

ENHANCING OBFUSCATION TECHNIQUE FOR PROTECTING SOURCE

CODE AGAINST SOFTWARE REVERSE ENGINEERING

ASMA MAHFOUDH

FSKTM 2020 6

i

ENHANCING OBFUSCATION TECHNIQUE FOR PROTECTING SOURCE

CODE AGAINST SOFTWARE REVERSE ENGINEERING

By

ASMA MAHFOUDH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in

Fulfilment of the Requirements for the Degree of Doctor of Philosophy

December 2019

© C
OPYRIG

HT U
PM

ii

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons,

photographs, and all other artwork, is copyright material of Universiti Putra Malaysia

unless otherwise stated. Use may be made of any material contained within the thesis for
non-commercial purposes from the copyright holder. Commercial use of material may

only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

© C
OPYRIG

HT U
PM

iii

DEDICATION

This thesis is dedicated to my father MAHFOUDH AL-HAKIMI and my son YUSUF

SULTAN

© C
OPYRIG

HT U
PM

i

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of

the requirement for the degree of Doctor of Philosophy

ENHANCING OBFUSCATION TECHNIQUE FOR PROTECTING SOURCE

CODE AGAINST SOFTWARE REVERSE ENGINEERING

By

ASMA MAHFOUDH

December 2019

Chairman : Professor Abu Bakar bin Md Sultan, PhD

Faculty : Computer Science and Information Technology

Obfuscation (Obfu) is a practice to make the programming code complicated to protect

the Intellectual Property (IP) and prevent prohibited software Reverse Engineering (RE).

Obfuscation involves transforming potentially revealing data, renaming useful classes

and variables (identifiers) names to meaningless labels or adding unused or meaningless

code to an application binary. Obfuscation is used to convert source code into a program

that works the same way but is much harder to read and understand. Obfuscation

techniques allow the programmer to customize which part of the code to be obfuscated.

Recently, obfuscation techniques were mostly used to secure the source code; however,

none of the current obfuscation techniques satisfy all obfuscation effectiveness criteria

to resist the attack of Reverse Engineering. Therefore, IT industry loses tens of billions

of dollars annually due to security attacks such as reverse engineering. The obvious

amount of lost money of victims has led to many court cases where victim and theft

claims the ownership of the program and the winner is who has a good lawyer. Many

programming languages are used for programming; Java programming language is

known to be most common due to its features, the use of this popular language increases

an attacker's ability to steal intellectual property (IP), as the source program is translated

to an intermediate format retaining most of the information such as meaningful variables

names present in source code. An attacker can easily reconstruct source code from such
intermediate formats to extract sensitive information such as proprietary algorithms

present in the software. Hence, there is a need for development of techniques and

schemes to obfuscate sensitive parts of software to protect it from reverse engineering

attacks.

In this research, we have proposed a new Hybrid Obfuscation Technique to prevent

prohibited Reverse Engineering. The proposed technique contains three approaches; first

approach is string encryption. The string encryption is about adding a mathematical

© C
OPYRIG

HT U
PM

ii

equation with arrays and loops to the strings in the code to hide the meaning. Second

approach is renaming system keywords to Unicode to increase difficulty and complexity

of the code. Third approach is transforming identifiers to junk code to hide the meaning

and increase the complexity of the code.

Empirical evaluation was conducted to evaluate the proposed Hybrid Obfuscation

Technique. It consists of experiment and interview. The experiment contains two phases;

first phase was conducted against java applications that do not use any protection to

determine the ability of reversing tools to read the compiled code. Second phase was

conducted against the proposed technique to evaluate the effectiveness of it. Interview

was conducted to get an overview of programming experts towards using Hybrid

Obfuscation Technique to prevent prohibited Reverse Engineering. The experiment of

the hybrid obfuscation technique was to test output correctness, syntax, reversed code

errors, flow test, identifiers names test, methods and classes correctness test. With these

parameters it was possible to determine the ability of the proposed technique to defend

the attack.

The proposed technique can be enhanced in the future to protect games applications and

mobile applications that are developed by java; it can improve the software development

industry. The proposed technique can be used to support many languages such as Arabic,

English, Chinese and so on. There is also a need to develop a tool that contains the three

approaches where the developer can customize the protection of the source code.

© C
OPYRIG

HT U
PM

iii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

memenuhi keperluan untuk ijazah Doktor Falsafah

MENINGKATKAN TEKNIK OBFUSCASI UNTUK MELINDUNGI KOD

SUMBER DARI KEJURUTERAAN TERBAIK PERISIAN

Oleh

ASMA MAHFOUDH

Disember 2019

Pengerusi

Fakulti

: Profesor Abu Bakar bin Md Sultan, PhD

: Sains Komputer dan Teknologi Maklumat

Obfuscation (Obfu) adalah amalan untuk menjadikan kod pengaturcaraan menjadi rumit

untuk melindungi Harta Intelek (IP) dan mencegah perisian terlarang Reverse

Engineering (RE). Kekaburan melibatkan mengubah data yang berpotensi

mendedahkan, menamakan semula nama kelas dan pemboleh ubah yang berguna

(pengecam) menjadi label yang tidak bermakna atau menambahkan kod yang tidak

digunakan atau tidak bermakna pada perduaan aplikasi. Obfuscation digunakan untuk

menukar kod sumber menjadi program yang berfungsi dengan cara yang sama tetapi

jauh lebih sukar untuk dibaca dan difahami. Teknik penyamaran membolehkan
pengaturcara menyesuaikan bahagian kod mana yang akan dikaburkan.

Baru-baru ini, teknik penyamaran kebanyakan digunakan untuk mendapatkan kod

sumber; namun, tidak ada teknik penyamaran semasa yang memenuhi semua kriteria

keberkesanan penyamaran untuk menentang serangan Kejuruteraan Balik. Oleh itu,

industri IT kehilangan puluhan bilion dolar setiap tahun kerana serangan keselamatan

seperti teknik terbalik. Jumlah wang mangsa yang hilang telah menyebabkan banyak kes

mahkamah di mana mangsa dan kecurian mendakwa pemilikan program dan

pemenangnya adalah yang mempunyai pengacara yang baik. Banyak bahasa

pengaturcaraan digunakan untuk pengaturcaraan; Bahasa pengaturcaraan Java dikenal

paling umum kerana ciri-cirinya, penggunaan bahasa popular ini meningkatkan
kemampuan penyerang untuk mencuri harta intelek (IP), kerana program sumber

diterjemahkan ke format perantaraan yang mengekalkan sebahagian besar maklumat

seperti yang bermakna nama pemboleh ubah yang terdapat dalam kod sumber.

Penyerang dapat dengan mudah membina semula kod sumber dari format perantaraan

seperti itu untuk mengekstrak maklumat sensitif seperti algoritma proprietari yang

terdapat dalam perisian. Oleh itu, terdapat keperluan untuk pengembangan teknik dan

skema untuk menyamarkan bahagian perisian yang sensitif untuk melindunginya dari

serangan kejuruteraan terbalik.

© C
OPYRIG

HT U
PM

iv

Dalam penyelidikan ini, kami telah mencadangkan Teknik Penyamaran Hibrid baru

untuk mencegah Kejuruteraan Terbalik yang dilarang. Teknik yang dicadangkan

mengandungi tiga pendekatan; pendekatan pertama adalah penyulitan rentetan.

Penyulitan tali adalah mengenai menambahkan persamaan matematik dengan

tatasusunan dan gelung pada rentetan dalam kod untuk menyembunyikan maksudnya.

Pendekatan kedua adalah menamakan semula kata kunci sistem kepada Unicode untuk
meningkatkan kesukaran dan kerumitan kod. Pendekatan ketiga adalah mengubah

pengenal kepada kod sampah untuk menyembunyikan makna dan meningkatkan

kerumitan kod.

