AN APPROACH TO SUPPORT INCREMENTAL SOFTWARE
CONSTRUCTION AND VERIFICATION IN COMPONENT-BASED
SYSTEM DEVELOPMENT

FARANAK NEJATI

FSKTM 2019 56

UNIVERSITI PUTRA MALAYSIA
[BERILMU BERBAKTI]

“:“,mﬁm

AN APPROACH TO SUPPORT INCREMENTAL SOFTWARE
CONSTRUCTION AND VERIFICATION IN COMPONENT-BASED
SYSTEM DEVELOPMENT

By

FARANAK NEJATI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

October 2019

COPYRIGHT

All material contained within the thesis, including without limitation text, logos,
icons, photographs and all other artwork, is copyright material of Universiti Putra
Malaysia unless otherwise stated. Use may be made of any material contained within
the thesis for non-commercial purposes from the copyright holder. Commercial
use of material may only be made with the express, prior, written permission of
Universiti Putra Malaysia.

Copyright ©Universiti Putra Malaysia

DEDICATION

I would like to dedicate this thesis to my loved ones including my
dependable father and my kind brother Mr. Shahram who are recently
passed away. Also, to my warm-hearted mother for her endless love and
encouragement. I love you and I appreciate your sacrifice, devotion, and
everything that you have done to me.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Doctor of Philosophy

AN APPROACH TO SUPPORT INCREMENTAL SOFTWARE
CONSTRUCTION AND VERIFICATION IN COMPONENT-BASED
SYSTEM DEVELOPMENT

By

FARANAK NEJATI

October 2019

Chairman : Professor Abdul Azim Abdul Ghani, PhD
Faculty : Computer Science and Information Technology

Component-based System Development (CBSD) is a promising way of thinking or
philosophy to reduce the cost and time of software system development. Moreover,
CBSD is able to tame the complexity of today’s software systems development while
the quality is guaranteed. However, supporting correctness and building trust in
CBSD are of great importance to detect errors as early as they appear.

It is commonly acknowledged that formal specification and verification methods are
reliable methods that are able to offer fundamental aid to reveal errors and increase
confidence in designing software systems. One of the approaches to verify systems is
model checking. It is a brute-force verification method which is able to automatically
and systematically analyze the state space and formal properties of a given system
to discover hidden faults. However, it is limited by State Space Explosion (SSE).
The amount of State Space (SS) of a given system tends to increase dramatically and
quickly exceed the memory capacity even for a small system.

Many techniques and approaches have been proposed to deal with SSE. They com-
monly try to circumvent SSE after the entire system is constructed. Among them,
there is the incremental model checking which verifies systems before the construc-
tion is completed.

The incremental verification style has been introduced in model checking of CBSD
and it is considered suitable for the implicit style of model checking. However, the
explicit style is not supported before in model checking of CBSD. In this thesis, a
verification approach is proposed to support the incremental verification of CBSD
that is considered suitable for explicit model checking. The proposed approach is
provided through three main steps in preparing a component model, constructing
systems incrementally, and integrating verification into the incremental construction.

In the first step, a new component model called PUTRACOM is proposed. Compo-
nents in PUTRACOM support encapsulation in the sense that computation is com-
pletely private. It has been achieved by adding Observer/Observable Unit (OOU) in
the components. This feature leads to minimized coupling between the components
in the systems and facilitate incremental construction. To compose components new
exogenous connectors are introduced. The substantial feature of the exogenous con-
nectors is encapsulating all controls in the system. Combining the new connectors
with OOU provides a way to prevent having multiple ports and let the computation
part of components be truly encapsulated.

In the second step, an approach to construct systems incrementally is proposed. The
technique emphasizes on iteratively constructing and enhancing an approach version
of a system by adding new increments. To achieve this, the provision of new condi-
tions and rules is essential to maintain the system behavior during construction. A
set of definitions, rules and conditions are introduced to define the system’s behavior,
explore the entire system to find them, and proof their preservation in each level of
construction. The applicability of the approach is also elaborated by an example.

In the third step, an approach to integrate a verification process into the levels of
constructions is proposed. The approach is able to avoid re-verifying lower level
of constructions and lesses the state space size and verification effort via deleting
the encapsulated part of each component. The approach is specified through steps,
definitions and rules. Its applicability is verified by performing the rules on imple-
menting on a real world case study.

The utilized real world case study is CoCoME which implemented in Colored Petri
Net (CPN) Tools. It demonstrates how PUTRACOM provides a way to construct
encapsulated components, control interactions between them by new connectors, in-
crementally construct and verify systems, and reduce verification efforts. The re-
sults indicate that the proposed technique can reduce the amount of state space to
be checked in the component-based development. Consequently, the reduction of
the state space leads to reduce the amount of execution time during the verification
process. Moreover, the counterexamples can be found as early as it appears.

ii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENDEKATAN UNTUK MENYOKONG PENOKOKAN
PEMBINAAN DAN PENGESAHAN PERISIAN DALAM
PEMBANGUNAN PERISIAN BERASASKAN KOMPONEN

Oleh
FARANAK NEJATI
Oktober 2019
Pengerusi : Profesor Abdul Azim Abdul Ghani, PhD
Fakulti : Sains Komputer dan Teknologi Maklumat

Pembangunan sistem berasaskan komponen (PSBK) merupakan cara pemikiran atau
falsafah yang dapat memberi harapan untuk mengurangkan kos dan masa pemban-
gunan sistem perisian. Di samping itu, PSBK berupaya mengurangkan kerumitan
pembangunan sistem perisian masakini sementara itu kualiti adalah terjamin. Walau
bagaimanapun, menyokong kebenaran dan meningkatkan keyakinan dalam PSBK
sangat penting untuk mengesan ralat seawal mungkin pada masa ianya muncul.

Diketahui secara umum bahawa spesifikasi formal dan kaedah pengesahan adalah
kaedah yang boleh dipercayai yang dapat menawarkan bantuan asas untuk
mendedahkan ralat dan meningkatkan keyakinan dalam mereka bentuk sistem
perisian. Salah satu pendekatan untuk mengesah sistem adalah penyemakan model.
Ianya dikenali sebagai kaedah pengesahan daya kasar yang secara automatik dan
sistematik dapat menganalisis ruang keadaan dan sifat formal sesuatu sistem un-
tuk mengesan kesalahan yang tersembunyi. Walau bagaimanapun, ia terhad oleh
masalah yang dipanggil Ledakan Ruang Keadaan (LRK). Amaun ruang keadaan
sesuatu sistem cenderung untuk meningkat secara dramatik dan cepat melebihi kap-
asiti memori walaupun untuk sistem yang kecil.

Banyak teknik dan pendekatan telah dicadang untuk menangani LRK. Mereka bi-

iii

asanya cuba memintasi LRK selepas keseluruhan sistem dibina. Di antara mereka
adalah penyemakan model secara penokokan yang mengesah sistem sebelum pembi-
naan dilengkapkan. Stail pengesahan penokokan telah diperkenalkan dalam penye-
makan model PSBK dan ianya dianggap sesuai untuk penyemakan model stail im-
plisit. Walau bagaimanapun, stail eksplisit tidak disokong sebelum ini dalam penye-
makan model PSBK. Dalam tesis ini, satu pendekatan pengesahan di cadangkan
untuk menyokong penokokan pengesahan PSBK yang dianggap sesuai untuk penye-
makan model eksplisit. Pendekatan cadangan disediakan melalui tiga langkah utama
iaitu menyediakan model komponen, pendekatan membina sistem secara penokokan,
dan pendekatan untuk menintegrasikan verifikasi ke dalam pembinaan penokokan.

Dalam langkah pertama, satu model komponen baharu dipanggil PUTRACOM di-
cadangkan. Komponen dalam PUTRACOM menyokong pengkapsulan dengan erti
bahawa komputasi adalah bersifat peribadi sepenuhnya. lanya telah dicapai den-
gan menambah Observer/Observable unit (OOU) dalam komponen. Ciri ini mengu-
rangkan kebergantungan di antara komponen dalam sistem dan memudahkan pem-
binaan penokokan. Untuk menggubah komponen, penyambung eksogen baharu
diperkenalkan. Ciri utama penyambung eksogen tersebut adalah mengkapsulkan
semua kawalan dalam sistem. Menggabung penyambung baharu tersebut dengan
OOU menyediakan cara untuk mengelak daripada mempunyai port berbilang dan
membolehkan bahagian komputasi komponen betul-betul dikapsulkan.

Dalam langkah kedua, satu pendekatan untuk membina sistem secara penokokan
telah dicadangkan. Pendekatan ini menekankan pembinaan secara iteratif dan mem-
pertingkatkan versi sistem yang tidak lengkap dengan menambah tokokan baharu.
Untuk mencapai yang tersebut, penyediaan syarat dan peraturan baharu adalah pent-
ing untuk mengekal tingkah laku sistem semasa pembinaan. Satu set takrifan, perat-
uran, dan syarat diperkenalkan untuk mentakrif tingkah laku sistem, menjelajah selu-
ruh sistem untuk mencari mereka, dan membukti pengekalan mereka dalam setiap
peringkat pembinaan. Kebolehgunaan pendekatan ini di huraikan dengan contoh.

