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Obfuscation (Obfu) is a practice to make the programming code complicated to protect 

the Intellectual Property (IP) and prevent prohibited software Reverse Engineering (RE). 

Obfuscation involves transforming potentially revealing data, renaming useful classes 

and variables (identifiers) names to meaningless labels or adding unused or meaningless 

code to an application binary. Obfuscation is used to convert source code into a program 

that works the same way but is much harder to read and understand. Obfuscation 

techniques allow the programmer to customize which part of the code to be obfuscated. 

 
 

Recently, obfuscation techniques were mostly used to secure the source code; however, 

none of the current obfuscation techniques satisfy all obfuscation effectiveness criteria 

to resist the attack of Reverse Engineering. Therefore, IT industry loses tens of billions 

of dollars annually due to security attacks such as reverse engineering. The obvious 

amount of lost money of victims has led to many court cases where victim and theft 

claims the ownership of the program and the winner is who has a good lawyer. Many 

programming languages are used for programming; Java programming language is 

known to be most common due to its features, the use of this popular language increases 

an attacker's ability to steal intellectual property (IP), as the source program is translated 

to an intermediate format retaining most of the information such as meaningful variables 

names present in source code. An attacker can easily reconstruct source code from such 
intermediate formats to extract sensitive information such as proprietary algorithms 

present in the software. Hence, there is a need for development of techniques and 

schemes to obfuscate sensitive parts of software to protect it from reverse engineering 

attacks. 

 

 

In this research, we have proposed a new Hybrid Obfuscation Technique to prevent 

prohibited Reverse Engineering. The proposed technique contains three approaches; first 

approach is string encryption. The string encryption is about adding a mathematical 
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equation with arrays and loops to the strings in the code to hide the meaning. Second 

approach is renaming system keywords to Unicode to increase difficulty and complexity 

of the code. Third approach is transforming identifiers to junk code to hide the meaning 

and increase the complexity of the code.  

 

 
Empirical evaluation was conducted to evaluate the proposed Hybrid Obfuscation 

Technique. It consists of experiment and interview. The experiment contains two phases; 

first phase was conducted against java applications that do not use any protection to 

determine the ability of reversing tools to read the compiled code. Second phase was 

conducted against the proposed technique to evaluate the effectiveness of it. Interview 

was conducted to get an overview of programming experts towards using Hybrid 

Obfuscation Technique to prevent prohibited Reverse Engineering. The experiment of 

the hybrid obfuscation technique was to test output correctness, syntax, reversed code 

errors, flow test, identifiers names test, methods and classes correctness test. With these 

parameters it was possible to determine the ability of the proposed technique to defend 

the attack. 

 
 

The proposed technique can be enhanced in the future to protect games applications and 

mobile applications that are developed by java; it can improve the software development 

industry. The proposed technique can be used to support many languages such as Arabic, 

English, Chinese and so on. There is also a need to develop a tool that contains the three 

approaches where the developer can customize the protection of the source code.   
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Obfuscation (Obfu) adalah amalan untuk menjadikan kod pengaturcaraan menjadi rumit 

untuk melindungi Harta Intelek (IP) dan mencegah perisian terlarang Reverse 

Engineering (RE). Kekaburan melibatkan mengubah data yang berpotensi 

mendedahkan, menamakan semula nama kelas dan pemboleh ubah yang berguna 

(pengecam) menjadi label yang tidak bermakna atau menambahkan kod yang tidak 

digunakan atau tidak bermakna pada perduaan aplikasi. Obfuscation digunakan untuk 

menukar kod sumber menjadi program yang berfungsi dengan cara yang sama tetapi 

jauh lebih sukar untuk dibaca dan difahami. Teknik penyamaran membolehkan 
pengaturcara menyesuaikan bahagian kod mana yang akan dikaburkan. 

Baru-baru ini, teknik penyamaran kebanyakan digunakan untuk mendapatkan kod 

sumber; namun, tidak ada teknik penyamaran semasa yang memenuhi semua kriteria 

keberkesanan penyamaran untuk menentang serangan Kejuruteraan Balik. Oleh itu, 

industri IT kehilangan puluhan bilion dolar setiap tahun kerana serangan keselamatan 

seperti teknik terbalik. Jumlah wang mangsa yang hilang telah menyebabkan banyak kes 

mahkamah di mana mangsa dan kecurian mendakwa pemilikan program dan 

pemenangnya adalah yang mempunyai pengacara yang baik. Banyak bahasa 

pengaturcaraan digunakan untuk pengaturcaraan; Bahasa pengaturcaraan Java dikenal 

paling umum kerana ciri-cirinya, penggunaan bahasa popular ini meningkatkan 
kemampuan penyerang untuk mencuri harta intelek (IP), kerana program sumber 

diterjemahkan ke format perantaraan yang mengekalkan sebahagian besar maklumat 

seperti yang bermakna nama pemboleh ubah yang terdapat dalam kod sumber. 