Penilaian empirikal dilakukan untuk menilai Teknik Penyamaran Hibrid yang

dicadangkan. Ia terdiri daripada eksperimen dan temu bual. Eksperimen ini

mengandungi dua fasa; fasa pertama dijalankan terhadap aplikasi java yang tidak

menggunakan perlindungan untuk menentukan kemampuan alat membalikkan membaca

kod yang disusun. Fasa kedua dijalankan terhadap teknik yang dicadangkan untuk

menilai keberkesanannya. Temu bual dilakukan untuk mendapatkan gambaran

keseluruhan pakar pengaturcaraan terhadap penggunaan Teknik Pengabaian Hibrid
untuk mencegah Kejuruteraan Terbalik yang dilarang. Percubaan teknik penyamaran

hibrid adalah untuk menguji ketepatan output, sintaks, kesalahan kod terbalik, ujian

aliran, ujian nama pengenal, kaedah dan ujian ketepatan kelas. Dengan parameter ini

adalah mungkin untuk menentukan kemampuan teknik yang dicadangkan untuk

mempertahankan serangan.

Teknik yang dicadangkan dapat ditingkatkan pada masa akan datang untuk melindungi

aplikasi permainan dan aplikasi mudah alih yang dikembangkan oleh java; ia dapat

meningkatkan industri pengembangan perisian. Terdapat juga keperluan untuk

mengembangkan alat yang berisi tiga pendekatan di mana pembangun dapat
menyesuaikan perlindungan kod sumber. Teknik yang dicadangkan boleh digunakan

untuk menyokong banyak bahasa seperti Arab, Inggeris, Cina dan sebagainya. Terdapat

juga keperluan untuk mengembangkan alat yang berisi tiga pendekatan di mana

pembangun dapat menyesuaikan perlindungan kod sumber.

© C
OPYRIG

HT U
PM

v

ACKNOWLEDGEMENTS

First of all, I would like to thank Allah Subhanahu Wa Ta’ala for granting me the

strength, patience, guidance, and ability to achieve this study.

I would like to specially thank and acknowledge my Supervisor Professor Dr. Abu Bakar

Md Sultan for his guidance, support, and understanding throughout my study. I would

like to extend my appreciation to my committee members, Professor Dr. Abdul Azim

Abdul Ghani, Dr. Norhayati Binti Mohd Ali, and Dr. Novia Indriaty Admodisastro for

their support, guidance, and contribution.

This study would not have been completed without the support, prayers, encouragement

and the helping hands from my dearly parents specially my father Mahfoud Al-Hakimi,

who have always believed me and supporting me emotionally and financially, who

always been in my side whenever I needed him.

I wish to extend my gratitude to my friends, siblings, and lab mates, who always listened

to my objections and study issues and never been stingy in providing advises.

© C
OPYRIG

HT U
PM

vi

I certify that a Thesis Examination Committee has met on 16 December 2019 to conduct

the final examination of Asma Mahfoudh on her thesis entitled “Enhancing Obfuscation

Technique for Protecting Source Code against Software Reverse Engineering” in

accordance with the Universities and University Colleges Act 1971 and the Constitution

of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee

recommends that the student be awarded the Doctor of Philosophy

Members of the Thesis Examination Committee were as follows:

Hazura bt. Zulzalil, PhD
Associate Professor

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Chairman)

Rodziah binti Atan, PhD
Associate Professor
Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Internal Examiner)

Wan Nurhayati binti Wan Ab. Rahman, PhD
Associate Professor

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Internal Examiner)

Volker Gruhn, PhD
Professor

Faculty of Engineering

University Duisburg-Essen

Germany

(External Examiner)

ZURIATI AHMAD ZUKARNAIN, PhD

Professor Ts. and Deputy Dean

School of Graduate Studies

Universiti Putra Malaysia

Date: 03 September 2020

© C
OPYRIG

HT U
PM

vii

This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been

accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The

members of the Supervisory Committee were as follows:

Abu Bakar bin Md Sultan, PhD
Professor

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Chairman)

Norhayati binti Mohd Ali, PhD

Associate Professor

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Member)

Novia Indriaty Admodisastro, PhD

Associate Professor

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Member)

Abdul Azim B Abd Ghani, PhD

Professor

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Member)

ZALILAH MOHD SHARIFF, PhD

Professor and Dean

School of Graduate Studies

Universiti Putra Malaysia

Date: 10 September 2020

© C
OPYRIG

HT U
PM

viii

Declaration by graduate student

I hereby confirm that:

 this thesis is my original work;

 quotations, illustrations and citations have been duly referenced;

 this thesis has not been submitted previously or concurrently for any other degree at

any institutions;

 intellectual property from the thesis and copyright of thesis are fully-owned by

Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research)

Rules 2012;

 written permission must be obtained from supervisor and the office of Deputy Vice-

Chancellor (Research and innovation) before thesis is published (in the form of

written, printed or in electronic form) including books, journals, modules,

proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture

notes, learning modules or any other materials as stated in the Universiti Putra

Malaysia (Research) Rules 2012;

 there is no plagiarism or data falsification/fabrication in the thesis, and scholarly

integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies)

Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research)

Rules 2012. The thesis has undergone plagiarism detection software

Signature: Date:

Name and Matric No: Asma Mahfoud, GS33200

© C
OPYRIG

HT U
PM

ix

Declaration by Members of Supervisory Committee

This is to confirm that:

 the research conducted and the writing of this thesis was under our supervision;

 supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate
Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature:

Name of Chairman

of Supervisory

Committee:

Professor

Dr. Abu Bakar bin Md Sultan

Signature:

Name of Member

of Supervisory

Committee:

Associate Professor

Dr. Norhayati binti Mohd Al

Signature:

Name of Member

of Supervisory

Committee:

Associate Professor

Dr. Novia Indriaty Admodisastro

Signature:

Name of Member

of Supervisory

Committee:

Professor

Dr. Abdul Azim B Abd Ghani

© C
OPYRIG

HT U
PM

x

TABLE OF CONTENTS

Page

ABSTRACT i

ABSTRAK iii

ACKNOWLEDGEMENTS v

APPROVAL vi

DECLARATION viii

LIST OF TABLES xiii

LIST OF FIGURES xv

LIST OF ABBREVIATIONS xvii

CHAPTER

1 INTRODUCTION 1
1.1 Background 1
1.2 Problem Statement 4
1.3 Research Question 5
1.4 Research Hypothesis 6
1.5 Research Objectives 6
1.6 Scope of the Study 6
1.7 Contribution to Study 7
1.8 Organization of Thesis 7

2 LITERATURE REVIEW 9

2.1 Introduction 9
2.2 Overview of Software Reverse Engineering 9

2.2.2 Purpose of Reverse Engineering 10
2.2.2 Reverse Engineering Tools 10
2.2.3 Reverse Engineering Optimization 11

2.3 Obfuscation Techniques 12
1. Control Flow Obfuscation 13
2.3.1 Symmetric Cipher 20
2.3.2 Stream Cipher 22
2.3.3 Logistic Map Equation 23
2.3.4 Cipher Block Chaining 24

2.4 Limitations and gabs of the Current Obfuscation

Techniques 25
2.5 Contribution 29
2.6 Summary 29

3 METHODOLOGY 30
3.1 Introduction 30
3.2 Literature Review 31
3.3 Hybrid Obfuscation Technique 31
3.4 Empirical Evaluation of the Proposed Hybrid

Obfuscation Technique 31

© C
OPYRIG

HT U
PM

xi

3.5 Kolmogorov Complexity 33
3.6 Qualitative Analysis 34
3.7 Interview Analysis Guidance Framework 34
3.8 Summary 35

4 ENHANCING THE OBFUSCATION TECHNIQUE TO

PROTECT THE SOURCE CODE AGAINST SOFTWARE

REVERSE ENGINEERING 36
4.1 Introduction 36
4.2 Proposed hybrid obfuscation technique 36

