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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Doctor of Philosophy

AN APPROACH TO SUPPORT INCREMENTAL SOFTWARE
CONSTRUCTION AND VERIFICATION IN COMPONENT-BASED

SYSTEM DEVELOPMENT

By

FARANAK NEJATI

October 2019

Chairman : Professor Abdul Azim Abdul Ghani, PhD
Faculty : Computer Science and Information Technology

Component-based System Development (CBSD) is a promising way of thinking or
philosophy to reduce the cost and time of software system development. Moreover,
CBSD is able to tame the complexity of today’s software systems development while
the quality is guaranteed. However, supporting correctness and building trust in
CBSD are of great importance to detect errors as early as they appear.

It is commonly acknowledged that formal specification and verification methods are
reliable methods that are able to offer fundamental aid to reveal errors and increase
confidence in designing software systems. One of the approaches to verify systems is
model checking. It is a brute-force verification method which is able to automatically
and systematically analyze the state space and formal properties of a given system
to discover hidden faults. However, it is limited by State Space Explosion (SSE).
The amount of State Space (SS) of a given system tends to increase dramatically and
quickly exceed the memory capacity even for a small system.

Many techniques and approaches have been proposed to deal with SSE. They com-
monly try to circumvent SSE after the entire system is constructed. Among them,
there is the incremental model checking which verifies systems before the construc-
tion is completed.
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The incremental verification style has been introduced in model checking of CBSD
and it is considered suitable for the implicit style of model checking. However, the
explicit style is not supported before in model checking of CBSD. In this thesis, a
verification approach is proposed to support the incremental verification of CBSD
that is considered suitable for explicit model checking. The proposed approach is
provided through three main steps in preparing a component model, constructing
systems incrementally, and integrating verification into the incremental construction.

In the first step, a new component model called PUTRACOM is proposed. Compo-
nents in PUTRACOM support encapsulation in the sense that computation is com-
pletely private. It has been achieved by adding Observer/Observable Unit (OOU) in
the components. This feature leads to minimized coupling between the components
in the systems and facilitate incremental construction. To compose components new
exogenous connectors are introduced. The substantial feature of the exogenous con-
nectors is encapsulating all controls in the system. Combining the new connectors
with OOU provides a way to prevent having multiple ports and let the computation
part of components be truly encapsulated.

In the second step, an approach to construct systems incrementally is proposed. The
technique emphasizes on iteratively constructing and enhancing an approach version
of a system by adding new increments. To achieve this, the provision of new condi-
tions and rules is essential to maintain the system behavior during construction. A
set of definitions, rules and conditions are introduced to define the system’s behavior,
explore the entire system to find them, and proof their preservation in each level of
construction. The applicability of the approach is also elaborated by an example.

In the third step, an approach to integrate a verification process into the levels of
constructions is proposed. The approach is able to avoid re-verifying lower level
of constructions and lesses the state space size and verification effort via deleting
the encapsulated part of each component. The approach is specified through steps,
definitions and rules. Its applicability is verified by performing the rules on imple-
menting on a real world case study.

The utilized real world case study is CoCoME which implemented in Colored Petri
Net (CPN) Tools. It demonstrates how PUTRACOM provides a way to construct
encapsulated components, control interactions between them by new connectors, in-
crementally construct and verify systems, and reduce verification efforts. The re-
sults indicate that the proposed technique can reduce the amount of state space to
be checked in the component-based development. Consequently, the reduction of
the state space leads to reduce the amount of execution time during the verification
process. Moreover, the counterexamples can be found as early as it appears.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENDEKATAN UNTUK MENYOKONG PENOKOKAN
PEMBINAAN DAN PENGESAHAN PERISIAN DALAM

PEMBANGUNAN PERISIAN BERASASKAN KOMPONEN

Oleh

FARANAK NEJATI

Oktober 2019

Pengerusi : Profesor Abdul Azim Abdul Ghani, PhD
Fakulti : Sains Komputer dan Teknologi Maklumat

Pembangunan sistem berasaskan komponen (PSBK) merupakan cara pemikiran atau
falsafah yang dapat memberi harapan untuk mengurangkan kos dan masa pemban-
gunan sistem perisian. Di samping itu, PSBK berupaya mengurangkan kerumitan
pembangunan sistem perisian masakini sementara itu kualiti adalah terjamin. Walau
bagaimanapun, menyokong kebenaran dan meningkatkan keyakinan dalam PSBK
sangat penting untuk mengesan ralat seawal mungkin pada masa ianya muncul.