Dalam langkah ketiga, satu pendekatan untuk mengintegrasi proses pengesahan ke
dalam peringkat pembinaan dicadangkan. Pendekatan ini dapat mengelak pengesa-
han berulang di peringkat bawah pembinaan dan mengurangkan saiz ruang keadaan
dan usaha pengesahan dengan cara menghapus bahagian dikapsulkan bagi setiap
komponen. Pendekatan ini dinyatakan melalui langkah, takrifan, dan peraturan. Ke-
bolehgunaannya disahkan dengan melaksanakan peraturan ke atas implementasi ka-
jian kes dunia sebenar.

Kajian kes dunia sebenar yang digunakan ialah CoCoME yang diimplemen dalam
Colored Petri Net (CPN) Tools. Ia mendemonstrasi bagaimana PUTRACOM
menyediakan cara untuk membina komponen dikapsulkan, kawal interaksi di an-
tara mereka melalui penyambung baharu, membina dan mengesah sistem secara
menokok, dan mengurangkan usaha pengesahan. Keputusan menunjukkan pen-

v

dekatan cadangan boleh mengurangkan amaun ruang keadaan yang disemak dalam
pembangunan berasaskan komponen. Akibatnya, pengurangan ruang keadaan mem-
bawa kepada pengurangan amaun masa pelaksanaan semasa proses pengesahan.
Tambahan, counterexample dapat dijumpai seawal ianya muncul.

ACKNOWLEDGEMENTS

Firstly, I am greatly thankful to God for the well-being and strength that is necessi-
tated for the accomplishment of this journey. Then, I would like to offer my most
earnest and deepest thanks to my supervisor Prof. Abdul Azim Abd Ghani that all his
continuous support, inspiration, immense knowledge and guidance during this Ph.D
journey is invaluable. He rather than just indicating the direction actually gave me
motivation, sound advises, true guides and lots of unique ideas. I am honored to take
my PhD under his supervision as I would never imagine to find a better supervisor
than him. Thanks for believing in me.

I am thankful to my lovely and kind co-supervisor Prof. Azmi Jaafar for constructive
critics and supports that I received from him. I would like to express my very sincere
gratitude to my co-supervisor Dr. Ng Keng Yap for his enthusiasm, wide knowledge
and friendliness during this journey. For his patient and precious points that he pro-
vides me in our long discussion sessions. His hard questions always motivate me to
think and widen the research in many aspects.

I must offer my very deep gratitude to my generous and kind parents, brothers and
family to providing such unfailing support throughout my life. Last but not the least,
I would like to thank Sina who has been a constant source of motivation, kindness
and support.

Finally, I also thank Malaysia and Universiti Putra Malasia for it hospitality, geniality
and friendly memories.

vi

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been
accepted as fulfilment of the requirement for the degree of Doctor of Philosophy.

The members of the Supervisory Committee were as follows:

Abdul Azim Abdul Ghani, PhD

Professor

Faculty of Computer Science and Information Technology
Universiti Putra Malaysia

(Chairperson)

Azmi Jaafar, PhD

Assosiate Professor

Faculty of Computer Science and Information Technology
Universiti Putra Malaysia

(Member)

Ng Keng Yap, PhD

Senior Lecturer

Faculty of Computer Science and Information Technology
Universiti Putra Malaysia

(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean

School of Graduate Studies
Universiti Putra Malaysia

Date:

viii

Declaration by graduate student

I hereby confirm that:

Signature: Date:

this thesis is my original work;

quotations, illustrations and citations have been duly referenced;

this thesis has not been submitted previously or concurrently for any other degree
at any other institutions;

intellectual property from the thesis and copyright of thesis are fully-owned by
Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Re-
search) Rules 2012;

written permission must be obtained from supervisor and the office of Deputy
Vice-Chancellor (Research and Innovation) before thesis is published (in the form
of written, printed or in electronic form) including books, journals, modules, pro-
ceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture
notes, learning modules or any other materials as stated in the Universiti Putra
Malaysia (Research) Rules 2012;

there is no plagiarism or data falsification/fabrication in the thesis, and schol-
arly integrity is upheld as according to the Universiti Putra Malaysia (Graduate
Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Re-
search) Rules 2012. The thesis has undergone plagiarism detection software.

Name and Matric No: Faranak Nejati, GS40996

iX

Declaration by Members of Supervisory Committee

This is to confirm that:

e the research conducted and the writing of this thesis was under our supervision;
e supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate
Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:
Name of Chairman of Supervisory Committee
Professor Abdul Azim Abdul Ghani, PhD

Signature:
Name of Member of Supervisory Committee
Associate Professor Azmi Jaafar, PhD

Signature:
Name of Member of Supervisory Committee
Dr. Ng Keng Yap, PhD

TABLE OF CONTENTS

ABSTRACT

ABSTRAK
ACKNOWLEDGEMENTS
APPROVAL
DECLARATION

LIST OF TABLES

LIST OF FIGURES

LIST OF ABBREVIATIONS

CHAPTER
1 INTRODUCTION

1.1
1.2
1.3
1.4
1.5
1.6
1.7

Motivation

Problem Statement

Research Questions

Research Objectives

Summary of Research Contributions
Research Scope

Thesis Structure

2 BACKGROUND AND LITERATURE REVIEW

2.1
2.2
23

24

25

Introduction
Terminology
Techniques for Handling State Space Explosion
2.3.1 Memory Handling
2.3.2 Heuristic and Probabilistic Reasoning
2.3.3 Scaling Down the State Space
2.3.4 Compositional Verification
2.3.5 Comparison
Component-Based Software Development
24.1 Exogenous-Based Component Models
2.4.2 Incremental Construction in Component-Based De-
velopment
Handling State Space Explosion in Component-Based Sys-
tem Development

X1

Page

iil
vi
vii
X
XV
XVi

XVvii

N O O 0 N = =

15
15
16
20
21
24
27
37
40
42
42

43

44

2.6 Formal Specification 50

2.6.1 Communication Sequential Processes 51
2.6.2 Reactive Transition System (RTS) 52
2.7 Verification Tools 53
2.8 The Most Relevant Component Model 54
2.9 Summary 56
RESEARCH METHODOLOGY 58
3.1 Introduction 58
3.2 Research Operational Framework 59
3.3 Methodology 60
3.3.1 The Proposed Component Model 61
3.3.2 The Incremental Construction Approach 65
3.3.3 The Incremental Verification Approach 67
3.4 Evaluating the Applicability of the Proposed Approach 68
3.5 Tools 71
3.6 Summary 72

A NEW CONCURRENT COMPONENT MODEL WITH EX-

OGENOUS CONNECTORS 73
4.1 Introduction 73
4.2 Formal Specification of Atomic Components 73
4.3 Formal Specification of Connectors, Interactions 80
4.3.1 Connectors 80
4.3.2 Type of Connectors 82
4.3.3 Interactions 87
4.4 Composition Mechanism 91
4.5 Example 94
4.6 Summary 97
THE INCREMENTAL CONSTRUCTION 99
5.1 Introduction 99
5.2 Specification of Increments 100
5.3 Specification of Connectors to Compose Increments 103
5.4 Specifying Rules to Assist Behavior Preservation 105
5.4.1 Trace Sequence and Observable Trace Sequence 105
5.4.2 Observable Reactive Transition (ORTS) 106
5.4.3 Alternating Refinement Relation (ARR) 106
5.5 Incremental Construction and Behavior Preservation 108
5.5.1 Definition of Incremental Construction 108

5.5.2 Preservation of System’s Behavior 109

Xii

6

7

8

5.6 Summary

THE INCREMENTAL VERIFICATION
6.1 Introduction
6.1.1 Verification Process
6.2 State Space Generation
6.2.1 Steps of Generating State Space

6.2.2 State Space Generation in PUTRACOM

6.3 Verification of the Local Properties
6.4 Verification of the Global Properties
6.5 Deadlock-freeness Preservation

6.6 Summary

SIMULATION AND EVALUATION
7.1 Introduction
7.2 Steps Toward Simulation

7.2.1 Simulating Systems Defined in PUTRACOM by

CPN Tools
7.2.2 Trace-Containment Checking

7.2.3 Component Deadlock-Freedom Checking
7.2.4 Generating Observer Reactive Transition Systems

(ORTS)

7.2.5 Local Deadlock-Freedom Checking
7.2.6 Global Deadlock-Freedom Checking

7.3 Simulation

7.3.1 Applicability of the Proposed Component Model
7.3.2 Applicability of the Proposed Verification Technique

7.4 Discussion
7.5 Summary

CONCLUSION AND FUTURE WORKS
8.1 Research Contributions
8.2 Comparison to Other Works

115

117
117
117
118
118
124
126
127
129
130

132
132
135

135
135
138

139
140
141
143
143
150
157
158

159
160
163

8.2.1 Comparison to Other Works on the Component Model 163

8.2.2 Comparison to Other Works on the Incremental

Construction

8.2.3 Comparison the Most Common Verification Meth-

ods in CBSD

8.2.4 Comparison to Other Works on the Incremental

Verification

xiii

164

165

166

8.3 Limitations
8.4 Future work

REFERENCES

APPENDICES
A.1 Implementation of X-MAN Component Model
A.2 Simulation of Refrigerator Example in CPN Tools
A.3 The The Simulation Of CoCoMe in CPN Tools

