the domain). Metadata on each domain presented via NCBI’s conserved domain database or CDD.

4.16 Phylogenetic tree inferred using the Maximum Likelihood method and JTT matrix-based model as well as applying Neighbour-Joining analysis of conserved Glu3 motifs from 20 Glu3 genes. Varying colour indicated the difference in organisms and *Glu3* from *E. guineensis* were marked with green circles including the *EgGlu3*. Bootstrap tests also were done (500 replicates) and only topology with significant log likelihood value were selected. These analyses were carried out using MEGA X.
4.17 Multiple alignment of five subtilisin-like protease SBT1.9 protein sequence using T-coffee software. Dashes resembled the gaps between codons while the pink colours good alignment qualities; yellow are moderate; blue are bad alignment qualities. Eg, *Elaeis guineensis*; Pd, *Phoenix dactylifera*. The symbols below each amino acid in the sequence represented the level of conservation (‘∗’; Exact; ‘.’ Conserved substitution; ‘.’; Semi-conserved substitution).

4.18 A graphical summary of conserved domains from oil palm Pro1.9 protein (Accession No: XP_010912031.1); each domain was illustrated via the different colours of ribbon along the sequence such as purple and green (The gaps signify the gaps within the domain). Metadata on each domain presented via NCBI’s conserved domain database.

4.19 Phylogenetic tree inferred using the Maximum Likelihood method and JTT matrix-based model as well as applying Neighbour-Joining analysis of conserved Pro1.9 motifs from 20 *Subtilisin-like protease* genes. Varying colour indicated the difference in organisms and Pro1.9 from *E. guineensis* were marked with green circles including the EgPro1.9. Bootstrap tests also were done (500 replicates) and only topology with significant log likelihood value were selected. These analyses were carried out using MEGA X.

4.20 Validation via qPCR of *EgChi1X3, EgGer8, EgGlu3, EgGluP* and *EgPro1.9* gene expression in *G. boninense*-infected oil palm roots. Line graph displays relative expressions of A, EgChi1X3; B, EgGer8; C, EgGlu3; D, EgGluP and E, EgPro1.9 at 3, 7, and 11 DPI in comparison to expression of control. The fold expressions of each gene were normalised using housekeeping genes; GAPDH 2, NADH 5 and β-actin expression levels. Data shows the mean ± SEM of three individual technical replicates of each sample. This screening via qPCR was done on both control and treated (T0 and T1) samples within two biological replicates. Significant differences among treatments compared to respective control treatment were verified via one-way ANOVA analysis followed by Tukey’s test. * indicate significant different compared to related control at: P < 0.01 while ns indicates that it is not significant. T0: Mock-treated; T1: Ganoderma-treated; Rep1: replicate 1; Rep2: replicate 2; D3: day 3 post-inoculated; D7: day 7 post-inoculated; D11: day 11 post-inoculated. Phylogenetic tree inferred using the Maximum Likelihood method and JTT matrix-based model as well as applying Neighbour-Joining analysis of conserved Pro1.9 motifs from 20 *Subtilisin-like protease* genes. Varying colour indicated the difference in organisms and Pro1.9 from *E. guineensis* were marked with green circles including the EgPro1.9. Bootstrap tests also were done (500 replicates) and only topology with significant log likelihood value were selected. These analyses were carried out using MEGA X.
LIST OF ABBREVIATIONS