Diketahui secara umum bahawa spesifikasi formal dan kaedah pengesahan adalah
kaedah yang boleh dipercayai yang dapat menawarkan bantuan asas untuk
mendedahkan ralat dan meningkatkan keyakinan dalam mereka bentuk sistem
perisian. Salah satu pendekatan untuk mengesah sistem adalah penyemakan model.
Ianya dikenali sebagai kaedah pengesahan daya kasar yang secara automatik dan
sistematik dapat menganalisis ruang keadaan dan sifat formal sesuatu sistem un-
tuk mengesan kesalahan yang tersembunyi. Walau bagaimanapun, ia terhad oleh
masalah yang dipanggil Ledakan Ruang Keadaan (LRK). Amaun ruang keadaan
sesuatu sistem cenderung untuk meningkat secara dramatik dan cepat melebihi kap-
asiti memori walaupun untuk sistem yang kecil.

Banyak teknik dan pendekatan telah dicadang untuk menangani LRK. Mereka bi-
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asanya cuba memintasi LRK selepas keseluruhan sistem dibina. Di antara mereka
adalah penyemakan model secara penokokan yang mengesah sistem sebelum pembi-
naan dilengkapkan. Stail pengesahan penokokan telah diperkenalkan dalam penye-
makan model PSBK dan ianya dianggap sesuai untuk penyemakan model stail im-
plisit. Walau bagaimanapun, stail eksplisit tidak disokong sebelum ini dalam penye-
makan model PSBK. Dalam tesis ini, satu pendekatan pengesahan di cadangkan
untuk menyokong penokokan pengesahan PSBK yang dianggap sesuai untuk penye-
makan model eksplisit. Pendekatan cadangan disediakan melalui tiga langkah utama
iaitu menyediakan model komponen, pendekatan membina sistem secara penokokan,
dan pendekatan untuk menintegrasikan verifikasi ke dalam pembinaan penokokan.

Dalam langkah pertama, satu model komponen baharu dipanggil PUTRACOM di-
cadangkan. Komponen dalam PUTRACOM menyokong pengkapsulan dengan erti
bahawa komputasi adalah bersifat peribadi sepenuhnya. Ianya telah dicapai den-
gan menambah Observer/Observable unit (OOU) dalam komponen. Ciri ini mengu-
rangkan kebergantungan di antara komponen dalam sistem dan memudahkan pem-
binaan penokokan. Untuk menggubah komponen, penyambung eksogen baharu
diperkenalkan. Ciri utama penyambung eksogen tersebut adalah mengkapsulkan
semua kawalan dalam sistem. Menggabung penyambung baharu tersebut dengan
OOU menyediakan cara untuk mengelak daripada mempunyai port berbilang dan
membolehkan bahagian komputasi komponen betul-betul dikapsulkan.

Dalam langkah kedua, satu pendekatan untuk membina sistem secara penokokan
telah dicadangkan. Pendekatan ini menekankan pembinaan secara iteratif dan mem-
pertingkatkan versi sistem yang tidak lengkap dengan menambah tokokan baharu.
Untuk mencapai yang tersebut, penyediaan syarat dan peraturan baharu adalah pent-
ing untuk mengekal tingkah laku sistem semasa pembinaan. Satu set takrifan, perat-
uran, dan syarat diperkenalkan untuk mentakrif tingkah laku sistem, menjelajah selu-
ruh sistem untuk mencari mereka, dan membukti pengekalan mereka dalam setiap
peringkat pembinaan. Kebolehgunaan pendekatan ini di huraikan dengan contoh.

Dalam langkah ketiga, satu pendekatan untuk mengintegrasi proses pengesahan ke
dalam peringkat pembinaan dicadangkan. Pendekatan ini dapat mengelak pengesa-
han berulang di peringkat bawah pembinaan dan mengurangkan saiz ruang keadaan
dan usaha pengesahan dengan cara menghapus bahagian dikapsulkan bagi setiap
komponen. Pendekatan ini dinyatakan melalui langkah, takrifan, dan peraturan. Ke-
bolehgunaannya disahkan dengan melaksanakan peraturan ke atas implementasi ka-
jian kes dunia sebenar.