BIODATA OF STUDENT
LIST OF PUBLICATIONS

X1V

167
167

169

181
182
183
184
196

197

LIST OF TABLES

Table

2.1 Explicit and implicit methods

2.2 SSE reduction methods applied in CBSD

2.3 Challenges of SSE reduction methods in component-based
verification

3.1 CSP frequently used symbols
6.1 The abbreviation of the dinning philosophers model

7.1 Results of CashDesk Line Simulation
7.2 Inventory Simulation
7.3 Cash Desk Line and Inventory Simulation

XV

Page

41
41

45
64
120

153
154
155

LIST OF FIGURES

Figure
2.1 Model checking
2.2 A kripke structure and its computation tree (Clarke et al.,

23
24
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14

3.1
32
33
34
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5.1

53

1999b)

Example of LTL operators (Clarke et al., 2011)

Example of CTL operators(Clarke et al., 2011)

An overview of SSE reduction methods

Ordering dependency (Kissmann and Hoffmann, 2014)
Bounded model checking (Spijkerman, 2008)

Some ordering results in a same state (Clarke et al., 1999a)
Mutual exclusion

Abstraction

Interdependency between components

X-MAN component model

Types of composition connectors in X-MAN (Nordin, 2013)
The control flow in X-MAN component model.

Research Operational Framework

Steps of proposing a new component model
Steps of incremental construction

Steps of incremental verification

Steps of evaluating the applicability of the proposed techniques

An atomic component
An atomic component with details

An atomic component with details for a scanner product device.

Composition of two connectors and the event fellow.
Sync connector

An async connector

Conditional connector

Sequential connector

Iterative connector

Refrigerator cooling system in PUTRACOM
Components with details in PUTRACOM
Composition of cashDesk components

Page

16

17
19
19
22
29
30
31
34
37
47
55
55
56

59
61
66
67
70

74
76
79
82
83
84
85
86
87
89
93
96

An atomic component with details for a scanner product device.103
5.2 Anatomic component with details for a scanner product device.106

Refrigerator cooling system in PUTRACOM

XVvi

111

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

7.11
7.12

Al
A2
A3
A4
AS
A.6

A7
A8
A9

Dining philosophers

Dining philosophers modeled in PUTRACOM.
First node of state space.

Second node of the state space.

General view of state space.

CPN Tools environment

Dinning philosophers

Stage 1 of incremental construction of CoCoME.

Stage 2 of incremental construction of CoCoME.

Stage 3 of incremental construction of CoCoME.

Stage 3 of incremental construction of CoCoME.

Stage 4 of incremental construction of CoCoME.
CashDesk component in Cash Desk Line

An overview of Cash Desk Line simulated in CPN Tools.
Comparison of the results of non-incremental and incremen-
tal verification

State space of CoCoME by non-incremental PUTRACOM
State space of CoCoME incremental PUTRACOM

Implementation of X-MAN component model

simulation of refrigerator tools

Composition of CashDesk and CashDeskController
PrinterConteroller Component

CashDesk GUI

Composition of Trail#1 with PrinterController and CashDesk
GUI

ScannerController Componennt

CashDeskApp Component

Composition of Trail#2 Trail#3 and Trail#4

A.10 InventoryGUI Component

A.11 InventoryCashDesk OOU

A.12 DataComponent

A.13 Composition of InventoryCashDesk and InventoryGUI with

ConnectorIF

119
121
121
122
123

133
136
145
146
147
148
149
151
152

155
156
156

182
183
184
185
186

187
188
189
190
191
192
193

194

A.14 Composition of InventoryCashDesk and Data with ConnectorIF195
A.15 Overall Composition

XVvil

196

LIST OF ABBREVIATIONS

SSE State Space Explosion

SS State Space

BIP Binary Behavioral Constraints
BBC Binary Behavioral Constraints
BDD Binary Decision Diagram

00]8) Observer/Observable Unit

CU Computational Unit

RTS Reactive Transition Systems

CSp Communication Sequential Processes
NDF Nested Depth First

/0 Input/OutputInput/Output

GA Genetic Algorithm

EA Evolutionary Algorithm

CTL Computational Tree Logic

LTL Linear Temporal Logic

COP Constructive Orbit Problem

DFS Depth First Search

SCC Strongly Connected Components
OBDD Ordering Binary Decision Diagram
LTS Label Transition Systems

NP Non-Deterministic Polynomial
RQ Research Question

CoCoME Common Component Modeling Example
CPN Colored Petri Net

Obs Observable

INC Increment

ARR Alternating Refinement Relation
TC Trace Containment

TCC Trace Containment Checking
SML Systematic Meta-model Language
GUI Graphical User Interface

XVviii

CHAPTER 1

INTRODUCTION

This thesis intents to propose an approach to support formal verification and
model checking in Component-based System Development (CBSD). This
chapter, presents the motivation behind our work, problem statement, re-
search questions, objectives, contributions, scope and thesis structure.

1.1 Motivation

Component-based system development is a promising way of thinking or phi-
losophy to reduce the expense and time of software system development.
Moreover, CBSD is able to tame the complexity of today’s software systems
development meanwhile the quality is guaranteed. The most important prin-
ciple in CBSD is to construct massive and complex systems by composing
smaller and simpler units of software (components).

Over the last five decades, the astonishing progresses made in systems and
technology have increased the scale and complexity of systems. It is fairly
evident that it also leads to a growth in the probability of errors and obstacles
sneaking into system development and construction even in CBSD. Thus, to
support correctness and build trust in CBSD, the modeling and verification of
components and their composition is fundamental.

Errors in systems are mostly serious and may lead to destructive results. A
single error can lead to the crashing of entire a system, similar to an error that
defected the Arian-5 rocket. There was a small application in Arian-5 which
was trying to assign a number of 64-bit floating point into a variable with 16-
bit space (Lions et al., 1996). This small mistake led to the catastrophic result.
There are many critical systems similar to Arian-5 that, if contain errors,
could result in a disastrous outcome such as nuclear power stations, Avionic
software, Aircraft light control, and Trac control. Another example of such
failures is the Therac-25 (Leveson et al., 1995) which was a radiation therapy

machine. Six cancer patients died as a result from the machine exposing
them to an overdose of radiation. The defect was caused by an overflow from
a one-bit counter.

Therefore, it is critical to utilize approaches that can build trust for accuracy
and the correctness of the system before it is developed. It bodes well if
design errors being detected as early as development process, “the sooner,
the better” (Baier and Katoen, 2008). Besides that, the cost of finding an
error during the early stages of the design is 50 times lower than finding it
during maintenance (Baier and Katoen, 2008).

Formal methods have great potential to verify and ensure system correctness
as early as possible.It offers more precise and effective verification techniques
based on rigorous mathematics. “Federal Aviation Authority (FAA) and Na-
tional Aeronautics and Space Administration (NASA)” reported the follow-
ing result about formal methods (Fahroo et al., 2013):

”Formal methods should be part of the education of every com-
puter scientist and software engineer, just as the appropriate
branch of applied math is a necessary part of the education of
all other engineers.”

One of the well-known approaches to formal methods is model checking
(Clarke et al., 1999b). This model is a brute-force verification method that is
able to automatically and systematically analyse the state space and formal
properties of a given system to demonstrate if its properties are completely
satisfied or not. This approach has been proposed independently by Clarke
et al. (1999b) and Queille and Sifakis (1982). The complete checks of model
checking significantly expands the rank of confidence in the system.

Compared to other approaches like simulation, model checking is further
accurate, automatic and easy to use. IBM demonstrated in one case study
involving a memory-bus adapter design, that 24% of all errors were found
with model checking, while only 40% of those defects would not possibly
be found by simulation (Abarbanel-Vinov et al., 2001; Vakili, 2016). Addi-
tionally, when a property is violated, model checking is able to produce a

counterexample for eliminating and locating the error.

Regardless of these points of interest, model checking is limited by a rather
critical problem, state space explosion (SSE) (Clarke et al., 2012). SSE inher-
ently is restricted the number of state space for a given which can check via
a model checker. Especially for concurrent systems containing interleaving
processes, the impact of SSE is higher. However, there are many promising
advantages offered by model checking that are encouraging research com-
munities to alleviate its drawbacks. Overcoming this obstacle emerged the
major direction in model checking research and as a result, a massive col-
lection of methods have been presented to remedy the problem (Rafe et al.,
2013; Groote et al., 2015; Comert and Ovatman, 2015).

The presented methods are mostly based on scaling down the state space
by abstraction (Holzmann et al., 2013), symbolic model checking (Thierry-
Mieg, 2015; Sharma and Singh, 2014), and bounded model checking (Alipour
and Groce, 2016; Phan et al., 2015). There are many pieces of research
that deal with the SSE problem by divide-and-conquer approaches (He et al.,
2016; Miiller et al., 2016; Elkader et al., 2016). Moreover, some studies uti-
lize evolutionary algorithms to explore a system’s state space in a shorter time
with providing an approximate solution to avoid the SSE problem (Yousefian
and Rahmani, 2014; Duarte et al., 2010).