4.2.1 String Encryption Approach 36
4.2.2 Unicode Renaming Approach 37
4.2.3 Identifiers Renaming to Junk Approach 37
4.2.4 First Approach UNICODE Renaming

Obfuscation 39
4.2.5 Second Approach String Encryption

Obfuscation 39
4.2.6 Mathematical Equation to Encrypt Strings 40
4.2.7 Third Phase Identifiers Renaming to Junk

Obfuscation 41
4.3 Applying Hybrid obfuscation technique in the Source

Code 42
4.4 Summary 42

5 EXPERIMENTAL EVALUATION 43
5.1 Introduction 43
5.2 Kolmogorov Complexity 44
5.3 First Phase of Experiment 44

5.3.1 Case 1: Procedural Math Application 44
5.3.2 Case 2: Image Logo 47
5.3.3 Case 3: CCES, Cancer Care Expert System 50
5.3.4 Case 4: Obfuscated Java Application First

Sample 56
5.3.5 Case 5: Obfuscated Java Application Second

Sample 59
5.4 Second Phase of Experiment 61

5.4.1 CAVAJ Reversing Tool, (Output Correctness)

Test 62
5.4.2 CAVAJ Reversing Tool, Syntax Test 63
5.4.3 CAVAJ Reversing Tool, Compiled Reversed

Code Error Test 65
5.4.4 CAVAJ Reversing Tool, Flow Test 66
5.4.5 CAVAJ Reversing Tool, Identifiers Names

Test 67
5.4.6 CAVAJ Reversing Tool, De-Crypt String Test 69
5.4.7 Summary of CAVAJ Testing 70
5.4.8 JAD Reversing Tool, (Output Correctness) Test 71
5.4.9 JAD Reversing Tool, Compiled Reversed Code

Error Test 72

© C
OPYRIG

HT U
PM

xii

5.4.10 JAD Reversing Tool, Methods and Classes

Correctness Test 73
5.4.11 JAD Reversing Tool, Identifiers Names Test 74
5.4.12 Summary of JAD Testing 75
5.4.13 DJ Reversing Tool, (Output Correctness) Test 75
5.4.14 DJ Reversing Tool, Identifiers Names Test 76
5.4.15 Summary of DJ Testing 78
5.4.16 JD Reversing Tool, Identifiers Names Test 78
5.4.17 Summary of JD Testing 80