Kajian kes dunia sebenar yang digunakan ialah CoCoME yang diimplemen dalam
Colored Petri Net (CPN) Tools. Ia mendemonstrasi bagaimana PUTRACOM
menyediakan cara untuk membina komponen dikapsulkan, kawal interaksi di an-
tara mereka melalui penyambung baharu, membina dan mengesah sistem secara
menokok, dan mengurangkan usaha pengesahan. Keputusan menunjukkan pen-
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dekatan cadangan boleh mengurangkan amaun ruang keadaan yang disemak dalam
pembangunan berasaskan komponen. Akibatnya, pengurangan ruang keadaan mem-
bawa kepada pengurangan amaun masa pelaksanaan semasa proses pengesahan.
Tambahan, counterexample dapat dijumpai seawal ianya muncul.
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CHAPTER 1

INTRODUCTION

This thesis intents to propose an approach to support formal verification and
model checking in Component-based System Development (CBSD). This
chapter, presents the motivation behind our work, problem statement, re-
search questions, objectives, contributions, scope and thesis structure.

1.1 Motivation

Component-based system development is a promising way of thinking or phi-
losophy to reduce the expense and time of software system development.
Moreover, CBSD is able to tame the complexity of today’s software systems
development meanwhile the quality is guaranteed. The most important prin-
ciple in CBSD is to construct massive and complex systems by composing
smaller and simpler units of software (components).

Over the last five decades, the astonishing progresses made in systems and
technology have increased the scale and complexity of systems. It is fairly
evident that it also leads to a growth in the probability of errors and obstacles
sneaking into system development and construction even in CBSD. Thus, to
support correctness and build trust in CBSD, the modeling and verification of
components and their composition is fundamental.

Errors in systems are mostly serious and may lead to destructive results. A
single error can lead to the crashing of entire a system, similar to an error that
defected the Arian-5 rocket. There was a small application in Arian-5 which
was trying to assign a number of 64-bit floating point into a variable with 16-
bit space (Lions et al., 1996). This small mistake led to the catastrophic result.
There are many critical systems similar to Arian-5 that, if contain errors,
could result in a disastrous outcome such as nuclear power stations, Avionic
software, Aircraft light control, and Trac control. Another example of such
failures is the Therac-25 (Leveson et al., 1995) which was a radiation therapy
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machine. Six cancer patients died as a result from the machine exposing
them to an overdose of radiation. The defect was caused by an overflow from
a one-bit counter.

Therefore, it is critical to utilize approaches that can build trust for accuracy
and the correctness of the system before it is developed. It bodes well if
design errors being detected as early as development process, ”the sooner,
the better” (Baier and Katoen, 2008). Besides that, the cost of finding an
error during the early stages of the design is 50 times lower than finding it
during maintenance (Baier and Katoen, 2008).

Formal methods have great potential to verify and ensure system correctness
as early as possible.It offers more precise and effective verification techniques
based on rigorous mathematics. ”Federal Aviation Authority (FAA) and Na-
tional Aeronautics and Space Administration (NASA)” reported the follow-
ing result about formal methods (Fahroo et al., 2013):

”Formal methods should be part of the education of every com-
puter scientist and software engineer, just as the appropriate
branch of applied math is a necessary part of the education of
all other engineers.”

One of the well-known approaches to formal methods is model checking
(Clarke et al., 1999b). This model is a brute-force verification method that is
able to automatically and systematically analyse the state space and formal
properties of a given system to demonstrate if its properties are completely
satisfied or not. This approach has been proposed independently by Clarke
et al. (1999b) and Queille and Sifakis (1982). The complete checks of model
checking significantly expands the rank of confidence in the system.

Compared to other approaches like simulation, model checking is further
accurate, automatic and easy to use. IBM demonstrated in one case study
involving a memory-bus adapter design, that 24% of all errors were found
with model checking, while only 40% of those defects would not possibly
be found by simulation (Abarbanel-Vinov et al., 2001; Vakili, 2016). Addi-
tionally, when a property is violated, model checking is able to produce a

2

© C
OPYRIG

HT U
PM



counterexample for eliminating and locating the error.