Penyerang dapat dengan mudah membina semula kod sumber dari format perantaraan 

seperti itu untuk mengekstrak maklumat sensitif seperti algoritma proprietari yang 

terdapat dalam perisian. Oleh itu, terdapat keperluan untuk pengembangan teknik dan 

skema untuk menyamarkan bahagian perisian yang sensitif untuk melindunginya dari 

serangan kejuruteraan terbalik. 
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Dalam penyelidikan ini, kami telah mencadangkan Teknik Penyamaran Hibrid baru 

untuk mencegah Kejuruteraan Terbalik yang dilarang. Teknik yang dicadangkan 

mengandungi tiga pendekatan; pendekatan pertama adalah penyulitan rentetan. 

Penyulitan tali adalah mengenai menambahkan persamaan matematik dengan 

tatasusunan dan gelung pada rentetan dalam kod untuk menyembunyikan maksudnya. 

Pendekatan kedua adalah menamakan semula kata kunci sistem kepada Unicode untuk 
meningkatkan kesukaran dan kerumitan kod. Pendekatan ketiga adalah mengubah 

pengenal kepada kod sampah untuk menyembunyikan makna dan meningkatkan 

kerumitan kod. 

 

 

Penilaian empirikal dilakukan untuk menilai Teknik Penyamaran Hibrid yang 

dicadangkan. Ia terdiri daripada eksperimen dan temu bual. Eksperimen ini 

mengandungi dua fasa; fasa pertama dijalankan terhadap aplikasi java yang tidak 

menggunakan perlindungan untuk menentukan kemampuan alat membalikkan membaca 

kod yang disusun. Fasa kedua dijalankan terhadap teknik yang dicadangkan untuk 

menilai keberkesanannya. Temu bual dilakukan untuk mendapatkan gambaran 

keseluruhan pakar pengaturcaraan terhadap penggunaan Teknik Pengabaian Hibrid 
untuk mencegah Kejuruteraan Terbalik yang dilarang. Percubaan teknik penyamaran 

hibrid adalah untuk menguji ketepatan output, sintaks, kesalahan kod terbalik, ujian 

aliran, ujian nama pengenal, kaedah dan ujian ketepatan kelas. Dengan parameter ini 

adalah mungkin untuk menentukan kemampuan teknik yang dicadangkan untuk 

mempertahankan serangan. 

 

 

Teknik yang dicadangkan dapat ditingkatkan pada masa akan datang untuk melindungi 

aplikasi permainan dan aplikasi mudah alih yang dikembangkan oleh java; ia dapat 

meningkatkan industri pengembangan perisian. Terdapat juga keperluan untuk 

mengembangkan alat yang berisi tiga pendekatan di mana pembangun dapat 
menyesuaikan perlindungan kod sumber. Teknik yang dicadangkan boleh digunakan 

untuk menyokong banyak bahasa seperti Arab, Inggeris, Cina dan sebagainya. Terdapat 

juga keperluan untuk mengembangkan alat yang berisi tiga pendekatan di mana 

pembangun dapat menyesuaikan perlindungan kod sumber. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background  

Anti-Reverse Engineering is a collection of algorithms, techniques and mechanisms that 

help the developer to harden the code in the source file against prohibited reverse 

engineering (Winograd, Salmani, Mahmoodi, & Homayoun, 2016). With anti-reverse 

engineering, it is possible to use different techniques and algorithms that complicate and 

harden the code, most of these techniques are used as countermeasure against prohibited 

reverse engineering(Rugaber & Stirewalt, 2014). There are different strategies to defend 

against attacks, and to protect the working of software, such as both legal and technical 
countermeasures. Copyright and patent are two main approaches to protect software 

against unlawful copying and stealing of algorithms. Even though copyright protection 

defends against illegal copying, it does not help in protecting the idea or the implemented 

algorithms. Software patents help to protect the computer programs inventions including 

the idea and the algorithm; however, they do not provide solid protection as they are not 

always enforceable. The major drawback of such patents is the cost(Bergström & 

Åhlfeldt, 2016). There are usually very expensive to enforce, and therefore unaffordable 

for small companies. According to the US Digital Millennium Copyright Act (DMCA) 

and EU Computer Programs Directive legislations, reverse engineering is allowed for 

the purpose of interoperability between computer programs, if the programs are obtained 

lawfully(Mohsen & Pinto, 2008). Hence, it is very difficult under these regulations to 
prevent reverse engineering for the understanding of the inner working of software. 