5.5 Summary 80

6 QUALITATIVE ANALYSIS 83
6.1 Introduction 83
6.2 Interview Analysis 83
6.3 Interview Analysis Summary 92

7 CONCLUSION 94
7.1 Conclusion 94
7.2 Recommendation 95
7.3 Future works 95

REFERENCES 96
APPENDICES 105
BIODATA OF STUDENT 110
LIST OF PUBLICATIONS 111

© C
OPYRIG

HT U
PM

xiii

LIST OF TABLES

Table Page

2.1 Reverse Engineering Tools 11

2.2 List of Obfuscation Techniques 27

2.3 Limitation of Current Obfuscation Techniques 28

4.1 Converting System Keywords to Unicode 39

5.1 Code Comparison before and after Reversing 46

5.2 Similarity Calculation before and after Reversing 46

5.3 Comparison of Code before and after Reversing 49

5.4 Similarity Calculation before and after Reversing 49

5.5 Code Comparison before and after Reversing 53

5.6 Similarity Calculation before and after Reversing 55

5.7 Similarity Calculation before and after Reversing 56

5.8 Translation of Obfuscated Code Before Reversing 57

5.9 Code Translation after Reversing 58

5.10 Similarity Calculation before and after Reversing 58

5.11 Obfuscated Code Translation Before Reversing 60

5.12 Code Transformation 60

5.13 Similarity Calculation before and after Reversing 61

5.14 Reversing tools Experiment Parameters 62

5.15 Output Translation 64

5.16 CAVAJ Output Analysis 64

5.17 Output Translation 69

5.18 Identifiers Names before and after Reversing 75

© C
OPYRIG

HT U
PM

xiv

5.19 DJ Output Analysis 76

5.20 Identifiers Names before and after Reversing 77

5.21 Identifiers Names Analysis 79

5.22 Experiment Summary Before and After Obfuscation 81

5.23 Error Summary 82

6.1 Expert’s background 83

6.2 First Expert Interpretation of First Question 84

6.3 Second Expert Interpretation of First Question 85

6.4 Third Expert Interpretation of First Question 86

6.5 First Expert Interpretation of Second Question 87

6.6 Second Expert Interpretation of Second Question 87

6.7 Third Expert Interpretation of Second Question 88

6.8 First Expert Interpretation of Third Question 89

6.9 Second Expert Interpretation of Third Question 89

6.10 Third Expert Interpretation of Third Question 90

6.11 First Expert Interpretation of Fourth Question 91

6.12 Second Expert Interpretation of Fourth Question 91

6.13 Third Expert Interpretation of Fourth Question 92

6.14 Interview Summary 93

© C
OPYRIG

HT U
PM

xv

LIST OF FIGURES

Figure Page

1.1 Types of Obfuscation Techniques 2

2.1 Cipher Code String Encryption Sample 20

2.2 Cipher Encryption Diagram 21

2.3 Symmetric Cipher Source Code Sample 22

2.4 Stream Cipher Design 23

2.5 Source Code for Logistic Map 24

2.6 Cipher Block Changing Process 25

3.1 Framework of Research Methodology 30

3.2 Experiment design 32

3.3 Interview Analysis Framework 34

4.1 Hybrid obfuscation technique Framework 38

4.2 Text after String Encryption Obfuscation 41

4.3 Text before String Encryption Obfuscation 41

4.4 Code of Identifiers Renaming to Obfuscation \ 42

5.1 Procedural Math Application Code before and after Reversing 45

5.2 Procedural Math Application Output before and after Reversing 45

5.3 Image Logo Application Code Before and After Reversing 47

5.4 Image Logo Application Code before and after Reversing 48

5.5 Image Logo Application Output before and after Reversing 48

5.6 Cancer Care Expert System Original Code Before Reversing 51

5.7 Cancer Care Expert System Reversed Code 52

5.8 Error Message Generated from Reversing Tool 53

© C
OPYRIG

HT U
PM

xvi

5.9 CCES, Cancer Care Expert Application Output before and after

Reversing 54

5.10 CCES, Cancer Care Expert Application Output before and after

Reversing 55

5.11 Original Obfuscated Code 56

5.12 Code Output before Transformation 57

5.13 Obfuscated Code after Reversing 58

5.14 Original Obfuscated Code 59

5.15 Output of Obfuscated Code 59

5.16 Obfuscated Code after Reversing 60

5.17 CAJAV Reversing Tool Output Correctness Test 62

5.18 CAVAJ Reversing Tool Syntax Test 63

5.19 CAVAJ Reversed Code Error Test 65

5.20 Sample Code after Reversing 66

5.21 CAVAJ Reversing Tool Flow Test 67

5.22 CAVAJ Identifiers Names Test 68

5.23 String Decryption Testing 69

5.24 JAD Reversing Tool Output Correctness Test 71

5.25 JAD Reversed Code Error Test 73

5.26 JAD Variables and Classes Test 73

5.27 Identifiers Names Test 74

5.28 DJ Output Test 76

5.29 DJ Reversing Tool, Identifiers Names Test 77

5.30 JD Reversing Tool, Identifiers Names Test 78

5.31 JD Reversing Tool, Error Output 80

© C
OPYRIG

HT U
PM

xvii

LIST OF ABBREVIATIONS

RE Reverse Engineering

CSS Content Scramble System

IDA Interactive Disassembler

NOP No-Operation

DMCA Digital Millennium Copyright Act

FLIRT Fast Library Identification and Recognition Technology

OTP One-Time Password

BCO Byte Code Obfuscation

API Application Programming Interface

ART Anti-Reverse Engineering

OOP Object Oriented Programming

JDK Java Development Kit

JRE Java Runtime Environment

JVM Java Virtual Machine

NoL Number of Lines

HOTech Hybrid Obfuscation Technique

IP Intellectual property

Obfu Obfuscation

DMCA Digital Millennium Copyright Act

TC Trusted Computing

DO Data Obfuscation

NeNDS Nearest Neighbor Data Substitution

EHR Electronic Health Records

© C
OPYRIG

HT U
PM

xviii

CFG Control Flow Graph

JD Java De-compiler

GUI Graphical User Interface

JBVD Java Bytecode Viewer and De-compiler

DVD CCA DVD Copy Control Association

CSS Content Scramble System

OTP One-Time Password

LOC Lines of Codes

© C
OPYRIG

HT U
PM

1

CHAPTER 1

1 INTRODUCTION

1.1 Background

Anti-Reverse Engineering is a collection of algorithms, techniques and mechanisms that

help the developer to harden the code in the source file against prohibited reverse

engineering (Winograd, Salmani, Mahmoodi, & Homayoun, 2016). With anti-reverse

engineering, it is possible to use different techniques and algorithms that complicate and

harden the code, most of these techniques are used as countermeasure against prohibited

reverse engineering(Rugaber & Stirewalt, 2014). There are different strategies to defend

against attacks, and to protect the working of software, such as both legal and technical
countermeasures. Copyright and patent are two main approaches to protect software

against unlawful copying and stealing of algorithms. Even though copyright protection

defends against illegal copying, it does not help in protecting the idea or the implemented

algorithms. Software patents help to protect the computer programs inventions including

the idea and the algorithm; however, they do not provide solid protection as they are not

always enforceable. The major drawback of such patents is the cost(Bergström &

Åhlfeldt, 2016). There are usually very expensive to enforce, and therefore unaffordable

for small companies. According to the US Digital Millennium Copyright Act (DMCA)

and EU Computer Programs Directive legislations, reverse engineering is allowed for

the purpose of interoperability between computer programs, if the programs are obtained

lawfully(Mohsen & Pinto, 2008). Hence, it is very difficult under these regulations to
prevent reverse engineering for the understanding of the inner working of software.

Because of these shortcomings, legal protection mechanisms, in most cases, have a small

impact on foiling malicious attacks. The software industry has proposed many technical

measures to the problem of prohibited reverse engineering attacks(Ceccato, Capiluppi,

Falcarin, & Boldyreff, 2015). The processes of these measures are categorized to

hardware protection and software protection. Hardware protection techniques leverage

the hardware devices capabilities to provide protection, such as secure coprocessors,

Trusted Computing (TC), tamper resistance, and smart cards, where secure computation

is carried inside the protected hardware despite deployment in a hostile computing

environment. However, hardware protection techniques do not provide a complete

solution to the malicious attacks, and their logistic challenges such as the difficulty of

upgrading hardware usually create difficulties in adapting them to computing
infrastructures(Jang et al., 2018). For example, if the hardware protection technique gets

compromised by an attacker, it would be very difficult to provide a quick response to

patch and fix this problem. It would require a full upgrade and replacement cycle to get

the device secure again(Mohsen, 2016).

Software protection techniques provide security by preventing reverse

engineering(Sosonkin, Naumovich, & Memon, 2003). Software defence approaches are

more flexible as they are fewer platforms dependent, and cheaper, than their hardware

counterpart(Kulkarni, 2014). There are different forms of software protection, for

example encryption and authentication, these methods help to secure software and

© C
OPYRIG

HT U
PM

2

sensitive data, and decrypt the software code on the fly during the execution process.

Unfortunately, since the execution requires decryption, the clear (decrypted) code is

revealed in the memory during execution, and the attacker can dump the memory and

construct the code. Therefore, encryption and decryption have to be conducted by trusted

hardware devices, and thus it suffers from the same hardware protection

drawbacks(Rugaber & Stirewalt, 2014). One of the defence methodologies that can be
effectively used in this case, which is the subject of this research, is code obfuscation.

The purpose of code obfuscation is to make the code difficult to read and understand,

and hard to analyse by attackers, while preserving the intended functionality of the

original program. The basic premise being that if the attacker cannot understand the

outcome of the reverse engineering, then it is virtually impossible to usefully alter the

reversed engineered code(Hausknecht & Gruicic, 2017). Among the various techniques

available for protecting code from different attacks, code obfuscation is one of the most

popular alternatives, for preventing from reverse engineering. So, code obfuscation is a

largely adopted solution, and many different obfuscation approaches has been

proposed(Ceccato et al., 2008). This is also a type of software protection against

unauthorized reverse-engineering (Viticchie et al., 2016). For more than a decade code

obfuscation is highlighted as the most common anti-reverse engineering and most
effective in the software sector. Obfuscation takes many forms; it all depends on the

developer to decide which part of the code to protect and what obfuscation method to

use. There are several categories of code obfuscation; Layout obfuscation, Data

obfuscation, Control obfuscation, and other categories (Dalai, Das, & Jena, 2018).

Fig.1.1 Illustrates the types of obfuscation.

Figure 1.1 : Types of Obfuscation Techniques

Layout obfuscation is the process to hide the source code meaning when this code is
disclosed to a third party. This technique is meant to rename the program identifiers and

remove the comments from the source code. Source code obfuscation contains renaming

Types of obfuscation

Lexical Obfuscation Data Obfuscation Control Obfuscation Layout Obfuscation

Control Aggregation Control OrderingControl Computation Dispatcher Obfuscation

High-Level Language Breaking Smoke and Mirrors Alter Control Flow

© C
OPYRIG

HT U
PM

3

technique. This technique takes several approaches, such as identifiers renaming

obfuscation, and string encryption (Borello & Mé, 2008).

Renaming obfuscation technique is known to be effective technique against prohibited

reverse engineering. This technique is known to mislead the reverser, it changes the

meaning of the code, therefore the reverser will not be able to perform analysis on the

code (Tang, Chen, Fang, & Chen, 2009). Identifiers renaming obfuscation is the process
to replace the identifiers with meaningless names to unknown language or symbols as

new identifiers(Luo, Jiang, & Zeng, 2006). Usually, the identifiers have meaning for a

better recognition of the source code structures like classes, methods, variables and so

forth. Once an identifier is renamed, it is mandatory to provide consistency across the

entire application through replacements of the old names by the new identifiers (Kang,

Poosankam, & Yin, 2007).

Programming languages that allow the method overloading, method name obfuscation

is made by the same identifier string for the methods having different

signatures(Sosonkin et al., 2003). Junk renaming obfuscation is one of the approaches to

rename the identifiers to some junk code that is readable by the compiler and produces

sufficient output and in the same time not readable by the reverser (Popa, 2014a).

String encryption is another approach of the renaming obfuscation technique; this
approach contains mathematical equation in array to generate chaos stream. The

compiler will be able to read the code after transformation, but the reverser does not

know how to read these symbols (Gong, Luo, Xie, Liu, & Lu, 2016). String encryption

is well known to use chaos stream to transform the text in the source file into an unknown

symbol in which the reverser is not able to read or understand. One of the common

techniques for chaos stream is Cipher technique. this technique applies mathematical

equation with arrays and loops to encrypt the strings in the source file (Wagner, 2003).

Data Obfuscation (DO) is a form of data masking where data is purposely scrambled

to prevent unauthorized access to sensitive materials. This form of encryption results in

confusing data.