Regardless of these points of interest, model checking is limited by a rather
critical problem, state space explosion (SSE) (Clarke et al., 2012). SSE inher-
ently is restricted the number of state space for a given which can check via
a model checker. Especially for concurrent systems containing interleaving
processes, the impact of SSE is higher. However, there are many promising
advantages offered by model checking that are encouraging research com-
munities to alleviate its drawbacks. Overcoming this obstacle emerged the
major direction in model checking research and as a result, a massive col-
lection of methods have been presented to remedy the problem (Rafe et al.,
2013; Groote et al., 2015; Comert and Ovatman, 2015).

The presented methods are mostly based on scaling down the state space
by abstraction (Holzmann et al., 2013), symbolic model checking (Thierry-
Mieg, 2015; Sharma and Singh, 2014), and bounded model checking (Alipour
and Groce, 2016; Phan et al., 2015). There are many pieces of research
that deal with the SSE problem by divide-and-conquer approaches (He et al.,
2016; Müller et al., 2016; Elkader et al., 2016). Moreover, some studies uti-
lize evolutionary algorithms to explore a system’s state space in a shorter time
with providing an approximate solution to avoid the SSE problem (Yousefian
and Rahmani, 2014; Duarte et al., 2010).

Despite the fact that proposed methods in literature have enhanced model
checking in CBSD by reducing the SSE, the utilized ways for constructing
systems somehow may effectively impact the verification effort and the size
of state space. Nevertheless, there is scarcity of researches have focused on
the way of constructing a system to reduce the SSE problem. Most of the
proposed model checking methods are applied after the system construction
has completed. Despite being able to provide counterexamples which is the
hallmark feature of model checking after the whole system is built, revealing
the obstacles as early as it appears in the system even before the whole system
is constructed is more desirable.

Incremental construction and verification is one of the promising methods in
model checking for producing counterexamples as early as it appears. More-
over, the idea of incremental construction may provide a way to mitigate
verification efforts and its drawbacks.
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Incremental construction can be presented as a multi-waterfall cycle of soft-
ware development which is an alternative to traditional sequence waterfall.
Mills (1976) defined the importance of the incremental development rather
than sequential waterfall as the following:

”There are dangers, too, particularly in the conduct of these [wa-
terfall] stages in sequence, and not in the iteration—i.e., that de-
velopment is done in an open-loop, rather than a closed-loop
with user feedback between iterations. The danger in the se-
quence [waterfall approach] is that the project moves from being
grand to be grandiose, and exceeds our human intellectual capa-
bilities for management and control.”

Incremental development provides a way to manage and control systems by
dealing with a smaller part of the system in each iteration and mitigates the
risks that may occur in the ”big bang” approach. It also reduces defect density
during system design (Mohagheghi, 2004). It develops systems gradually and
the verification process could be integrated with the construction from the
initial stage of development. Obviously, the lower levels of construction in
the incremental construction have a smaller amount of state space rather than
the entire system’s state space. In other words, model checking may need to
check less state space. Furthermore, the counterexamples could be revealed
as early as the system’s construction is completed.

Incremental development has various aspects with different terminologies
such as versioned development, time boxing, and etc., (Larman and Basili,
2003). However, this study uses the following definition proposed by Gilb
(1977, 1981):

”A complex system will be most successful if it is implemented
in small steps and if each step has a clear measure of success-
ful achievement as well as a “retreat” possibility to a previous
successful step upon failure. You have the opportunity of re-
ceiving some feedback from the real world before throwing in
all resources intended for a system, and you can correct possible
design errors.”
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This definition emphasizes on iteratively constructing and enhancing an in-
complete version of a given system by adding new increments along with
verifying, learning, experiencing, and finding failures in each iteration. Some
requirements and changes may gradually be applied to the up-front specifica-
tion of the system to tackle design errors. However, the important question is
how a system can be incrementally constructed.