ABA Abscisic acid
AFLP Amplified fragment length polymorphism
Avr Avirulence
BSR Basal Stem Rot
BLAST Basic Local Alignment Search Tool
bp Base pair
CDNA Complementary DNA
CHI Chitinase
cm centimetres
CRK Cysteine-like protein kinase
CTAB Cetyltrimethyl ammonium bromide
CWDE Cell wall degradation enzyme
DEG Differentially expressed gene
DEPC Diethylpyrocarbonate
DNA Deoxyribonucleic acid
DPI Days post-inoculated
DSI Disease severity index
EDTA Ethylenediaminetetra-acetic acid
Eg *Elaeis guineensis*
ELISA Enzyme-linked immunosorbent assay
E-nose Electronic nose
EST Expressed sequence tag
ETI Effector-triggered immunity
FC Fold Change
FFB Fresh fruit bunch
FISH Fluorescence in situ hybridization
g Relative centrifugal force
GanoDROP *Ganoderma* and Disease Research for Oil Palm
gDNA genomic DNA
GER Germin
GLP Germin-like protein
GLU Glucanase
GPI Glycosylphosphatidylinositol
H2O2 Hydrogen peroxide
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPLC</td>
<td>High-performance liquid chromatography</td>
</tr>
<tr>
<td>HR</td>
<td>Hypersensitive response</td>
</tr>
<tr>
<td>ID</td>
<td>Identification</td>
</tr>
<tr>
<td>ITS</td>
<td>Internal transcribed spacer</td>
</tr>
<tr>
<td>JA</td>
<td>Jasmonic acid</td>
</tr>
<tr>
<td>kGy</td>
<td>kiloGray</td>
</tr>
<tr>
<td>LRR</td>
<td>Leucine-rich repeat</td>
</tr>
<tr>
<td>LTP</td>
<td>Lipid transfer protein</td>
</tr>
<tr>
<td>LTPG</td>
<td>GPI-anchored lipid transfer protein</td>
</tr>
<tr>
<td>MAMP</td>
<td>Microbe-associated molecular pattern</td>
</tr>
<tr>
<td>MIP</td>
<td>Molecularly Imprinted polymer</td>
</tr>
<tr>
<td>mM</td>
<td>MilliMolar</td>
</tr>
<tr>
<td>MPOB</td>
<td>Malaysian Palm Oil Board</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>MSA</td>
<td>Multiple sequence alignment</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium chloride</td>
</tr>
<tr>
<td>NBD</td>
<td>Nucleotide-binding domain</td>
</tr>
<tr>
<td>NBS-LRR</td>
<td>Nucleotide-binding site leucine-rich repeat</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information</td>
</tr>
<tr>
<td>NGS</td>
<td>Next Generation Sequencing</td>
</tr>
<tr>
<td>nsLTP</td>
<td>Non-specific lipid transfer protein</td>
</tr>
<tr>
<td>OxoO</td>
<td>Oxalate oxidase</td>
</tr>
<tr>
<td>PAMP</td>
<td>Pathogen-associated molecular pattern</td>
</tr>
<tr>
<td>PCD</td>
<td>Programmed cell death</td>
</tr>
<tr>
<td>PCI</td>
<td>Phenol-chloroform isoamyl alcohol</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PDB</td>
<td>Potato dextrose broth</td>
</tr>
<tr>
<td>PI</td>
<td>Protease inhibitor</td>
</tr>
<tr>
<td>PR</td>
<td>Pathogenesis-related</td>
</tr>
<tr>
<td>PRR</td>
<td>Pattern recognition receptor</td>
</tr>
<tr>
<td>PTI</td>
<td>Pattern-triggered immunity</td>
</tr>
<tr>
<td>PTK</td>
<td>Protein kinase</td>
</tr>
<tr>
<td>PVP</td>
<td>Polyvinyl pyrrolidone</td>
</tr>
<tr>
<td>qPCR</td>
<td>Quantitative Polymerase chain reaction</td>
</tr>
<tr>
<td>R</td>
<td>Resistance</td>
</tr>
<tr>
<td>RAMS</td>
<td>Random amplification of microsatellite</td>
</tr>
</tbody>
</table>
RAPD Random amplification of polymorphic DNA
rDNA ribosomal DNA
RFLP Restriction fragment length polymorphism
RNA Ribonucleic acid
RNA-seq Ribonucleic acid sequencing
ROS Reactive Oxygen Species
RP Resistance protein
RWB Rubber wood block
SA Salicylic acid
SAR Systemic Acquired resistance
SBT Subtilase
TE Tri-EDTA
TIR Toll/interleukin 1 receptor
USR Upper stem rot
μL Microliter
μM Micromolar
CHAPTER 1

INTRODUCTION

Oil palm (*Elaeis guineensis* Jacq.), is mainly grown in Southeast Asia which contributes approximately 90% of the world’s palm oil production. Palm oil is accredited as one of the prime sources of edible oil, the raw material for oleochemicals and precursors for biodiesel fuel (Stichnothe et al., 2014; Kurnia et al., 2016). The total export revenue of oil palm products for Malaysia in 2018 was RM67.49 billion (MPOB, 2018). Therefore, due to the increasing demand for palm oil annually, Malaysia has expanded from 5.81 million hectares in 2017 to approximately 5.85 million hectares in 2018 (MPOB, 2018). To obtain a sustainable oil palm industry without harming the environment and ecosystem, certain criteria are required such as establishing land allocation, ecological service mapping, conserving ecological integrity, ecosystem health, adaptability, network, raising awareness, better management practices, zero-waste milling technology, minimal production gaps, planting disease-resistant and high-yielding variety, alternate technologies and sources as well as less deforestation on acceptable land (Khatun et al., 2017).