Data obfuscation techniques are used to prevent the intrusion of private and sensitive
online data, such as Electronic Health Records (EHR). However, issues have stemmed

from an inability to prevent attacks. Additionally, there is not a set of standards for (DO)

technique. Because of these challenges, researchers have proposed a more robust (DO)

technique that is known as Nearest Neighbor Data Substitution (NeNDS), which is

favored because of its privacy protection features and ability to sustain data clusters. The

same researchers continue to prove that reverse engineering is easily accomplished with

geometric transformations related to cluster preservations(C. & M., 2018). © C
OPYRIG

HT U
PM

4

1.2 Problem Statement

Intellectual property theft is one of the most challenging problems of today’s

technological era. According to Business software alliance global software piracy rate

went noticeably high which lead to loss of $53billion in 2008. Due to the lack of security,

software vendors have implemented security algorithms, techniques and tools, but with

the help of various reverse engineering tools, software reversers are able to reveal the

security algorithms to reveal the original code from the source file (ul Iman & Ishaq,

2010).

IT industry loses tens of billions of dollars annually due to security attacks such as

reverse engineering. Code obfuscation techniques counter such attacks by transforming
code into patterns that resist the attacks. The use of popular languages such as java

increases an attacker's ability to steal intellectual property (IP), as the source program is

translated to an intermediate format retaining most of the information such as meaningful

variables names present in source code. An attacker can easily reconstruct source code

from such intermediate formats to extract sensitive information such as proprietary

algorithms present in the software. Hence, there is a need for development of techniques

and schemes to obfuscate sensitive parts of software to protect it from reverse

engineering attacks(Gomes, 2014).

Software development industries spend billions of dollars annually for preventing from

security attacks such as reverse engineering. Every organization is having its own

intellectual property and it’s a big challenge for them to protect their data from software
piracy or reverse engineering. Reverse Engineering may damage the software

purchaser’s business directly. There are two general ways to protect the intellectual

property, legally or technically(Batchelder & Hendren, 2007). Legally means getting

copyrights or signing legal contracts against creating duplicates. And technically means

the owners of the software will give the solution for protection with that software. The

better idea is to use obfuscation, which is a novel area of research in the field of software

protection and gaining more importance in this present digital era (C. Kumar & Bhaskari,

2015).

Obfuscation is known to be the most common and effective technique to prevent

prohibited Reverse Engineering. However, none of the current obfuscation technique

meets and satisfies all the obfuscation effectiveness criteria to resistance the Reverse

Engineering (Popa, 2014a). None of the current code obfuscation techniques satisfy all
the obfuscation effectiveness criteria such as resistance to reverse engineering attacks

and state space increase(Kulkarni, 2014). A determined attacker, after spending enough

time to inspect obfuscated code, might locate the functionality to alter and succeed in the

malicious purpose. The renaming obfuscation, layout obfuscation, harden the code

obfuscation, and source code obfuscation can be attacked by the reversing tools that are

able to perform analysis to create a new name for the identifiers that are used in the

source file (C. Kumar & Bhaskari, 2015).
© C

OPYRIG
HT U

PM

5

All theoretical research on software protection via obfuscation typically points to

negative results in terms of the existence of perfect obfuscators. (Barak et al., 2012)

showed that no general obfuscation algorithm exists that can hide all information leaked

by a variant program based on the notion of a virtual black box. The basic impossibility

result states that it is impossible to achieve perfect semantic security where the variant

leaks no more information than the input/output relationships of the original program(Su,
Wang, Wu, Li, & Huang, 2012). Most of the developers have practiced using only one

obfuscation technique to protect the code and used the technique for certain part only of

the code. Having one technique to protect the code is proven not to be effective enough

to prevent prohibited reverse engineering, these approaches do not help to protect the

software, when the attacker is him/herself the end-user, determined attacker, after spending

enough time to inspect obfuscated code, might locate the functionality to alter and succeed
in her/his malicious purpose. For this reason, obfuscation techniques are implemented with

other approaches, such as code replacement/update, code tampering detection, protections
updating by that the attackers get a limited amount of time to complete their objective.

Reversing tools are very advanced currently as they can create new code from the

obfuscated code that performs the same output even though the original code is

obfuscated (Kanani, Srivastava, Gandhi, Parekh, & Gala, 2017). Therefore, it is
necessary to enhance the source code obfuscation where it is possible to use different

approaches from the renaming techniques in one source file to increase the confusion

and complication(Hosseinzadeh et al., 2018). Ordinary obfuscation techniques do not

have the ability to prevent reverse engineering, as the reversing tools are very advanced

and have the ability to analyze the code. Having an ordinary obfuscation technique is

equal to not having one at all in the source file. Based on the researchers a merged

obfuscation technique is well known to provide better protection that having an

obfuscation technique that contains only one approach of protection(Hofheinz, Malone-

Lee, & Stam, 2010).

1.3 Research Question

This section presents the research questions for the thesis. The questions attend the

investigation that will be conducted by empirical study for this thesis; the questions are

as follows;

RQ1- How effective is the use of mathematical equations for string encryption to

transform the text to Chaos stream?

RQ2- How effective is to use Junk obfuscation to rename the identifiers to unknown

junk?

RQ3- To what extend Hybrid Obfuscation Technique is well performing in terms of

renaming the identifiers and system keywords to junk and Unicode? © C
OPYRIG

HT U
PM

6

1.4 Research Hypothesis

H₀ ₁ Standard obfuscation techniques do not significantly decrease the ability of the

reverser to change the original code

H₀ ₂ Standard obfuscation techniques significantly decrease the ability of the reverser

to change the original code.

H₀ ₃ Hybrid obfuscation techniques do not significantly decrease the ability of the

reverser to change the original code

H₀ ₄ Hybrid obfuscation techniques significantly decrease the ability of the reverser to

change the original code.

1.5 Research Objectives

Obfuscation technique is very common in the field of software protection, therefore, the

objective of this research to combine the most effective techniques and enhance them in

one hybrid obfuscation technique. In order to achieve the main objective, below list

highlight specific objectives of the research.

 To enhance string encryption obfuscation technique by applying multiple

mathematical equations to create series of Chaos stream.

 To enhance renaming obfuscation technique in which two renaming approaches

are applied for the transformation. The first approach is renaming identifiers to

junk. This approach creates garbage during decompiling. The second approach

is to rename system keywords to Unicode. This approach leads to confusion

while reading the source file. The two approaches will create extra layer of junk

code during reversing.

 To create a series of junk and chaos stream in the reversed file after merging

string encryption and renaming approaches.

 To carry out an empirical study to evaluate the effectiveness of the new
proposed hybrid obfuscation technique.

1.6 Scope of the Study

The research has the following scopes;

1. This study is focusing on Java applications, more precisely the source file that

contains the source code of java applications. This study is focusing on Java

© C
OPYRIG

HT U
PM

7

programming language due to its popularity in the software development

industry.

2. This study is limited to Layout and Data Obfuscation techniques.

3. This study uses only four reversing tools that are CAVAJ, JAD, DJ, and JD.

These tools are used in this research due to their popularity to most researches

and developers in the software development industry. These tools are free of
use and well known of the great ability to reverse the software.

4. Other applications such as android, mobile, and web were not considered in the

study.

1.7 Contribution to Study

This research proposes a new Hybrid Obfuscation Technique that merges renaming

obfuscation and string encryption. The string encryption contains multiple mathematical

equations to generate chaos stream that change the form of the code during decompiling.

Renaming obfuscation contains two transformations, firstly, Unicode transformation for

system keywords to create a confusing look while reading the source code. Secondly,

contains junk character transformation to transform the original identifiers to junk which

leads to a complicated look. The junk transformation confuses the compiler during

decompiling. There is an extra advantage added to the proposed obfuscation technique;

that is the compiler translates the entire code to byte code. Byte code is an extra layer of
protection; normal user doesn’t have the ability to read it. This byte code is only readable

by the machine.