CBSD can be considered as a paradigm for constructing systems incremen-
tally (Mohagheghi, 2004; Bensalem et al., 2016; Johnson et al., 2013). In
CBSD, based on a component model, systems can be constructed by pre-
existing reusable components. The components could put together step by
step via a composition mechanism provided by the component models. Com-
position mechanism indicates the way of deploying components into the sys-
tem. In incremental construction, increments could be considered as a set of
components that are composed together by a composition mechanism itera-
tively until the entire system is constructed.

In this study, a new component model that would be able to support incre-
mental construction and verification of concurrent discrete-event systems is
presented.

1.2 Problem Statement

CBSD needs to be verified precisely by formal methods in order to find the
obstacles and produce counterexamples as early as possible. Model checking
is one of the most well-known formal methods to achieve that and build the
trust of systems. Model checking, in the first step, constructs a finite rep-
resentation of a given system. The representation is called state-space and
identifies and enumerates full feasible states of the system. In the next step, it
formulates a set of required properties and checks all the state space in order
to find a violation of those properties.

The brute-force verification of model checking significantly expands the level
of confidence in the system. However, it suffers from state space explo-
sion (SSE). SSE occurs because the amount of state space might increase
dramatically by the number of its processes. As a consequence, it exceeds
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the memory capacity and the model checking process will be halted. This
greatly limits the amount of the system’s state space that can be copied by
model checking. SSE problem occurs specially when there are interleaving
processes running in concurrent systems.

In order to tackle SSE a body of techniques and methods have been pre-
sented in literature which can be categorized into five main approaches. These
includes heuristics and probabilistic, e.g. (Yousefian and Rahmani, 2014;
Duarte et al., 2010), Scaling down the state space, e.g. (Thierry-Mieg, 2015;
Phan et al., 2015; Holzmann et al., 2013) , compositional verification, e.g.
(He et al., 2016; Sun et al., 2014; Bensalem et al., 2008), memory handling,
e.g. (Wu et al., 2015; Lengauer and Mössenböck, 2014), and bottom-up veri-
fication, e.g. (Patel et al., 2015; Johnson et al., 2013; Bensalem et al., 2016).

Although the aforementioned techniques have enhanced the model checking
of CBSD in many aspects, very rarely do studies focus on the following two
factors during verification; first, the way of system construction to reduce the
SSE impacts on model checking and secondly, systems verification before
the entire system is not completed.

Among the model checking approaches, bottom-up verification is a promis-
ing approach that is focused on the way of constructing systems and verify
the systems even if the entire system has not been constructed yet. This ap-
proach has several benefits like verifying without constructing the entire sys-
tem, integrating the verification process with system construction, and find-
ing obstacles as early as it appears. These benefits could be considered as the
promising direction of the bottom-up approach.

Two bottom-up verification methods exist in model checking which is on-the-
fly model checking and incremental model checking. The on-the-fly method
utilizes a depth-first search and creates a path of state space while verifying
it without storing in memory. Despite substantially reducing the memory
requirement, this method is very time-consuming. The amount of time will
increases exponentially to regenerate already verified states.

The other bottom-up approach called incremental model checking is based
on the idea of constructing systems gradually along with verification. The
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verification process starts from a base and iteratively checks properties of the
unfinished system until the system is completed. Incremental model check-
ing fully satisfies the promising direction of the bottom-up approach of model
checking. However, there are three major factors have limited the construc-
tion and verification of systems incrementally.

Firstly, the incremental development of a system needs to be supported in the
component-based models. Unfortunately, not all state-of-the-art component-
based models supporting incremental construction. Moreover, the compo-
sition and interaction styles in the current state-of-the-art component-based
models are mostly a port-to-port connection or method-call based. It confers
complex patterns, since the number of interactions may increase dramatically
due to the number of method calls, ports, and connectors.

Second, during incremental construction, the behavior of the system must
remain unchanged. However, by adding a set of new increments in each level
of construction, the behavior of the system may be affected. Therefore, the
preservation of the system’s behavior when new increments are added is vital.