Despite the fact that proposed methods in literature have enhanced model
checking in CBSD by reducing the SSE, the utilized ways for constructing
systems somehow may effectively impact the verification effort and the size
of state space. Nevertheless, there is scarcity of researches have focused on
the way of constructing a system to reduce the SSE problem. Most of the
proposed model checking methods are applied after the system construction
has completed. Despite being able to provide counterexamples which is the
hallmark feature of model checking after the whole system is built, revealing
the obstacles as early as it appears in the system even before the whole system
is constructed is more desirable.

Incremental construction and verification is one of the promising methods in
model checking for producing counterexamples as early as it appears. More-
over, the idea of incremental construction may provide a way to mitigate
verification efforts and its drawbacks.

Incremental construction can be presented as a multi-waterfall cycle of soft-
ware development which is an alternative to traditional sequence waterfall.
Mills (1976) defined the importance of the incremental development rather
than sequential waterfall as the following:

“There are dangers, too, particularly in the conduct of these [wa-
terfall] stages in sequence, and not in the iteration—i.e., that de-
velopment is done in an open-loop, rather than a closed-loop
with user feedback between iterations. The danger in the se-
quence [waterfall approach] is that the project moves from being
grand to be grandiose, and exceeds our human intellectual capa-
bilities for management and control.”

Incremental development provides a way to manage and control systems by
dealing with a smaller part of the system in each iteration and mitigates the
risks that may occur in the ’big bang” approach. It also reduces defect density
during system design (Mohagheghi, 2004). It develops systems gradually and
the verification process could be integrated with the construction from the
initial stage of development. Obviously, the lower levels of construction in
the incremental construction have a smaller amount of state space rather than
the entire system’s state space. In other words, model checking may need to
check less state space. Furthermore, the counterexamples could be revealed
as early as the system’s construction is completed.

Incremental development has various aspects with different terminologies
such as versioned development, time boxing, and etc., (Larman and Basili,
2003). However, this study uses the following definition proposed by Gilb
(1977, 1981):

”A complex system will be most successful if it is implemented
in small steps and if each step has a clear measure of success-
ful achievement as well as a “retreat” possibility to a previous
successful step upon failure. You have the opportunity of re-
ceiving some feedback from the real world before throwing in
all resources intended for a system, and you can correct possible
design errors.”

This definition emphasizes on iteratively constructing and enhancing an in-
complete version of a given system by adding new increments along with
verifying, learning, experiencing, and finding failures in each iteration. Some
requirements and changes may gradually be applied to the up-front specifica-
tion of the system to tackle design errors. However, the important question is
how a system can be incrementally constructed.

CBSD can be considered as a paradigm for constructing systems incremen-
tally (Mohagheghi, 2004; Bensalem et al., 2016; Johnson et al., 2013). In
CBSD, based on a component model, systems can be constructed by pre-
existing reusable components. The components could put together step by
step via a composition mechanism provided by the component models. Com-
position mechanism indicates the way of deploying components into the sys-
tem. In incremental construction, increments could be considered as a set of
components that are composed together by a composition mechanism itera-
tively until the entire system is constructed.

In this study, a new component model that would be able to support incre-
mental construction and verification of concurrent discrete-event systems is
presented.

1.2 Problem Statement

CBSD needs to be verified precisely by formal methods in order to find the
obstacles and produce counterexamples as early as possible. Model checking
is one of the most well-known formal methods to achieve that and build the
trust of systems. Model checking, in the first step, constructs a finite rep-
resentation of a given system. The representation is called state-space and
identifies and enumerates full feasible states of the system. In the next step, it
formulates a set of required properties and checks all the state space in order
to find a violation of those properties.

The brute-force verification of model checking significantly expands the level
of confidence in the system. However, it suffers from state space explo-
sion (SSE). SSE occurs because the amount of state space might increase
dramatically by the number of its processes. As a consequence, it exceeds

the memory capacity and the model checking process will be halted. This
greatly limits the amount of the system’s state space that can be copied by
model checking. SSE problem occurs specially when there are interleaving
processes running in concurrent systems.

In order to tackle SSE a body of techniques and methods have been pre-
sented in literature which can be categorized into five main approaches. These
includes heuristics and probabilistic, e.g. (Yousefian and Rahmani, 2014;
Duarte et al., 2010), Scaling down the state space, e.g. (Thierry-Mieg, 2015;
Phan et al., 2015; Holzmann et al., 2013) , compositional verification, e.g.
(He et al., 2016; Sun et al., 2014; Bensalem et al., 2008), memory handling,
e.g. (Wuetal., 2015; Lengauer and Mdssenbock, 2014), and bottom-up veri-
fication, e.g. (Patel et al., 2015; Johnson et al., 2013; Bensalem et al., 2016).

Although the aforementioned techniques have enhanced the model checking
of CBSD in many aspects, very rarely do studies focus on the following two
factors during verification; first, the way of system construction to reduce the
SSE impacts on model checking and secondly, systems verification before
the entire system is not completed.

Among the model checking approaches, bottom-up verification is a promis-
ing approach that is focused on the way of constructing systems and verify
the systems even if the entire system has not been constructed yet. This ap-
proach has several benefits like verifying without constructing the entire sys-
tem, integrating the verification process with system construction, and find-
ing obstacles as early as it appears. These benefits could be considered as the
promising direction of the bottom-up approach.

Two bottom-up verification methods exist in model checking which is on-the-
fly model checking and incremental model checking. The on-the-fly method
utilizes a depth-first search and creates a path of state space while verifying
it without storing in memory. Despite substantially reducing the memory
requirement, this method is very time-consuming. The amount of time will
increases exponentially to regenerate already verified states.

The other bottom-up approach called incremental model checking is based
on the idea of constructing systems gradually along with verification. The

verification process starts from a base and iteratively checks properties of the
unfinished system until the system is completed. Incremental model check-
ing fully satisfies the promising direction of the bottom-up approach of model
checking. However, there are three major factors have limited the construc-
tion and verification of systems incrementally.

Firstly, the incremental development of a system needs to be supported in the
component-based models. Unfortunately, not all state-of-the-art component-
based models supporting incremental construction. Moreover, the compo-
sition and interaction styles in the current state-of-the-art component-based
models are mostly a port-to-port connection or method-call based. It confers
complex patterns, since the number of interactions may increase dramatically
due to the number of method calls, ports, and connectors.

Second, during incremental construction, the behavior of the system must
remain unchanged. However, by adding a set of new increments in each level
of construction, the behavior of the system may be affected. Therefore, the
preservation of the system’s behavior when new increments are added is vital.

Thirdly, integrating the verification process into the level of incremental con-
struction while avoiding the re-verifying the already-verified state space from
lower levels of construction is important in identifying the errors as early as
the construction is completed. It is also saves the efforts in the model check-
ing process. Moreover, it contributes in reducing the total state space needed
to be verified by model checking. It is possible to establish such a method
and avoid the re-verifying as presented in (Bensalem et al. (2016)). However,
their method is symbolic and there is no formal method in terms of avoiding
the re-verifying the already-verified explicit state space.

In Chapter 2, a wider investigation on these limitations shall be presented
which provides further justification on these concerns.

The goal of this research is to present an approach to support incremental con-
struction and verification in CBSD. To achieve this goal, a new component-
based model with a new way of incremental construction and verification is
provided.

1.3 Research Questions

In the following, the main challenges of the research have been identified by
several research questions. These questions can be considered as a guideline
for all steps towards achieving the goal of this thesis.

1. Not all current state-of-the-art component-based models support incre-
mental construction. What are the extensions required for CBSD to
support incremental construction?

2. What are the necessary rules to construct systems incrementally in
CBSD?

3. How could the way of constructing system help in reducing the total
state space of the system?

4. How can model checking be integrated into the system design incre-
mentally to verify the system and detect the errors as soon as they ap-
pear?

5. How to avoid using the already-verified state space of the system to
reduce the verification effort?

1.4 Research Objectives

The main objective of the research reported in this thesis is focused on
proposing an approach to support incremental construction and verification
in concurrent component-based systems.

The sub objectives of this thesis are as the following:

* To propose a concurrent component model to support incremental con-
struction and verification.

* To propose an approach of construction for constructing systems in-
crementally along with preserving the system behavior and enforced
synchronization in each level of construction.

* To propose an approach to integrate verification in each level of incre-
mental construction, avoid reverifying the already-verified state space
of the systems, reduce the total size of the state space of the system and
consequently reduce the verification effort;

* To evaluate the proposed approach by demonstrating the applicability
of them on a complex real-world case study.

1.5 Summary of Research Contributions

In this study, multiple techniques and models to support model checking and
reduce the verification effort in CBSD is provided. A summary of contribu-
tions is listed below.

1. In chapter 4, a component model called PUTRACOM has been pro-
posed. The sub contributions of this component model are as follows:

* Encapsulating computation by using the concept Observer /
Observable Unit (OOU).

Components support encapsulation in the sense that computa-
tions are private. All computations occur within the component
itself and no other components have intervention which leads
to minimizing coupling in the system. This encapsulation is
achieved by equipping components with the concept Observer
/ Observable Unit (OOU). OOU is responsible for notifying,
therefore the computation part of a component does not need to
be involved in any message passing or invocation. Moreover,
OOU provides a way to prevent having multiple ports which may
lead to complex interaction patterns like what is presented in the
current state-of-the-art component models.