1.8 Organization of Thesis

The thesis is formed into seven chapters that descripted as follows;

Chapter 1: Background

This chapter discusses the essentials of the research that include background, problem

statement, research questions, objectives, research scope, and research organization.

Chapter 2: Literature Review

This chapter focuses of the current and latest reviews related to the research scope. This

chapter discusses the issues and limitation of current obfuscation techniques and guides

the researcher towards forming final and best technique possible as compare with the

similar current techniques.

 © C
OPYRIG

HT U
PM

8

Chapter 3: Research Methodology

This chapter presents the flow of the research methodology in conducting the thesis. The

main purpose of the research is to propose a Hybrid Obfuscation Technique to prevent

prohibited reverse engineering for java’s applications source file, and to select a test

strategy to validate the effectiveness of the proposed technique. To achieve the research
purpose, a sequence of activities and stages should be planned consequently.

Chapter 4: Hybrid Obfuscation Technique

This chapter presents the new proposed Hybrid Obfuscation Technique to protect the

code in the source file. The chapter presents the architecture of the proposed technique,

the output of the obfuscated code, and discussion on the performance of it.

Chapter 5: Empirical Evaluation

This chapter presents the empirical study that was conducted in this research. Experiment

contains two phases; first phase was conducted with reversing tools against the

applications that are not protected to get evidence of the need for protection. Second

phase of the experiment was conducted with reversing tools against hybrid obfuscated
code, to get evidence of the technique effectiveness. Data set for the experiment were

four types of applications; procedure math application, image logo, expert system, and

obfuscated java application. The reversing tools that were used for reversing are CAVAJ,

JAD, DJ, and JD.

Chapter 6: Qualitative Analysis

This chapter focuses on interview. The interview was conducted with four experts who

are involved in the research and development of software applications.

Chapter 7: Conclusion

This research focuses on the contributions of the proposed hybrid obfuscation technique.
Then it discusses the suggested future works in which improves the protection

techniques. This chapter discusses the needed recommendation to improve the protection

techniques.

 © C
OPYRIG

HT U
PM

96

8 REFERENCES

Akinyode, B. F., & Khan, T. H. (2018). Step by step approach for qualitative data

analysis. International Journal of Built Environment and Sustainability, 5(3),

163–174.

Angyal, L., Lengyel, L., & Charaf, H. (2006). An Overview of the State-of-The-Art

Reverse Engineering Techniques. 7th International Symposium of Hungarian
Researchers on Computational Intelligence An, 507–516.

Avidan, E., & Feitelson, D. G. (2015). From Obfuscation to Comprehension. IEEE

International Conference on Program Comprehension, 2015-Augus, 178–181.

Badier, H., Lann, J. C. Le, Coussy, P., & Gogniat, G. (2019). Transient Key-based

Obfuscation for HLS in an Untrusted Cloud Environment. Proceedings of the

2019 Design, Automation and Test in Europe Conference and Exhibition,

DATE 2019, 1118–1123.

Baker, S. I. B., & Al-Hamami, A. H. (2017). Novel Algorithm in Symmetric Encryption

(NASE): Based on feistel cipher. Proceedings - 2017 International Conference

on New Trends in Computing Sciences, ICTCS 2017, 2018-January(3), 191–

196.

Balachandran, V., & Emmanuel, S. (2013). Software Protection with Obfuscation and
Encryption. (March 2016).

Batchelder, M., & Hendren, L. (2007). Obfuscating Java: The most pain for the least

gain. Lecture Notes in Computer Science (Including Subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 4420 LNCS, 96–

110.

Bergström, E., & Åhlfeldt, R. M. (2016). Foundations and Practice of Security. Lecture

Notes in Computer Science (Including Subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 9482(October), 268–276.

Binshamlan, M. H., Bamatraf, M. A., & Zain, A. A. (2019). The Impact of Control Flow

Obfuscation Technique on Software Protection Against Human Attacks. 2019

1st International Conference of Intelligent Computing and Engineering:
Toward Intelligent Solutions for Developing and Empowering Our Societies,

ICOICE 2019, (Cil), 2–6.

Borello, J. M., & Mé, L. (2008). Code obfuscation techniques for metamorphic viruses.

Journal in Computer Virology, 4(3), 211–220.

Budhkar, S. (2011). Reverse Engineering Java Code to Class Diagram : An Experience

Report. 29(6), 36–43.

© C
OPYRIG

HT U
PM

97

C., G., & M., S. (2018). Study for Best Data Obfuscation Techniques using Multi-

Criteria Decision-Making Technique. International Journal of Computer

Applications, 180(43), 50–57.

Ceccato, M., Capiluppi, A., Falcarin, P., & Boldyreff, C. (2015). A large study on the

effect of code obfuscation on the quality of java code. Empirical Software

Engineering, 20(6), 1486–1524.

Ceccato, M., Di Penta, M., Nagra, J., Falcarin, P., Ricca, F., Torchiano, M., & Tonella,

P. (2008). Towards experimental evaluation of code obfuscation techniques.

Proceedings of the ACM Conference on Computer and Communications

Security, 39–45.

Ceccato, M., Di Penta, M., Nagra, J., Falcarin, P., Ricca, F., Torchiano, M., & Tonella,

P. (2009). The effectiveness of source code obfuscation: An experimental

assessment. IEEE International Conference on Program Comprehension, 178–

187.

Chan, J. T., & Yang, W. (2004). Advanced obfuscation techniques for Java bytecode.

Journal of Systems and Software, 71(1–2), 1–10.

Chen, H., Yuan, L., Wu, X., Zang, B., Huang, B., & Yew, P. (2009). Control flow

obfuscation with information flow tracking. 391.

Chiba, S. (2000). Load-Time Structural Reflection in Java. 313–336.

Cimato, S., De Santis, A., & Petrillo, U. F. (2005). Overcoming the obfuscation of Java

programs by identifier renaming. Journal of Systems and Software, 78(1), 60–

72.

Cimitile, A., Martinelli, F., Mercaldo, F., Nardone, V., & Santone, A. (2017). Formal

methods meet mobile code obfuscation identification of code reordering

technique. Proceedings - 2017 IEEE 26th International Conference on

Enabling Technologies: Infrastructure for Collaborative Enterprises, WETICE

2017, 263–268.

Clarke, D. A. (2010). on the Reliability of Zeus-3D. Astrophysical Journal Supplement

Series, 187, 119–134.

Dalai, A. K., Das, S. S., & Jena, S. K. (2018). A code obfuscation technique to prevent

reverse engineering. Proceedings of the 2017 International Conference on

Wireless Communications, Signal Processing and Networking, WiSPNET

2017, 2018-Janua, 828–832.

Darwish, S. M., Guirguis, S. K., & Zalat, M. S. (2010). Stealthy code obfuscation

technique for software security. Proceedings, ICCES’2010 - 2010 International

Conference on Computer Engineering and Systems, 93–99.

© C
OPYRIG

HT U
PM

98

Di Troia, F., Visaggio, C. A., Austin, T. H., & Stamp, M. (2017). Advanced transcriptase

for JavaScript malware. 2016 11th International Conference on Malicious and

Unwanted Software, MALWARE 2016, 121–128.

Feiyuan, W., Jiying, Z., & El Saddik, A. (2005). Copyright protection of J2EE web

applications through watermarking. Canadian Conference on Electrical and

Computer Engineering, 2005, 1782–1785.

George, N. (2008). Reverse Engineering : Anti-Cracking Techniques. Program, 1–19.

Ghosh, S., & Kelly, J. L. (2008). Bytecode fault injection for Java software. Journal of

Systems and Software, 81(11), 2034–2043.