Thirdly, integrating the verification process into the level of incremental con-
struction while avoiding the re-verifying the already-verified state space from
lower levels of construction is important in identifying the errors as early as
the construction is completed. It is also saves the efforts in the model check-
ing process. Moreover, it contributes in reducing the total state space needed
to be verified by model checking. It is possible to establish such a method
and avoid the re-verifying as presented in (Bensalem et al. (2016)). However,
their method is symbolic and there is no formal method in terms of avoiding
the re-verifying the already-verified explicit state space.
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In Chapter 2, a wider investigation on these limitations shall be presented
which provides further justification on these concerns.

The goal of this research is to present an approach to support incremental con-
struction and verification in CBSD. To achieve this goal, a new component-
based model with a new way of incremental construction and verification is
provided.

1.3 Research Questions

In the following, the main challenges of the research have been identified by
several research questions. These questions can be considered as a guideline
for all steps towards achieving the goal of this thesis.

1. Not all current state-of-the-art component-based models support incre-
mental construction. What are the extensions required for CBSD to
support incremental construction?

2. What are the necessary rules to construct systems incrementally in
CBSD?

3. How could the way of constructing system help in reducing the total
state space of the system?

4. How can model checking be integrated into the system design incre-
mentally to verify the system and detect the errors as soon as they ap-
pear?

5. How to avoid using the already-verified state space of the system to
reduce the verification effort?
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1.4 Research Objectives

The main objective of the research reported in this thesis is focused on
proposing an approach to support incremental construction and verification
in concurrent component-based systems.

The sub objectives of this thesis are as the following:

• To propose a concurrent component model to support incremental con-
struction and verification.

• To propose an approach of construction for constructing systems in-
crementally along with preserving the system behavior and enforced
synchronization in each level of construction.

• To propose an approach to integrate verification in each level of incre-
mental construction, avoid reverifying the already-verified state space
of the systems, reduce the total size of the state space of the system and
consequently reduce the verification effort;

• To evaluate the proposed approach by demonstrating the applicability
of them on a complex real-world case study.

1.5 Summary of Research Contributions

In this study, multiple techniques and models to support model checking and
reduce the verification effort in CBSD is provided. A summary of contribu-
tions is listed below.

1. In chapter 4, a component model called PUTRACOM has been pro-
posed. The sub contributions of this component model are as follows:

• Encapsulating computation by using the concept Observer /
Observable Unit (OOU).
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Components support encapsulation in the sense that computa-
tions are private. All computations occur within the component
itself and no other components have intervention which leads
to minimizing coupling in the system. This encapsulation is
achieved by equipping components with the concept Observer
/ Observable Unit (OOU). OOU is responsible for notifying,
therefore the computation part of a component does not need to
be involved in any message passing or invocation. Moreover,
OOU provides a way to prevent having multiple ports which may
lead to complex interaction patterns like what is presented in the
current state-of-the-art component models.

• Encapsulating control by a new exogenous connector.
As C. E. Hewit said ”one actor in an actor model is no actor”
(Hewitt et al., 2012), one component cannot react individually in
a component-based system. It must be composed in the system
and interact with other components and their computing environ-
ment. To do so, this work proposes a new exogenous connector
to compose and coordinate interactions among components. The
substantial feature of our exogenous connectors is encapsulating
controls in the system. Exogenous connectors set and coordinate
control and data. It may lets components be more encapsulated
and decoupled. The novel part of the new exogenous connectors
is that they always observe the OOU of every component sub-
scribed to them. They can observe event data from components
and coordinate its entire system without evolving components in
sending messages and data or controlling.

• Multiple types of synchronization are supported.
It encompasses modeling systems with a mechanism for parallel
composition, structuring interactions involving strong synchro-
nization (handshaking), weak synchronization (broadcasting),
sequencing, conditional synchronizing, and iteration.

• Developing formal notation for capturing essential compo-
nent and connectors behaviors.
It provides a description of components, their control, and com-
position. Components that are considered as a sequential individ-
ual process are presented by Reactive Transition System (RTS)
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proposed by Jin (2004). The behavior of the components is con-
trolled and restricted by connectors that are based on compo-
sition operations expressed in Communication Sequential Pro-
cesses (CSP) by Hoare and Antony (1978).

2. In chapter 5, an approach to construct concurrent component-based
systems incrementally is proposed. The sub contributions in this ap-
proach are listed below:

• Defining incremental construction.
The definitions permits to specification of increments by Reactive
Transition Systems (RTSs) and capture visible and non-visible
behavior of increments. Increments will be added to the system
by connectors in which are specified based on Communication
Sequential Processes (CSP).