Encapsulating control by a new exogenous connector.

As C. E. Hewit said “one actor in an actor model is no actor”
(Hewitt et al., 2012), one component cannot react individually in
a component-based system. It must be composed in the system
and interact with other components and their computing environ-
ment. To do so, this work proposes a new exogenous connector
to compose and coordinate interactions among components. The
substantial feature of our exogenous connectors is encapsulating
controls in the system. Exogenous connectors set and coordinate
control and data. It may lets components be more encapsulated
and decoupled. The novel part of the new exogenous connectors
is that they always observe the OOU of every component sub-
scribed to them. They can observe event data from components
and coordinate its entire system without evolving components in
sending messages and data or controlling.

Multiple types of synchronization are supported.

It encompasses modeling systems with a mechanism for parallel
composition, structuring interactions involving strong synchro-
nization (handshaking), weak synchronization (broadcasting),
sequencing, conditional synchronizing, and iteration.

Developing formal notation for capturing essential compo-
nent and connectors behaviors.

It provides a description of components, their control, and com-
position. Components that are considered as a sequential individ-
ual process are presented by Reactive Transition System (RTS)

10

proposed by Jin (2004). The behavior of the components is con-
trolled and restricted by connectors that are based on compo-
sition operations expressed in Communication Sequential Pro-
cesses (CSP) by Hoare and Antony (1978).

2. In chapter 5, an approach to construct concurrent component-based
systems incrementally is proposed. The sub contributions in this ap-
proach are listed below:

* Defining incremental construction.
The definitions permits to specification of increments by Reactive
Transition Systems (RTSs) and capture visible and non-visible
behavior of increments. Increments will be added to the system
by connectors in which are specified based on Communication
Sequential Processes (CSP).

* Rules to assist behavior preservation.
This includes a set of rules to trace increments and reveal
hidden and observable parts of the increments. This is suitable
for omitting hidden part of increments, check the system’s
behavior preservation, and reduce the state space generation in
the verification phase.

* An approach to preserve the system’s behavior and enforced
synchronization in each iteration.
This includes a set of rules for adding increments in each iteration
of construction that is suitable for preserving system’s behavior.

3. In chapter 6, an approach to integrate verification process into con-
struction is proposed. It has the following sub contributions.

* A way for generating state space of the increments. This
includes a set of steps to generate state space which serves in the
verification phase.

* A way to verify the local and global properties of the incre-
ments. These rules allow to verify the hidden part of the incre-
ments as local properties and then verify the observable part of
the increments as the global properties. This is suitable for veri-
fying local properties only once and avoid reverifying them in the
next level of construction and consequently reduce verification
efforts.

11

4. In chapter 7, the applicability of the approach by using a case study is
illustrated.

1.6 Research Scope

This thesis focuses on proposing an approach to support verification in
component-based system development. The proposed approach is an incre-
mental construction and verification in concurrent discrete-event CBSD. Sup-
porting verification in terms of reducing the number of state space to avoid
of SSE problem during verification of explicit model checking. This research
focuses on explicit model checking (explained in chapter 2) because the ex-
isting incremental verification is implicit (symbolic).

It is also focuses on concurrent systems because the SSE problem occurs
when there are interleaving processes running in the systems. In sequential
systems, state space does not growing up exponentially.

Due to the fact that incremental construction cannot be applied in all current
component models, a component model called PUTRACOM is provided. It
is a component model with specific characteristics to construct and verify
systems incrementally. Enforced synchronization and deadlock-freeness are
the main properties that are checked in each level of construction when new
increments are added.

1.7 Thesis Structure

This thesis is organized in accordance with the standard template of thesis
and dissertations at University Putra Malaysia. It is organized in a manner
to provide detailed information on how the research is carried out. As the
final report of this research, this thesis consists of eight chapters as presented
below.

12

Chapter 1. presents the introduction to the background of this research. It de-
scribes the rationale for conducting this research and outlines the researcher’s
motivation, research objectives, problem statement, and research questions in
this work. The research contributions and research scope are also explained
briefly in this chapter.

Chapter 2. reviews the literature on different aspects of formal verification
and model checking methods, exogenous-based component-based design,
specification formalism, incremental construction, incremental verification.
It presents a discussion of past works relevant to this research. In this chapter,
resource materials such as journals, conference proceedings, seminar, thesis,
books, and on-line resources are used as the main references.

Chapter 3. presents the research methodology designed that has been utilized
in conducting this study. Additionally, it is also present the main concepts
related to this thesis including temporal logics and model checking, X-MAN
component model, Reactive Transition Systems (RTS) and Communication
Sequential Processes (CSP).

Chapter 4. specifies formally the definition of atomic components and their
characteristics in our proposed component model PUTRACOM, a formal
specification of composition operators, interactions, and composite compo-
nents. An example to illustrate more about the model and its applicability is
also provided.

Chapter 5. specifies formally the definition of incremental construction based
on PUTRACOM, the approach to trace increments, and preservation of the
system’s behavior. Moreover, it shows the applicability of the proposed com-
ponent model by using a case study of a real system.

Chapter 6. defines the way of generating state space of increments. The def-
inition of state space reckons on the incremental PUTRACOM presented in
previous chapters. The way of verifying systems and avoiding the reverifica-
tion of already-verified increments are also described in this chapter.

Chapter 7. presents the illustration of Colored Petri Net (CPN) Tools and
the implementation of the PUTRACOM and other techniques in CPN Tools.

13

Then, a case study called CoCoME showing the applicability of the PUTRA-
COM and incremental construction and verification is provided. The results
of the implementation based on the number of state space in each level of
construction and the time consumed is presented.

Chapter 8. presents the conclusion of the research and its limitations and
indicates potential areas for future research.

14

REFERENCES

Abarbanel-Vinov, Y., Aizenbud-Reshef, N., Beer, 1., Eisner, C., Geist, D., Heyman,
T., Reuveni, L., Rippel, E., Shitsevalov, I. and Wolfsthal, Y. (2001). On the Ef-
fective Deployment of Functional Formal Verification. Formal Methods in System
Design 19 (1): 35-44.

Alipour, M. A. and Groce, A. (2016). Bounded Model Checking and Feature Omis-
sion Diversity. arXiv preprint arXiv:1610.08020 .

Alliance, O. (2018), Open Services Gateway Initiative (OSGi).

Alur, R., Brayton, R. K., Henzinger, T. A., Qadeer, S. and Rajamani, S. K. (1997).
Partial-order Reduction in Symbolic State Space Exploration. In International
Conference on Computer Aided Verification, 340-351. Springer.

Alur, R., Henzinger, T. A., Kupferman, O. and Vardi, M. Y. (1998). Alternating
Refinement Relations. In International Conference on Concurrency Theory, 163—
178. Springer.

Appel, A. W. (2004). Modern compiler implementation in C. Cambridge university
press.

Armando, A., Carbone, R. and Compagna, L. (2014). SATMC: A SAT-based Model
Checker for Security-critical Systems. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, 31-45. Springer.

Armando, A., Mantovani, J. and Platania, L. (2006). Bounded model checking of
software using SMT solvers instead of SAT solvers. In International SPIN Work-
shop on Model Checking of Software, 146—162. Springer.

Armando, A., Mantovani, J. and Platania, L. (2009). Bounded model checking of
software using SMT solvers instead of SAT solvers. International Journal on Soft-
ware Tools for Technology Transfer 11 (1): 69-83.

Arnold, A. (1994). Finite Transition Systems: Semantics of Communicating Systems.
Hertfordshire, UK: Prentice Hall International Ltd.

Arnold, A. and Plaice, J. (1994). Finite Transition Systems: Semantics of Communi-
cating Systems. Prentice Hall International (UK) Ltd.

Babai, L. and Luks, E. M. (1983). Canonical Labeling of Graphs. In Proceedings of
the fifteenth annual ACM symposium on Theory of computing, 171-183. ACM.

Back, R.-J. (2005). Incremental Software Construction with Refinement Diagrams.
Engineering Theories of Software Intensive Systems, NATO Science Series II:
Mathematics, Physics and Chemistry 3—46.

169

Baier, C. and Katoen, J.-P. (2008). Principles of Model Checking. MIT Press.

Barrett, C. W., Sebastiani, R., Seshia, S. A. and Tinelli, C. (2009). Satisfiability
Modulo Theories. Handbook of satisfiability 185: 825-885.

Bastian, M., Heymann, S., Jacomy, M. et al. (2009). Gephi: an Open Source Soft-
ware for Exploring and Manipulating Networks. Third international AAAI confer-
ence on weblogs and social media 8: 361-362.

Basu, A., Bozga, M. and Sifakis, J. (2006). Modeling heterogeneous real-time com-
ponents in BIP. In Fourth IEEE International Conference on Software Engineering
and Formal Methods (SEFM), 3—12. IEEE.

Ben-Ari, M. (2008). Principles of the Spin Model Checker.
”http://spinroot.com/spin/whatispin.html .

Ben-Hafaiedh, I., Graf, S. and Quinton, S. (2010). Reasoning about Safety and
Progress using Contracts. In International Conference on Formal Engineering
Methods, 436-451. Springer.