Gomes, N. D. (2014). Software Piracy : An Empirical Analysis Software Piracy : An

Empirical Analysis.

Gong, D., Luo, X., Xie, X., Liu, F., & Lu, B. (2016). Random table and hash coding-

based binary code obfuscation against stack trace analysis. IET Information

Security, 10(1), 18–27.

Hausknecht, K., & Gruicic, S. (2017). Anti-computer forensics. 2017 40th International

Convention on Information and Communication Technology, Electronics and

Microelectronics, MIPRO 2017 - Proceedings, 1233–1240.

https://doi.org/10.23919/MIPRO.2017.7973612

Hofheinz, D., Malone-Lee, J., & Stam, M. (2010). Obfuscation for cryptographic

purposes. Journal of Cryptology, 23(1), 121–168.

Hosseinzadeh, S., Rauti, S., Laurén, S., Mäkelä, J., Holvitie, J., Hyrynsalmi, S., &

Leppänen, V. (2018). Diversi fi cation and obfuscation techniques for software

security : A systematic literature review. 104(July), 72–93.

Jang, J., De, A., Vontela, D., Nirmala, I., Ghosh, S., & Iyengar, A. (2018). Threshold-

defined Logic and Interconnect for Protection against Reverse Engineering.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, PP(c), 1.

Junod, P., Rinaldini, J., Wehrli, J., & Michielin, J. (2015). Obfuscator-LLVM-Software

Protection for the Masses. Proceedings - International Workshop on Software
Protection, SPRO 2015, 3–9.

Kanani, P., Srivastava, K., Gandhi, J., Parekh, D., & Gala, M. (2017). Obfuscation: Maze

of code. 2017 2nd International Conference on Communication Systems,

Computing and IT Applications, CSCITA 2017 - Proceedings, 11–16.

Kang, M. G., Poosankam, P., & Yin, H. (2007). Renovo. Proceedings of the 2007 ACM

Workshop on Recurring Malcode - WORM ’07, 46.

© C
OPYRIG

HT U
PM

99

Kasmi, M. A., Mostafa, A., & Lanet, J. L. (2014). Methodology to reverse engineer a

scrambled java card virtual machine using electromagnetic analysis.

International Conference on Next Generation Networks and Services, NGNS,

278–281.

Kienle, H. M., & Müller, H. A. (2010). Rigi-An environment for software reverse

engineering, exploration, visualization, and redocumentation. Science of
Computer Programming, 75(4), 247–263.

Kim, M. J., Lee, J. Y., Chang, H. Y., Cho, S. J., Park, M., Park, Y., & Wilsey, P. A.

(2010). Design and performance evaluation of binary code packing for

protecting embedded software against reverse engineering. ISORC 2010 - 2010

13th IEEE International Symposium on Object/Component/Service-Oriented

Real-Time Distributed Computing, 1, 80–86.

Koteshwara, S., Kim, C. H., & Parhi, K. K. (2018). Functional encryption of integrated

circuits by key-based hybrid obfuscation. Conference Record of 51st Asilomar

Conference on Signals, Systems and Computers, ACSSC 2017, 2017-Octob,

484–488.

Kulkarni, A. (2014). A New Code Obfuscation Scheme for Software Protection. 2014

IEEE 8th International Symposium on Service Oriented System Engineering,
409–414.

Kulkarni, A., & Metta, R. (2014). A code obfuscation framework using code clones.

22nd International Conference on Program Comprehension, ICPC 2014 -

Proceedings, 295–299.

Kumar, C., & Bhaskari, D. L. (2015). Different Obfuscation Techniques for Code

Protection. 70, 757–763.

Kumar, R., & Vaishakh, A. R. E. (2016). Detection of Obfuscation in Java Malware.

Physics Procedia, 78(December 2015), 521–529.

Leahy, P. (2017). What Is Unicode? ThoughtCo, 1. Retrieved from

https://www.thoughtco.com/what-is-unicode-2034272

Lehman, E., Leighton, F. T., & Meyer, A. R. (2013). Mathematics for Computer Science.
Proofs, 3(2), 1–848. Retrieved from

http://courses.csail.mit.edu/6.042/spring12/mcs.pdf

Li, A., Zhang, Y., Zhang, J., & Zhu, G. (2015). A token strengthened encryption packer

to prevent reverse engineering PE files. Proceedings of 2015 International

Conference on Estimation, Detection and Information Fusion, ICEDIF 2015,

(ICEDlF), 307–312.

Li, Q. (2009). Research on Reverse Engineering Technology of.pdf.

© C
OPYRIG

HT U
PM

100

Liang, Z., Li, W., Guo, J., Qi, D., & Zeng, J. (2017). A parameterized flattening control

flow based obfuscation algorithm with opaque predicate for reduplicate

obfuscation. Proceedings of 2017 International Conference on Progress in

Informatics and Computing, PIC 2017, 372–378.

Lin, Z., Zhang, X., & Xu, D. (2010). Reverse engineering input syntactic structure from

program execution and its applications. IEEE Transactions on Software
Engineering, 36(5), 688–703.

Luo, H., Jiang, J., & Zeng, Q. (2006). Code obfuscation for software protection. In

Jisuanji Gongcheng/Computer Engineering (Vol. 32).

Maskur, M., Sari, Z., & Miftakh, A. S. (2018). Implementation of obfuscation technique

on PHP source code. International Conference on Electrical Engineering,

Computer Science and Informatics (EECSI), 2018-Octob, 738–742.

Meeker, F. M., Wright, B. C., Kann, R. L., Stern, J. R. S., & Lemley, M. A. (2004).

United States Court of Appeals for the Federal Circuit. Biotechnology Law

Report, 23(6), 770–775.

Memon, J. M., Shams-ul-Arfeen, Mughal, A., & Memon, F. (2006). Preventing reverse

engineering threat in java using byte code obfuscation techniques. Proceedings

- 2nd International Conference on Emerging Technologies 2006, ICET 2006,
(November), 689–694.

Mohsen, R. (2016). Quantitative Measures for Code Obfuscation Security. (May).

Mohsen, R., & Pinto, A. M. (2008). Algorithmic Information Theory for Obfuscation

Security. 1–12.

Ohdo, T., Tamada, H., Kanzaki, Y., & Monden, A. (2013). An instruction folding

method to prevent reverse engineering in java platform. SNPD 2013 - 14th

ACIS International Conference on Software Engineering, Artificial

Intelligence, Networking and Parallel/Distributed Computing, 517–522.

Peng, Yanru, Chen, Y., & Shen, B. (2019). An adaptive approach to recommending

obfuscation rules for Java bytecode obfuscators. Proceedings - International

Computer Software and Applications Conference, 1, 97–106.

Peng, Yong, Liang, J., & Li, Q. (2016). A control flow obfuscation method for Android

applications. Proceedings of 2016 4th IEEE International Conference on Cloud

Computing and Intelligence Systems, CCIS 2016, 94–98.

Pizzolotto, D., & Ceccato, M. (2018). Obfuscating Java programs by translating selected

portions of bytecode to native libraries. Proceedings - 18th IEEE International

Working Conference on Source Code Analysis and Manipulation, SCAM 2018,

40–49.

© C
OPYRIG

HT U
PM

101

Popa, M. (2011). Techniques of Program Code Obfuscation for Secure Software.

Journal of Mobile, Embedded and Distributed Systems, III(4). Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.870.4798&rep=rep

1&type=pdf

Popa, M. (2014a). Techniques of Program Code Obfuscation for Secure Software.

(December 2011).

Popa, M. (2014b). Techniques of Program Code Obfuscation for Secure Software.

(January).

Programme, E. E., Petronas, U. T., & Leepile, T. M. (2006). A STUDY AND

IMPLEMENTATION OF ENCRYPTION , WITH (Electrical & Electronics

Engineering) A STUDY AND IMPLEMENTATION OF ENCRYPTION , WITH

(Electrical & Electronics Engineering).