• Rules to assist behavior preservation.
This includes a set of rules to trace increments and reveal
hidden and observable parts of the increments. This is suitable
for omitting hidden part of increments, check the system’s
behavior preservation, and reduce the state space generation in
the verification phase.

• An approach to preserve the system’s behavior and enforced
synchronization in each iteration.
This includes a set of rules for adding increments in each iteration
of construction that is suitable for preserving system’s behavior.

3. In chapter 6, an approach to integrate verification process into con-
struction is proposed. It has the following sub contributions.

• A way for generating state space of the increments. This
includes a set of steps to generate state space which serves in the
verification phase.

• A way to verify the local and global properties of the incre-
ments. These rules allow to verify the hidden part of the incre-
ments as local properties and then verify the observable part of
the increments as the global properties. This is suitable for veri-
fying local properties only once and avoid reverifying them in the
next level of construction and consequently reduce verification
efforts.
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4. In chapter 7, the applicability of the approach by using a case study is
illustrated.

1.6 Research Scope

This thesis focuses on proposing an approach to support verification in
component-based system development. The proposed approach is an incre-
mental construction and verification in concurrent discrete-event CBSD. Sup-
porting verification in terms of reducing the number of state space to avoid
of SSE problem during verification of explicit model checking. This research
focuses on explicit model checking (explained in chapter 2) because the ex-
isting incremental verification is implicit (symbolic).

It is also focuses on concurrent systems because the SSE problem occurs
when there are interleaving processes running in the systems. In sequential
systems, state space does not growing up exponentially.

Due to the fact that incremental construction cannot be applied in all current
component models, a component model called PUTRACOM is provided. It
is a component model with specific characteristics to construct and verify
systems incrementally. Enforced synchronization and deadlock-freeness are
the main properties that are checked in each level of construction when new
increments are added.

1.7 Thesis Structure

This thesis is organized in accordance with the standard template of thesis
and dissertations at University Putra Malaysia. It is organized in a manner
to provide detailed information on how the research is carried out. As the
final report of this research, this thesis consists of eight chapters as presented
below.
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Chapter 1. presents the introduction to the background of this research. It de-
scribes the rationale for conducting this research and outlines the researcher’s
motivation, research objectives, problem statement, and research questions in
this work. The research contributions and research scope are also explained
briefly in this chapter.

Chapter 2. reviews the literature on different aspects of formal verification
and model checking methods, exogenous-based component-based design,
specification formalism, incremental construction, incremental verification.
It presents a discussion of past works relevant to this research. In this chapter,
resource materials such as journals, conference proceedings, seminar, thesis,
books, and on-line resources are used as the main references.

Chapter 3. presents the research methodology designed that has been utilized
in conducting this study. Additionally, it is also present the main concepts
related to this thesis including temporal logics and model checking, X-MAN
component model, Reactive Transition Systems (RTS) and Communication
Sequential Processes (CSP).

Chapter 4. specifies formally the definition of atomic components and their
characteristics in our proposed component model PUTRACOM, a formal
specification of composition operators, interactions, and composite compo-
nents. An example to illustrate more about the model and its applicability is
also provided.

Chapter 5. specifies formally the definition of incremental construction based
on PUTRACOM, the approach to trace increments, and preservation of the
system’s behavior. Moreover, it shows the applicability of the proposed com-
ponent model by using a case study of a real system.

Chapter 6. defines the way of generating state space of increments. The def-
inition of state space reckons on the incremental PUTRACOM presented in
previous chapters. The way of verifying systems and avoiding the reverifica-
tion of already-verified increments are also described in this chapter.

Chapter 7. presents the illustration of Colored Petri Net (CPN) Tools and
the implementation of the PUTRACOM and other techniques in CPN Tools.
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Then, a case study called CoCoME showing the applicability of the PUTRA-
COM and incremental construction and verification is provided. The results
of the implementation based on the number of state space in each level of
construction and the time consumed is presented.

Chapter 8. presents the conclusion of the research and its limitations and
indicates potential areas for future research.
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