Bensalem, S., Bozga, M., Legay, A., Nguyen, T.-H., Sifakis, J. and Yan, R. (2016).
Component-based Verification Using Incremental Design and Invariants. Software
& Systems Modeling 15 (2): 427-451.

Bensalem, S., Bozga, M., Nguyen, T.-H. and Sifakis, J. (2010)a. Compositional Ver-
ification for Component-based Systems and Application. IET software 4 (3): 181—
193.

Bensalem, S., Bozga, M., Sifakis, J. and Nguyen, T.-H. (2008). Compositional Veri-
fication for Component-based Systems and Application. In International Sympo-
sium on Automated Technology for Verification and Analysis, 64—79. Springer.

Bensalem, S., Griesmayer, A., Legay, A., Nguyen, T.-H., Sifakis, J. and Yan, R.
(2011). D-finder 2: Towards efficient correctness of incremental design. In Nasa
Formal Methods Symposium, 453-458. Springer.

Bensalem, S., Legay, A., Nguyen, T.-H., Sifakis, J. and Yan, R. (2010)b. Incremental
invariant generation for compositional design. In Theoretical Aspects of Software
Engineering (TASE), 4th IEEE International Symposium, 157-167. IEEE.

Berezin, S., Campos, S. and Clarke, E. M. (1998), In Compositionality: The Sig-
nificant Difference, In Compositionality: The Significant Difference, 81-102,
Springer, 81-102.

Biere, A., Cimatti, A., Clarke, E. and Zhu, Y. (1999)a. Symbolic model checking
without BDDs. In International conference on tools and algorithms for the con-
struction and analysis of systems, 193-207. Springer.

170

Biere, A., Cimatti, A., Clarke, E. M., Strichman, O. and Zhu, Y. (2003). Bounded
Model Checking. Advances in computers 58: 117-148.

Biere, A., Clarke, E., Raimi, R. and Zhu, Y. (1999)b. Verifying Safety Properties of
a PowerPC- Microprocessor Using Symbolic Model Checking without BDDs. In
International Conference on Computer Aided Verification, 60—71. Springer.

Bollig, B. (2014). On the width of Ordered Binary Decision Diagrams. In Inter-
national Conference on Combinatorial Optimization and Applications, 444—458.
Springer.

Bollig, B. and Wegener, 1. (1996). Improving the variable ordering of OBDDs is
NP-complete. IEEE Transactions on Computers 45 (9): 993—-1002.

Brookes, S. D., Hoare, C. A. and Roscoe, A. W. (1984). A theory of communicating
sequential processes. Journal of the ACM (JACM) 31 (3): 560-599.

Bryant, R. E. (1986). Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers 100 (8): 677-691.

Bryant, R. E. (1992). Symbolic Boolean Manipulation with Ordered Binary-decision
Diagrams. ACM Computing Surveys (CSUR) 24 (3): 293-318.

Burch, J., Clarke, E. M. and Long, D. (1991). Symbolic Model Checking with Parti-
tioned Transition Relations. Computer Science Department 435.

Burch, J. R., Clarke, E. M., McMillan, K. L. and Dill, D. L. (1990). Sequential
Circuit Verification using Model Checking. In Design Automation Conference,
1990. Proceedings., 27th ACM/IEEE, 46-51. IEEE.

Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L. and Hwang, L.-J. (1992).
Symbolic Model Checking: 1020 States and Beyond. Information and computa-
tion 98 (2): 142-170.

Bures, T., Carlson, J., Crnkovic, L., Sentilles, S. and Vulgarakis, A. (2010). Pro-
Com—the Progress Component Model Reference Manual. Malardalen University,
Vasteras, Sweden.

Chen, T., Chilton, C., Jonsson, B. and Kwiatkowska, M. (2012). A Compositional
Specification Theory for Component Behaviours. In European Symposium on
Programming, 148-168. Springer.

Chen, Y.-F, Clarke, E. M., Farzan, A., Tsai, M.-H., Tsay, Y.-K. and Wang, B.-
Y. (2010). Automated assume-guarantee reasoning through implicit learning. In
International Conference on Computer Aided Verification, 511-526. Springer.

Chilton, C., Jonsson, B. and Kwiatkowska, M. (2012). Assume-guarantee Reasoning
for Safe Component Behaviours. In International Workshop on Formal Aspects of
Component Software, 92—109. Springer.

171

Chilton, C. J. (2013). An algebraic theory of componentised interaction. PhD thesis,
University of Oxford, UK.

Christensen, S. and Mortensen, K. H. (1996). Design/cpn ask-ctl manual. University
of Aarhus.

Cimatti, A., Clarke, E., Giunchiglia, F. and Roveri, M. (2000). NuSMV: a new
symbolic model checker. International Journal on Software Tools for Technology
Transfer 2 (4): 410-425.

Cimatti, A., Clarke, E., Giunchiglia, F. and Roveri, M. (2017). NuSMV: a new sym-
bolic model checker. "http://nusmv.fbk.eu” .

Cimatti, A. and Tonetta, S. (2015). Contracts-refinement Proof System for
Component-based Embedded Systems. Science of Computer Programming 97:
333-348.

Clarke, E., Biere, A., Raimi, R. and Zhu, Y. (2001). Bounded Model Checking using
Satisfiability Solving. Formal methods in system design 19 (1): 7-34.

Clarke, E. M., E. E. A. and Sistla, A. P. (1986). Automatic Verification of Finite-state
Concurrent Systems Using Temporal Logic Specifications. ACM Transactions on
Programming Languages and Systems (TOPLAS) 8 (2): 244-263.

Clarke, E. M. (2008). The Birth of Model Checking, 1-26. Berlin, Heidelberg:
Springer Berlin Heidelberg.

Clarke, E. M., Emerson, E. A., Jha, S. and Sistla, A. P. (1998). Symmetry Reductions
in Model Checking. In International Conference on Computer Aided Verification,
147-158. Springer.

Clarke, E. M., Grumberg, O. and Long, D. E. (1994). Model Checking and Ab-
straction. ACM transactions on Programming Languages and Systems (TOPLAS)
16 (5): 1512-1542.

Clarke, E. M., Grumberg, O., Minea, M. and Peled, D. (1999)a. State space reduc-
tion using partial order techniques. International Journal on Software Tools for
Technology Transfer 2 (3): 279-287.

Clarke, E. M., Grumberg, O. and Peled, D. (1999)b. Model Checking. MIT Press.

Clarke, E. M., Klieber, W., Novacek, M. and Zuliani, P. (2011). Model Checking and
the State Explosion Problem. In LASER Summer School on Software Engineering,
1-30. Springer.

Clarke, E. M., Klieber, W., Novacek, M. and Zuliani, P. (2012), In Tools for Practical
Software Verification, In Tools for Practical Software Verification, 1-30, Springer,
1-30.

172

Cobleigh, J. M., Avrunin, G. S. and Clarke, L. A. (2006). Breaking up is Hard to
do: an Investigation of Decomposition for Assume-guarantee Reasoning. In Pro-
ceedings of the 2006 international symposium on Software testing and analysis,
97-108. ACM.

Cobleigh, J. M., Avrunin, G. S. and Clarke, L. A. (2008). Breaking up is Hard to do:
An Evaluation of Automated Assume-guarantee Reasoning. ACM Transactions
on Software Engineering and Methodology (TOSEM) 17 (2): 7.

Comert, F. and Ovatman, T. (2015). Attacking State Space Explosion Mroblem in
Model Checking Embedded TV Software. IEEE Transactions on Consumer Elec-
tronics 61 (4): 572-579.

Cordeiro, L., Fischer, B. and Marques-Silva, J. (2012). SMT-based bounded model
checking for embedded ANSI-C software. IEEE Transactions on Software Engi-
neering 38 (4): 957-974.

Cormen, T. H. (2009). Introduction to Algorithms. MIT Press.

Cousot, P. (1996). Abstract Interpretation. ACM Computing Surveys (CSUR) 28 (2):
324-328.

Crnkovic, 1., Sentilles, S., Vulgarakis, A. and Chaudron, M. R. (2011). A Classifica-
tion Framework for Software Component Models. IEEE Transactions on Software
Engineering 37 (5): 593-615.

De Alfaro, L. and Henzinger, T. A. (2001). Interface Automata. In ACM SIGSOFT
Software Engineering Notes, 109-120. ACM.

De-Meuter, W. and Roman, G. (2011). Coordination Models and Languages. 1st
edn., , vol. 6721. Springer-Verlag Berlin Heidelberg.

Dillinger, P. C. and Manolios, P. (2004). Bloom Filters in Probabilistic Verification.
In International Conference on Formal Methods in Computer-Aided Design, 367—
381. Springer.

Duarte, L. M., Foss, L., Wagner, F. R. and Heimfarth, T. (2010), In Distributed, par-
allel and biologically inspired systems, In Distributed, parallel and biologically
inspired systems, 221-232, Springer, 221-232.

Elio, R., Hoover, J., Nikolaidis, I., Salavatipour, M., Stewart, L. and Wong, K.
(2011), About Computing Science Research Methodology.