Qin, S., Wang, Z., Wang, Y., & Xu, K. (2016). A method of JavaScript path obfuscation

based on collatz conjecture. Proceedings - 2015 12th Web Information System

and Application Conference, WISA 2015, 330–333.

Rao, M. S. B., & Giridharakula, D. S. (2013). International Journal of Advances in

Computer Science and Technology Available Online at

http://warse.org/pdfs/2013/ijacst06282013.pdf CHAOTIC ALGORITHMS
USED FOR ENCRYPTION AND DECRYPTION ON MOVING IMAGES. 2(8),

160–164.

Real-time, M. A. T., Ef-, P. C. C. S., & Butaha, M. A. (2017). Crypto-Compression

Systems for Efficient Embedded To cite this version : Thèse de Doctorat.

Rugaber, S., & Stirewalt, K. (2014). Model-Driven Reverse Engineering. IEEE

Software.

Samuelson, P. (2002). Reverse engineering under siege. Communications of the ACM,

45(10), 15–20.

Samuelson, P., & Scotchmer, S. (2002). The law and economics of reverse engineering.

Yale Law Journal, 111(7), 1575–1663.

Schrittwieser, S., & St, P. (2016). Protecting Software through Obfuscation : Can It
Keep Pace with Progress in Code Analysis ? 49(1), 1–40.

Sebastian, S. A., Malgaonkar, S., Shah, P., Kapoor, M., & Parekhji, T. (2016). A study

& review on code obfuscation. IEEE WCTFTR 2016 - Proceedings of 2016

World Conference on Futuristic Trends in Research and Innovation for Social

Welfare, 1–6.

Solomonoff, R. J. (2009). Algorithmic probability: Theory and applications. Information

Theory and Statistical Learning, 1–23.

© C
OPYRIG

HT U
PM

102

Sosonkin, M., Naumovich, G., & Memon, N. (2003). Obfuscation of design intent in

object-oriented applications. DRM 2003: Proceedings of the Third ACM

Workshop on Digital Rights Management, 142–153.

Su, Q., Wang, Z. Y., Wu, W. M., Li, J. L., & Huang, Z. W. (2012). Technique of source

code obfuscation based on data flow and control flow tansformations. ICCSE

2012 - Proceedings of 2012 7th International Conference on Computer Science
and Education, (Iccse), 1093–1097.

Sun, Y. (2003). How to Render Mathematical Symbols in Java. (March).

Taha, M. A., Ef-, P. C. C. S., & Butaha, M. A. (2017). Crypto-Compression Systems for

Efficient Embedded To cite this version : Thèse de Doctorat.

Tang, Z., Chen, X., Fang, D., & Chen, F. (2009). Research on java software protection

with the obfuscation in identifier renaming. 2009 4th International Conference

on Innovative Computing, Information and Control, ICICIC 2009, (2007),

1067–1071.

Tang, Z., Kuang, K., Wang, L., Xue, C., Gong, X., Chen, X., … Wang, Z. (2017).

SEEAD: A semantic-based approach for automatic binary code de-obfuscation.

Proceedings - 16th IEEE International Conference on Trust, Security and

Privacy in Computing and Communications, 11th IEEE International
Conference on Big Data Science and Engineering and 14th IEEE International

Conference on Embedded Software and Systems, 261–268.

ul Iman, M., & Ishaq, A. F. M. (2010). Anti-reversing as a tool to protect intellectual

property. Engineering Systems Management and Its Applications (ICESMA),

2010 Second International Conference On, 1–5. Retrieved from

http://www.scopus.com/inward/record.url?eid=2-s2.0-

77956582376&partnerID=40&md5=f69ddcf5fec86ec558ad4e2dbdc90f5c

Vijayakumar, A., Patil, V. C., Holcomb, D. E., Paar, C., & Kundu, S. (2017). Physical

Design Obfuscation of Hardware: A Comprehensive Investigation of Device

and Logic-Level Techniques. IEEE Transactions on Information Forensics and

Security, 12(1), 64–77.

Viticchie, A., Regano, L., Torchiano, M., Basile, C., Ceccato, M., Tonella, P., & Tiella,

R. (2016). Assessment of source code obfuscation techniques. Proceedings -

2016 IEEE 16th International Working Conference on Source Code Analysis

and Manipulation, SCAM 2016, 11–20.

Wagener, G., Dulaunoy, A., & Engel, T. (2008). An instrumented analysis of unknown

software and malware driven by free libre open source software. SITIS 2008 -

Proceedings of the 4th International Conference on Signal Image Technology

and Internet Based Systems, 597–605.

© C

OPYRIG
HT U

PM

103

Wagner, N. R. (2003). The Laws of Cryptography with Java Code. Available Online at

Neal Wagner’s Home Page, 1–334. Retrieved from

http://www.cs.utsa.edu/~wagner/lawsbookcolor/laws.pdf

Wang, P., Bao, Q., Wang, L., Wang, S., Chen, Z., Wei, T., & Wu, D. (2018). Software

protection on the go. 26–36.

Wang, Z., Jia, C., Liu, M., & Yu, X. (2012). Branch obfuscation using code mobility and
signal. Proceedings - International Computer Software and Applications

Conference, 553–558.

Wang, Z. Y., & Wu, W. M. (2014). Technique of javascript code obfuscation based on

control flow tansformations. Applied Mechanics and Materials, 519–

520(Iccse), 389–392.

Winograd, T., Salmani, H., Mahmoodi, H., & Homayoun, H. (2016). Preventing design

reverse engineering with reconfigurable spin transfer torque LUT gates.

Proceedings - International Symposium on Quality Electronic Design, ISQED,

2016-May, 242–247.

Xiang, G., & Cai, Z. (2010a). The code obfuscation technology based on class

combination. Proceedings - 9th International Symposium on Distributed

Computing and Applications to Business, Engineering and Science, DCABES
2010, (60970064), 479–483.

Xiang, G., & Cai, Z. (2010b). The code obfuscation technology based on class

combination. Proceedings - 9th International Symposium on Distributed

Computing and Applications to Business, Engineering and Science, DCABES

2010, (60970064), 479–483.

Xu, W., Zhang, F., & Zhu, S. (2012). The power of obfuscation techniques in malicious

JavaScript code: A measurement study. Proceedings of the 2012 7th

International Conference on Malicious and Unwanted Software, Malware

2012, 9–16.

Yasin, A., Nasra, I., Yasin, A., & Nasra, I. (2016). Dynamic Multi Levels Java Code

Obfuscation Technique (DMLJCOT). (10), 140–160.

You, I. (2010). Malware Obfuscation Techniques : A Brief Survey. 297–300.

Zhang, L., Meng, H., & Thing, V. L. L. (2019). Progressive Control Flow Obfuscation

for Android Applications. IEEE Region 10 Annual International Conference,

Proceedings/TENCON, 2018-Octob(October), 1075–1079.

Zhang, W., Wang, K., & Meng, J. (2015). Research on application of functional FMECA

in reverse engineering optimization. Proceedings of 2015 the 1st International

Conference on Reliability Systems Engineering, ICRSE 2015, 1–5.

© C
OPYRIG

HT U
PM

104

Zhang, X., He, F., & Zuo, W. (2008). An inter-classes obfuscation method for Java

program. Proceedings of the 2nd International Conference on Information

Security and Assurance, ISA 2008, 360–365.

Zhou, X., & Xie, J. (2018). Evaluating obfuscation performance of novel algorithm-to-

architecture mapping techniques in systolic-array-based circuits. Proceedings

of the 2017 Asian Hardware Oriented Security and Trust Symposium,
AsianHOST 2017, 2018-May, 127–132.

© C
OPYRIG

HT U
PM

	Blank Page