Because of these shortcomings, legal protection mechanisms, in most cases, have a small 

impact on foiling malicious attacks. The software industry has proposed many technical 

measures to the problem of prohibited reverse engineering attacks(Ceccato, Capiluppi, 

Falcarin, & Boldyreff, 2015). The processes of these measures are categorized to 

hardware protection and software protection. Hardware protection techniques leverage 

the hardware devices capabilities to provide protection, such as secure coprocessors, 

Trusted Computing (TC), tamper resistance, and smart cards, where secure computation 

is carried inside the protected hardware despite deployment in a hostile computing 

environment. However, hardware protection techniques do not provide a complete 

solution to the malicious attacks, and their logistic challenges such as the difficulty of 

upgrading hardware usually create difficulties in adapting them to computing 
infrastructures(Jang et al., 2018). For example, if the hardware protection technique gets 

compromised by an attacker, it would be very difficult to provide a quick response to 

patch and fix this problem. It would require a full upgrade and replacement cycle to get 

the device secure again(Mohsen, 2016).  

Software protection techniques provide security by preventing reverse 

engineering(Sosonkin, Naumovich, & Memon, 2003). Software defence approaches are 

more flexible as they are fewer platforms dependent, and cheaper, than their hardware 

counterpart(Kulkarni, 2014). There are different forms of software protection, for 

example encryption and authentication, these methods help to secure software and 
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sensitive data, and decrypt the software code on the fly during the execution process. 

Unfortunately, since the execution requires decryption, the clear (decrypted) code is 

revealed in the memory during execution, and the attacker can dump the memory and 

construct the code. Therefore, encryption and decryption have to be conducted by trusted 

hardware devices, and thus it suffers from the same hardware protection 

drawbacks(Rugaber & Stirewalt, 2014). One of the defence methodologies that can be 
effectively used in this case, which is the subject of this research, is code obfuscation. 

The purpose of code obfuscation is to make the code difficult to read and understand, 

and hard to analyse by attackers, while preserving the intended functionality of the 

original program. The basic premise being that if the attacker cannot understand the 

outcome of the reverse engineering, then it is virtually impossible to usefully alter the 

reversed engineered code(Hausknecht & Gruicic, 2017). Among the various techniques 

available for protecting code from different attacks, code obfuscation is one of the most 

popular alternatives, for preventing from reverse engineering. So, code obfuscation is a 

largely adopted solution, and many different obfuscation approaches has been 

proposed(Ceccato et al., 2008). This is also a type of software protection against 

unauthorized reverse-engineering (Viticchie et al., 2016). For more than a decade code 

obfuscation is highlighted as the most common anti-reverse engineering and most 
effective in the software sector. Obfuscation takes many forms; it all depends on the 

developer to decide which part of the code to protect and what obfuscation method to 

use. There are several categories of code obfuscation; Layout obfuscation, Data 

obfuscation, Control obfuscation, and other categories (Dalai, Das, & Jena, 2018).  

Fig.1.1 Illustrates the types of obfuscation. 

 

 

 

 

 

 

 

 

Figure 1.1 : Types of Obfuscation Techniques 

 

 

Layout obfuscation is the process to hide the source code meaning when this code is 
disclosed to a third party. This technique is meant to rename the program identifiers and 

remove the comments from the source code. Source code obfuscation contains renaming 
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technique. This technique takes several approaches, such as identifiers renaming 

obfuscation, and string encryption (Borello & Mé, 2008).  

Renaming obfuscation technique is known to be effective technique against prohibited 

reverse engineering. This technique is known to mislead the reverser, it changes the 

meaning of the code, therefore the reverser will not be able to perform analysis on the 

code (Tang, Chen, Fang, & Chen, 2009). Identifiers renaming obfuscation is the process 
to replace the identifiers with meaningless names to unknown language or symbols as 

new identifiers(Luo, Jiang, & Zeng, 2006). Usually, the identifiers have meaning for a 

better recognition of the source code structures like classes, methods, variables and so 

forth. Once an identifier is renamed, it is mandatory to provide consistency across the 

entire application through replacements of the old names by the new identifiers (Kang, 

Poosankam, & Yin, 2007). 

Programming languages that allow the method overloading, method name obfuscation 

is made by the same identifier string for the methods having different 

signatures(Sosonkin et al., 2003). Junk renaming obfuscation is one of the approaches to 

rename the identifiers to some junk code that is readable by the compiler and produces 

sufficient output and in the same time not readable by the reverser (Popa, 2014a).  