Elkader, K. A., Grumberg, O., Pasdreanu, C. S. and Shoham, S. (2015). Automated

Circular Assume-Guarantee Reasoning. In International Symposium on Formal
Methods, 23-39. Springer.

173

Elkader, K. A., Grumberg, O., Pasdareanu, C. S. and Shoham, S. (2016). Automated
Circular Assume-Guarantee Reasoning with N-way Decomposition and Alphabet
Refinement. In International Conference on Computer Aided Verification, 329—
351. Springer.

Fahroo, F., Wang, L. Y., Yin, G. et al. (2013). Recent Advances in Research on
Unmanned Aerial Vehicles. , vol. 444. Springer.

Flanagan, C. and Godefroid, P. (2005). Dynamic Partial-order Reduction for Model
Checking Software, 110-121. ACM.

Gamukama, E. A. and Popov, O. (2008). The Level of Scientific Methods Use in
Computing Research Programs. In 31st International Convention on Information
and Communication Technology, 176-183.

Gastin, P., Moro, P. and Zeitoun, M. (2004). Minimization of Counterexamples in
SPIN. In International SPIN Workshop on Model Checking of Software, 92—108.
Springer.

Geldenhuys, J. and Valmari, A. (2004). Tarjan’s Algorithm makes on-the-fly LTL
Verification more Efficient. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, 205-219. Springer.

Gibson-Robinson, T., Armstrong, P., Boulgakov, A. and Roscoe, A. (2016). FDR: a
parallel refinement checker for CSP. International Journal on Software Tools for
Technology Transfer 18 (2): 149-167.

Gilb, T. (1977). Software metrics. Winthrop Publishers.

Gilb, T. (1981). Evolutionary Development. ACM SIGSOFT Software Engineering
Notes 6 (2): 17-17.

Gilles, K. (1974). The Semantics of a Simple Language for Parallel Programming.
In Information Processing T74: 471-475.

Girault, C. and Valk, R. (2013). Petri Nets for Systems Engineering: a Guide to
Modeling, Verification, and Applications. Springer Science & Business Media.

Godefroid, P. (1990). Using Partial Orders to Improve Automatic Verification Meth-
ods. In International Conference on Computer Aided Verification, 176-185.
Springer.

Godefroid, P. and Khurshid, S. (2002). Exploring Very Large State Spaces using
Genetic Algorithms. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, 266-280. Springer.

Groote, J. F., Kouters, T. W. and Osaiweran, A. (2015). Specification Guidelines
to Avoid the State Space Explosion Problem. Software Testing, Verification and
Reliability 25 (1): 4-33.

174

Hassani, H. (2017). Research Methods in Computer Science: the Challenges and
Issues. arXiv preprint arXiv:1703.04080 .

He, F., Mao, S. and Wang, B.-Y. (2016). Learning-Based Assume-Guarantee Regres-
sion Verification. In International Conference on Computer Aided Verification,
310-328. Springer.

He, N., Kroening, D., Wahl, T., Lau, K.-K., Taweel, F., Tran, C., Riimmer, P. and
Sharma, S. (2012). Component-based Design and Verification in X-MAN. Proc.
Embedded Real Time Software and Systems .

Herold, S., Klus, H., Welsch, Y., Deiters, C., Rausch, A., Reussner, R., Krogmann,
K., Koziolek, H., Mirandola, R., Hummel, B. et al. (2008), In The Common Com-
ponent Modeling Example, In The Common Component Modeling Example, 16—
53, Springer, 16-53.

Hewitt, C., Meijer and Szyperski (2012), The Actor Model.

Hoang-Minh, D., Le-Khanh, T. and Hung, P. N. (2013). An Assume-guarantee
Model Checker for Component-based Systems. In Computing and Communica-
tion Technologies, Research, Innovation, and Vision for the Future (RIVF), IEEE
RIVF International Conference, 22-26. IEEE.

Hoare, C. and Antony, R. (1978). Communicating Sequential Processes. the Origin
of Concurrent Programming .

Holzmann, G. J. (1988). An Improved Protocol Reachability Analysis Technique.
Software: Practice and Experience 18 (2): 137-161.

Holzmann, G. J. (1997). The model checker SPIN. IEEE Transactions on software
engineering 23 (5): 279-295.

Holzmann, G. J. (1998). An Analysis of Bitstate Hashing. Formal methods in system
design 13 (3): 289-307.

Holzmann, G. J., Godefroid, P. and Pirottin, D. (2013). Coverage Preserving Reduc-
tion Strategies for Reachability Analysis. In Proc. 12th IFIP WG, 349-363.

Howar, F., Kahsai, T., Gurfinkel, A. and Tinelli, C. (2015). Trusting Outsourced
Components in Flight Critical Systems. AIAA Infotech, Aerospace 1868.

Iosif, R. and Sisto, R. (2000). Using Garbage Collection in Model Checking. In
International SPIN Workshop on Model Checking of Software, 20-33. Springer.

Isazadeh, A. and Karimpour, J. (2009). A new Formalism for Mathematical Descrip-

tion and Verification of Component-based Systems. The Journal of Supercomput-
ing 49 (3): 334-353.

175

Ismail, H. 1., Bessa, 1. V., Cordeiro, L. C., de Lima Filho, E. B. and Chaves Filho,
J. E. (2015). DSVerifier: a Bounded Model Checking Tool for Digital Systems.
Model Checking Software 126—131.

Jensen, K. (2013). Coloured Petri Nets: Basic Concepts, Analysis Methods and Prac-
tical Use. , vol. 1. Springer Science & Business Media.

Jensen, K. and Kristensen, L. M. (2009)a. Coloured Petri Nets: Modelling and Vali-
dation of Concurrent Systems. Springer Science & Business Media.

Jensen, K. and Kristensen, L. M. (2009)b. CPN ML Programming, 43-77. Springer.

Jin, Y. (2004). Compositional Verification of Component-based Heterogeneous Sys-
tems. PhD thesis, Adelaide University, Australia.

Johnson, K., Calinescu, R. and Kikuchi, S. (2013). An Incremental Verification
Framework for Component-based Software Systems. In Proceedings of the 16th

International ACM Sigsoft symposium on Component-based software engineer-
ing, 33-42. ACM.

Jongmans, S.-S. T., Santini, F. and Arbab, F. (2015). Partially Distributed Coordina-
tion with Reo and Constraint Automata. Service Oriented Computing and Appli-
cations 9 (3-4): 311-339.

Josephs, M. B. (1992). Receptive Process Theory. Acta Informatica 29 (1): 17-31.

Kahn, G. and MacQueen, D. (1976). Coroutines and Networks of Parallel Processes.
Hal-Inria .

Kanters, O., Verhoef, C. and Schut, M. (2010). QoS Analysis by Simulation in Reo.
Citeseer .

Kautz, H. A., Selman, B. et al. (1992). Planning as Satisfiability. In ECAI, 359-363.
Citeseer.

Kissmann, P. and Hoffmann, J. (2014). BDD Ordering Heuristics for Classical Plan-
ning. Journal of Artificial Intelligence Research 51: 779-804.

Kwiatkowska, M., Norman, G. and Parker, D. (2011)a. PRISM 4.0: Verification
of Probabilistic Real-time Systems. In Proc. 23rd International Conference on
Computer Aided Verification (CAV’11) (eds. G. Gopalakrishnan and S. Qadeer),
585-591. Springer.

Kwiatkowska, M., Norman, G. and Parker, D. (2011)b. PRISM 4.0: Verification
of Probabilistic Real-time Systems. In Proc. 23rd International Conference on
Computer Aided Verification (CAV’11) (eds. G. Gopalakrishnan and S. Qadeer),
585-591. Springer.

176

Lamborn, P. and Hansen, E. A. (2008). Layered Duplicate Detection in External-
memory Model Checking. In International SPIN Workshop on Model Checking
of Software, 160-175. Springer.

Larman, C. and Basili, V. R. (2003). Iterative and Incremental Developments: a Brief
History. Computer 36 (6): 47-56.

Latorre-Biel, J.-1. and Jiménez-Macias, E. (2018), In Simulation Modelling Practice
and Theory, In Simulation Modelling Practice and Theory, IntechOpen.

Lau, K.-K., Ng, K.-Y,, Rana, T. and Tran, C. M. (2012). Incremental Construction
of Component-based Systems. In Proceedings of the 15th ACM SIGSOFT sympo-
sium on Component Based Software Engineering, 41-50. ACM.

Lau, K.-K., Nordin, A. and Ng, K.-Y. (2011). Extracting Elements of Component-
based Systems from Natural Language Requirements. In Software Engineer-
ing and Advanced Applications (SEAA), 37th EUROMICRO Conference, 39-46.
IEEE.

Lau, K.-K., Ornaghi, M. and Wang, Z. (2006). A Software Component Model and
its Preliminary Formalisation. In Formal Methods for Components and Objects,
1-21. Springer.

Lau, K.-K. and Rana, T. (2010). A Taxonomy of Software Composition Mechanisms.
In Software Engineering and Advanced Applications (SEAA), 36th EUROMICRO
Conference, 102—110. IEEE.

Lau, K.-K. and Tran, C. M. (2012). X-MAN: An MDE Tool for Component-
based System Development. In Software Engineering and Advanced Applications
(SEAA), 38th EUROMICRO Conference, 158—165. IEEE.