Oil palm is vulnerable to stem rot diseases, including upper stem rot (USR) and basal stem rot (BSR) (Tisné et al., 2017). *G. boninense* which caused BSR, become economically problematic when the disease affects 10-20% of the palm and at the end of standard planting cycle of 25-year, the losses could reach up to 30-70%, which lead to several other problems such as substantial fresh fruit bunch (FFB) losses, early replantation and wasted resources (Cooper et al., 2011). *G. boninense* is considered to be the most prevalent fungal disease due to the huge economic losses of oil palm plantations reported of RM225 million to RM1.5 billion a year (Arif et al., 2011). These outbreaks easily occur due to *Ganoderma* ability to propagate through direct root contact and basidiospores. The detailed processes are still unresolved (Pilotti et al., 2002; Rees et al., 2012).

Ganoderma spp. is known to degrade plant cell wall components including lignin, resulting in white rot to oil palm (Paterson, 2007). Among all species of *Ganoderma*, *G. boninense* is the most epidemic towards oil palms (Susanto et al., 2005). BSR infection occurs indiscriminately in all growth stages of oil palm including mature and young palms. The manifestation of infection occurs more rapidly and drastic in earlier growth phases (Susanto et al., 2005). However, during an early stage of infection, the infected oil palm appears to be symptomless and the first symptom that can be observed usually on foliage part when the progression of infection already reaches 60 to 70% (Chong et al., 2017). At this stage, the infected young palms normally die within 1 or 2 years, whilst mature trees could survive for extra 3 or more years (Corley and Tinker, 2003). Studies on early defense response are crucial in providing information on making better decisions in detecting and managing *G. boninense* infection.

BSR spreads gradually by decaying lower stem and root system by disrupting water and nutrients intake to the upper oil palm part. Shortage of water and nutrients reveal critical symptoms at the foliar part of oil palm such as unopened spear leaves, senescence and
yellowing of upper fronds, reduced and “one-sided mottling” canopy and crown become flattened, and blooming of basidiocarps on the bottom stem. (Chung, 2011; Rees et al., 2012). Ultimately, all of these attacks result in the collapse of the stand (Chung, 2011). *G. boninense* can be classified as hemibiotroph with a transitional state of biotrophs and necrotrophs (Bahari et al., 2018). The initial stage of the fungal attack is the biotrophic state where fungal colonization occurs in an intact state on host plant cells and later switching to necrotrophic state causing extensive cell wall degradation (Chong et al., 2017).

Biotrophs sustain themselves via deriving energy from living cells and preserving intact host cells for nutrient uptake, whereby necrotrophs is opportunistic and kill plant cells rapidly to derive energy and live saprotrophically on the dead remains (Bahari et al., 2018). Normally, plants counteract with the biotrophic attack which happens during the initial stage of infection by boosting the production of reactive oxygen species (ROS) via respiratory burst (Morkunas and Ratajczak, 2014). Hence, plant activates programmed cell death (PCD) to regulate pathogen growth. This response is one of hypersensitive response (HR) when rapid cell death occurs in the local region around the infection (Lam et al., 2001).

On the other hand, necrotrophs alter host cell walls by releasing a high level of cell wall degradation enzyme (CWDE) to enhance host cell wall accessibility (Hok et al., 2010). For example, successful infection of necrotrophic pathogen *Botrytis cinerea* on *Solanum lycopersicum* induces expansin and polygalacturonase which promote cell wall loosening (Cantu et al., 2009). Necrotroph also produces expansin-like protein to aid infiltration of hyphae as well as providing security for hemibiotrophs, *Fusarium graminearum* against plant enzymatic breakdown (Pazzagli et al., 2014; Quarantin et al., 2016). Hemibiotrophs have transitional habits thus depend heavily on successful biotrophic occupation within the host cells before the transition to the necrotrophic phase which is a more aggressive mode of infection. (Vargas et al., 2012). The time for transition from the biotrophic phase to the necrotrophic phase differs among the pathogenic species (Kabbage et al., 2015).

Previous research suggested that *G. boninense* probably can be treated using a systemic fungicide called hexaconazole when applied using a suitable technique (Idris et al., 2010a). However, fungicidal treatment becomes limited due to prominent symptoms of *G. boninense* infection can only be observed during the later stage, when the infection is already well-established (Turner and Gillbanks, 2003; Najmie et al., 2011). Countless diagnostic and detection methods were suggested including usage of DNA-PCR, volatile organic compound detection, polyclonal antibodies, fungal ergosterol quantification as well as usage of hyperspectral imaging via satellite sensors (Bridge et al., 2000; Idris et al., 2003; Utomo and Niepold, 2000; Lelong et al., 2010) but some are not exclusive towards *Ganoderma* species and some are unable to detect early infected oil palms due to similarity to healthy palms.