String encryption is another approach of the renaming obfuscation technique; this 
approach contains mathematical equation in array to generate chaos stream. The 

compiler will be able to read the code after transformation, but the reverser does not 

know how to read these symbols (Gong, Luo, Xie, Liu, & Lu, 2016). String encryption 

is well known to use chaos stream to transform the text in the source file into an unknown 

symbol in which the reverser is not able to read or understand. One of the common 

techniques for chaos stream is Cipher technique. this technique applies mathematical 

equation with arrays and loops to encrypt the strings in the source file (Wagner, 2003).  

Data Obfuscation (DO) is a form of data masking where data is purposely scrambled 

to prevent unauthorized access to sensitive materials. This form of encryption results in 

confusing data. 

Data obfuscation techniques are used to prevent the intrusion of private and sensitive 
online data, such as Electronic Health Records (EHR). However, issues have stemmed 

from an inability to prevent attacks. Additionally, there is not a set of standards for (DO) 

technique. Because of these challenges, researchers have proposed a more robust (DO) 

technique that is known as Nearest Neighbor Data Substitution (NeNDS), which is 

favored because of its privacy protection features and ability to sustain data clusters. The 

same researchers continue to prove that reverse engineering is easily accomplished with 

geometric transformations related to cluster preservations(C. & M., 2018). © C
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1.2 Problem Statement  

Intellectual property theft is one of the most challenging problems of today’s 

technological era. According to Business software alliance global software piracy rate 

went noticeably high which lead to loss of $53billion in 2008. Due to the lack of security, 

software vendors have implemented security algorithms, techniques and tools, but with 

the help of various reverse engineering tools, software reversers are able to reveal the 

security algorithms to reveal the original code from the source file (ul Iman & Ishaq, 

2010).  

IT industry loses tens of billions of dollars annually due to security attacks such as 

reverse engineering. Code obfuscation techniques counter such attacks by transforming 
code into patterns that resist the attacks. The use of popular languages such as java 

increases an attacker's ability to steal intellectual property (IP), as the source program is 

translated to an intermediate format retaining most of the information such as meaningful 

variables names present in source code. An attacker can easily reconstruct source code 

from such intermediate formats to extract sensitive information such as proprietary 

algorithms present in the software. Hence, there is a need for development of techniques 

and schemes to obfuscate sensitive parts of software to protect it from reverse 

engineering attacks(Gomes, 2014). 

Software development industries spend billions of dollars annually for preventing from 

security attacks such as reverse engineering. Every organization is having its own 

intellectual property and it’s a big challenge for them to protect their data from software 
piracy or reverse engineering. Reverse Engineering may damage the software 

purchaser’s business directly. There are two general ways to protect the intellectual 

property, legally or technically(Batchelder & Hendren, 2007). Legally means getting 

copyrights or signing legal contracts against creating duplicates. And technically means 

the owners of the software will give the solution for protection with that software. The 

better idea is to use obfuscation, which is a novel area of research in the field of software 

protection and gaining more importance in this present digital era (C. Kumar & Bhaskari, 

2015). 

Obfuscation is known to be the most common and effective technique to prevent 

prohibited Reverse Engineering. However, none of the current obfuscation technique 

meets and satisfies all the obfuscation effectiveness criteria to resistance the Reverse 

Engineering (Popa, 2014a). None of the current code obfuscation techniques satisfy all 
the obfuscation effectiveness criteria such as resistance to reverse engineering attacks 

and state space increase(Kulkarni, 2014). A determined attacker, after spending enough 

time to inspect obfuscated code, might locate the functionality to alter and succeed in the 

malicious purpose. The renaming obfuscation, layout obfuscation, harden the code 

obfuscation, and source code obfuscation can be attacked by the reversing tools that are 

able to perform analysis to create a new name for the identifiers that are used in the 

source file (C. Kumar & Bhaskari, 2015). 
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All theoretical research on software protection via obfuscation typically points to 

negative results in terms of the existence of perfect obfuscators. (Barak et al., 2012) 

showed that no general obfuscation algorithm exists that can hide all information leaked 

by a variant program based on the notion of a virtual black box. The basic impossibility 

result states that it is impossible to achieve perfect semantic security where the variant 

leaks no more information than the input/output relationships of the original program(Su, 
Wang, Wu, Li, & Huang, 2012). Most of the developers have practiced using only one 

obfuscation technique to protect the code and used the technique for certain part only of 

the code. Having one technique to protect the code is proven not to be effective enough 

to prevent prohibited reverse engineering, these approaches do not help to protect the 

software, when the attacker is him/herself the end-user, determined attacker, after spending 

enough time to inspect obfuscated code, might locate the functionality to alter and succeed 
in her/his malicious purpose. For this reason, obfuscation techniques are implemented with 

other approaches, such as code replacement/update, code tampering detection, protections 
updating by that the attackers get a limited amount of time to complete their objective. 