Lau, K.-K. and Tran, C. M. (2019), X-MAN Tool Set.

Lau, K.-K. and Wang, Z. (2005). A Taxonomy of Software Component Models.
In Software Engineering and Advanced Applications. 31st EUROMICRO Confer-
ence, 88-95. IEEE.

Lengauer, P. and Mossenbock, H. (2014). The Taming of the Shrew: Increasing Per-
formance by Automatic Parameter Tuning for Java Garbage Collectors. In Pro-
ceedings of the 5th ACM/SPEC international conference on Performance engi-
neering, 111-122. ACM.

Lerda, F. and Visser, W. (2001). Addressing Dynamic Issues of Program Model
Checking. In International SPIN Workshop on Model Checking of Software, 80—
102. Springer.

Leveson, N. et al. (1995). Medical devices: The therac-25. Appendix of: Safeware:
System Safety and Computers .

177

Lions, J.-L. et al. (1996). Flight 501 failure .

Liu, G. and Jiang, C. (2016). Petri Net Based Model Checking for the Collaborative-
ness of Multiple Processes Systems. In Networking, Sensing, and Control (IC-
NSC), 2016 IEEE 13th International Conference on, 1-6. IEEE.

Martens, M., Minnameier, C. and Majster-Cederbaum, M. (2006). Deciding liveness
in component-based systems is np-hard. Manuskripte/Reihe Informatik 6.

McHaney, R. (2009). Understanding computer simulation. Bookboon.

McMillan, K. L. and Checking, S. M. (1993). an Approach to the State Explosion
Problem. PhD thesis, Carnegie Mellon University, CMU-CS-92-131.

Meulen, M. G., Stappers, F. P. and Willemse, T. A. (2009). Breadth-bounded model
checking. Technische Universiteit Eindhoven .

Might, M., Chambers, B. and Shivers, O. (2007). Model Checking via I'CFA. In
International Workshop on Verification, Model Checking, and Abstract Interpre-
tation, 59-73. Springer.

Mills, H. D. (1976). Software Development. IEEE Transactions on Software Engi-
neering (4): 265-273.

Milner, R. (1989). Communication and Concurrency. , vol. 84. Prentice Hall New
York.

Minnameier, C. (2006). Deadlock-detection in component-based systems is np-hard.
Universitiat Mannheim/Institut fiir Informatik.

Mohagheghi, P. (2004). Impacts of Software Reuse and Incremental Development
on the Quality of Large Systems. Fakultet for informasjonsteknologi, matematikk
og elektroteknikk .

Miiller, A., Mitsch, S., Retschitzegger, W., Schwinger, W. and Platzer, A. (2016). A
Component-based Approach to Hybrid Systems Safety Verification. In Interna-
tional Conference on Integrated Formal Methods, 441-456. Springer.

Nam, W. and Alur, R. (2006). Learning-based symbolic assume-guarantee reasoning
with automatic decomposition. In International Symposium on Automated Tech-
nology for Verification and Analysis, 170-185. Springer.

Nordin, A. (2013). Constructing Component-based Systems Directly from Require-
ments using Incremental Composition. PhD thesis, University of Manchester.

Owen, D., Menzies, T., Heimdahl, M. and Gao, J. (2003). On the advantages of
approximate vs. complete verification: Bigger models, faster, less memory, usu-
ally accurate. In Software Engineering Workshop, 2003. Proceedings. 28th Annual
NASA Goddard, 75-81. IEEE.

178

Parizek, P. and Plasil, F. (2010). Assume-guarantee Verification of Software Compo-
nents in Sofa 2 Framework. IET software 4 (3): 210-211.

Patel, R., Patel, K. and Patel, D. (2015). On-the-Fly Symmetry Reduction of Explic-
itly Represented Probabilistic Models. In International Conference on Distributed
Computing and Internet Technology, 203-206. Springer.

Peled, D. (1994). Combining Partial Order Reductions with on-the-fly Model Check-
ing. In International Conference on Computer Aided Verification, 377-390.
Springer.

Pham, N. H., Nguyen, V. H. and KATAYAMA, T. (2010). A Minimized Assumption
Generation Method for Component-based Software Verification. IEICE Transac-
tions on Information and Systems 93 (8): 2172-2181.

Phan, Q.-S., Malacaria, P. and Pasédreanu, C. S. (2015). Concurrent Bounded Model
Checking. ACM SIGSOFT Software Engineering Notes 40 (1): 1-5.

Pnueli, A. (1985). In Transition from Global to Modular Temporal Reasoning about
Programs. Logics and models of concurrent systems 123—144.

Prasad, P., Assi, A., Harb, A. and Prasad, V. (2006). Binary Decision Diagrams: An
Improved Variable Ordering using Graph Representation of Boolean Functions.
International Journal of Computer Science 1 (1): 1-7.

Queille, J.-P. and Sifakis, J. (1982). Specification and verification of concurrent
systems in CESAR. In [International Symposium on Programming, 337-351.
Springer.

Rafe, V., Rahmani, M. and Rashidi, K. (2013). A Survey on Coping with the State
Space Explosion Problem in Model Checking. International Research Journal of
Applied and Basic Sciences .

Rausch, Andreas. Reussner, R., Mirandola, R. and Plasil, F. (2008). The Common
Component Modeling Example. Lecture notes in Computer Science 5153.

Robinson, A. J. and Voronkov, A. (2001). Handbook of Automated Reasoning. ,
vol. 1. Elsevier.

Roscoe, B. (1998). The Theory and Practice of Concurrency. University of Oxford,
Departmentof Computer Science, UK .

Schifer, T., Knapp, A. and Merz, S. (2001). Model Checking UML State Machines
and Collaborations. Electronic Notes in Theoretical Computer Science 55 (3):
357-3609.

Schwoon, S. and Esparza, J. (2005). A Note on on-the-fly Verification Algorithms.
In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, 174—190. Springer.

179

Sebastiani, R. (2007). Lazy Satisfiability Modulo Theories. Journal on Satisfiability,
Boolean Modeling and Computation 3: 141-224.

Sharma, P. K. and Singh, N. K. (2014). Improved BDD Compression by Combina-
tion of Variable Ordering Techniques. In Communications and Signal Processing
(ICCSP), International Conferences, 617-621. IEEE.

Si, Y., Sun, J., Liu, Y., Dong, J. S., Pang, J., Zhang, S. J. and Yang, X. (2014). Model
checking with fairness assumptions using PAT. Frontiers of Computer Science
8 (1): 1-16.

Somenzi, F. (2015). CUDD: CU Decision Diagram Package Tool, Release 3.0.
“http://isi. colorado. edu/” fabio/CUDD/” .

Spijkerman, W. (2008). Marking Pocket States for Bounded On-the-fly Model
Checking. semanticscholar .

Stern, U. and Dill, D. L. (1995). Improved Probabilistic Verification by Hash Com-
paction. In Advanced Research Working Conference on Correct Hardware Design
and Verification Methods, 206-224. Springer.

Stern, U. and Dill, D. L. (1996). A New Scheme for Memory-efficient Probabilistic
Verification. Formal Description Techniques IX 333-348.

Sun, C., Xi, N., Li, J., Yao, Q. and Ma, J. (2014). Verifying Secure Interface Compo-
sition for Component-Based System Designs. In 2014 215t Asia-Pacific Software
Engineering Conference, 359-366. IEEE.

Tarjan, R. (1972). Depth-first Search and Linear Graph Algorithms. SIAM journal
on computing 1 (2): 146-160.

Tavolato, P. and Vogt, F. (2012). Integrating Formal Methods into Computer Science
Curricula at a University of Applied Sciences. In TLA+ workshop at the 18th
international symposium on Formal Methods, Paris, Frankreich.

Thierry-Mieg, Y. (2015). Symbolic Model-checking using ITS-tools. In Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems, 231-2371. Springer.

Vakili, A. (2016). Temporal Logic Model Checking as Automated Theorem Proving.
PhD thesis, University of Waterloo.

Valmari, A. (1989). Stubborn Sets for Reduced State Space Generation. In Interna-
tional Conference on Application and Theory of Petri Nets, 491-515. Springer.

Valmari, A. (1990). A Stubborn Attack on State Explosion. In International Confer-
ence on Computer Aided Verification, 156—165. Springer.

180

Van Harmelen, F., Lifschitz, V. and Porter, B. (2008). Handbook of Knowledge Rep-
resentation. , vol. 1. Elsevier.

Wetherbee, J., Nardone, M., Rathod, C. and Kodali, R. (2018). Beginning EJB in
Java EE 8: Building Applications with Enterprise JavaBeans. Apress.

Wozna-Szczes$niak, B. (2016). SAT-based Bounded Model Checking for Weighted
Deontic Interpreted Systems. Fundamenta Informaticae 143 (1-2): 173-205.

Wu, L., Huang, H., Su, K., Cai, S. and Zhang, X. (2015). An I/O Efficient Model
Checking Algorithm for Large-Scale Systems. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 23 (5): 905-915.

Yousefian, Rosa and, V. and Rahmani, M. (2014). A Heuristic Solution for Model
Checking Graph Transformation Systems. Applied Soft Computing 24: 169-180.

181