In our study, analyses on gene expression profiles of PR genes in oil palm roots inoculated with *G. boninense* generated several outcomes on a phenomenon involving PR genes in oil palm-*G. boninense* interaction. The knowledge gaps have been identified in isolating *G. boninense* from the infected oil palm, identifying genes that were differentially expressed
due to *G. boninense* infection in oil palm and analysing the expression of pathogenesis-related (PR) genes in the oil palm which was infected with *G. boninense*. We hypothesized that *G. boninense* will be detected in the infected oil palm because of the successful *G. boninense* colonization. We also hypothesized that the PR genes expressed in *G. boninense*-treated oil palm will be identified and grouped based on their PR family. Lastly, we hypothesized that by analysing PR genes expression pattern in infected oil palm based on specific time phase will be able to provide data on which PR genes are phase-specific and could suggest a more efficient method in the future on detecting *G. boninense* in oil palm during the early phase of infection. For future research, these PR genes will be analysed for their potential as biomarkers for *G. boninense* during early plant-pathogen interaction. The experiments were done with the following objectives:

(i) To isolate and detect the presence of *G. boninense* within treated oil palm seedlings.
(ii) To identify the differentially expressed genes (DEGs) in oil palm upon treatment with *G. boninense*.
(iii) To identify and analyse pathogenesis-related (PR) genes expression profiles in oil palm roots due to the oil palm-*G. boninense* interaction.
REFERENCES

De Torres-Zabala, M., Truman, W., Bennett, M. H., Lafforgue, G., Mansfield, J. W., Egea,

Idris, A. S., Arifurrahman, R., Kushairi, A. (2010a). Hexaconazole as a preventive treatment for managing *Ganoderma* in oil palm. *MPOB Inf Ser. TT, 75*

monokaryotic and dikaryotic mycelia of *Ganoderma boninense*. *Mycological Research, 106*(11), 1315-1322. doi:10.1017/s0953756202006755

Tan, Y., Yeoh, K., Wong, M., and Ho, C. L. (2013). Expression profiles of putative

Yeoh, K., Othman, A., Meon, S., Abdullah, F., and Ho, C. L. (2012). Sequence analysis and gene expression of putative exo- and endo-glucanases from oil palm (*Elaeis*

BIODATA OF STUDENT

Redzyque Ramza Ramli was born on February 20th, 1991 in Kota Bharu, Kelantan Darulnaim. He is the youngest of eight siblings in the family. He received his primary education in Sekolah Rendah Kebangsaan Sultan Ismail 2 from 1998 to 2004. He continued his secondary education in Sultan Ismail College until 2009. In 2009, he continued his studies in Universiti Malaya Pre-University programme in Life Science. In 2010, he was offered to pursue a Bachelor Degree with Honors in Plant Resource Science and Management at Universiti Malaysia Sarawak and graduated in 2013. Now, he enrolled as a full-time Master of Science candidate in the field of Plant Biotechnology at Universiti Putra Malaysia in 2014.
LIST OF PUBLICATIONS

Journal

Poster paper presentation

UNIVERSITI PUTRA MALAYSIA

STATUS CONFIRMATION FOR THESIS / PROJECT REPORT AND COPYRIGHT

ACADEMIC SESSION : First Semester 2020/2021

TITLE OF THESIS / PROJECT REPORT :

EXPRESSION OF SELECTED PATHOGENESIS-RELATED PROTEINS AT EARLY STAGE
OF Ganoderma boninense INFECTION IN Elaeis guineensis Jacq. SEEDLINGS

NAME OF STUDENT: REDZYQUE RAMZA BIN RAMLI

I acknowledge that the copyright and other intellectual property in the thesis/project report belonged to Universiti Putra Malaysia and I agree to allow this thesis/project report to be placed at the library under the following terms:

1. This thesis/project report is the property of Universiti Putra Malaysia.
2. The library of Universiti Putra Malaysia has the right to make copies for educational purposes only.
3. The library of Universiti Putra Malaysia is allowed to make copies of this thesis for academic exchange.

I declare that this thesis is classified as :

*Please tick (V)

☐ CONFIDENTIAL (Contain confidential information under Official Secret Act 1972).
☐ RESTRICTED (Contains restricted information as specified by the organization/institution where research was done).
☐ OPEN ACCESS I agree that my thesis/project report to be published as hard copy or online open access.

This thesis is submitted for :

☐ PATENT Embargo from______ until ________

(date) (date)

Approved by:

(Signature of Student)
New IC No/ Passport No.:
Date :

(Signature of Chairman of Supervisory Committee)
Name:
Date :

[Note : If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization/institution with period and reasons for confidentially or restricted.]