Reversing tools are very advanced currently as they can create new code from the 

obfuscated code that performs the same output even though the original code is 

obfuscated (Kanani, Srivastava, Gandhi, Parekh, & Gala, 2017). Therefore, it is 
necessary to enhance the source code obfuscation where it is possible to use different 

approaches from the renaming techniques in one source file to increase the confusion 

and complication(Hosseinzadeh et al., 2018). Ordinary obfuscation techniques do not 

have the ability to prevent reverse engineering, as the reversing tools are very advanced 

and have the ability to analyze the code. Having an ordinary obfuscation technique is 

equal to not having one at all in the source file. Based on the researchers a merged 

obfuscation technique is well known to provide better protection that having an 

obfuscation technique that contains only one approach of protection(Hofheinz, Malone-

Lee, & Stam, 2010). 

1.3 Research Question 

This section presents the research questions for the thesis. The questions attend the 

investigation that will be conducted by empirical study for this thesis; the questions are 

as follows;   

RQ1- How effective is the use of mathematical equations for string encryption to 

transform the text to Chaos stream? 

RQ2- How effective is to use Junk obfuscation to rename the identifiers to unknown 

junk? 

RQ3- To what extend Hybrid Obfuscation Technique is well performing in terms of 

renaming the identifiers and system keywords to junk and Unicode?  © C
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1.4 Research Hypothesis  

H₀ ₁  Standard obfuscation techniques do not significantly decrease the ability of the 

reverser to change the original code  

H₀ ₂  Standard obfuscation techniques significantly decrease the ability of the reverser 

to change the original code. 

H₀ ₃  Hybrid obfuscation techniques do not significantly decrease the ability of the 

reverser to change the original code  

H₀ ₄  Hybrid obfuscation techniques significantly decrease the ability of the reverser to 

change the original code. 

1.5 Research Objectives 

Obfuscation technique is very common in the field of software protection, therefore, the 

objective of this research to combine the most effective techniques and enhance them in 

one hybrid obfuscation technique. In order to achieve the main objective, below list 

highlight specific objectives of the research.   

 To enhance string encryption obfuscation technique by applying multiple 

mathematical equations to create series of Chaos stream. 

 To enhance renaming obfuscation technique in which two renaming approaches 

are applied for the transformation. The first approach is renaming identifiers to 

junk. This approach creates garbage during decompiling. The second approach 

is to rename system keywords to Unicode. This approach leads to confusion 

while reading the source file. The two approaches will create extra layer of junk 

code during reversing. 

 To create a series of junk and chaos stream in the reversed file after merging 

string encryption and renaming approaches. 

 To carry out an empirical study to evaluate the effectiveness of the new 
proposed hybrid obfuscation technique.  

 

 

1.6 Scope of the Study  

The research has the following scopes; 

1. This study is focusing on Java applications, more precisely the source file that 

contains the source code of java applications. This study is focusing on Java 
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programming language due to its popularity in the software development 

industry. 

2. This study is limited to Layout and Data Obfuscation techniques. 

3. This study uses only four reversing tools that are CAVAJ, JAD, DJ, and JD. 

These tools are used in this research due to their popularity to most researches 

and developers in the software development industry. These tools are free of 
use and well known of the great ability to reverse the software.  

4. Other applications such as android, mobile, and web were not considered in the 

study. 

 

 

1.7 Contribution to Study  

This research proposes a new Hybrid Obfuscation Technique that merges renaming 

obfuscation and string encryption. The string encryption contains multiple mathematical 

equations to generate chaos stream that change the form of the code during decompiling. 

Renaming obfuscation contains two transformations, firstly, Unicode transformation for 

system keywords to create a confusing look while reading the source code. Secondly, 

contains junk character transformation to transform the original identifiers to junk which 

leads to a complicated look. The junk transformation confuses the compiler during 

decompiling. There is an extra advantage added to the proposed obfuscation technique; 

that is the compiler translates the entire code to byte code. Byte code is an extra layer of 
protection; normal user doesn’t have the ability to read it. This byte code is only readable 

by the machine. 

1.8 Organization of Thesis  

The thesis is formed into seven chapters that descripted as follows; 

Chapter 1: Background 

This chapter discusses the essentials of the research that include background, problem 

statement, research questions, objectives, research scope, and research organization.   

Chapter 2: Literature Review  

This chapter focuses of the current and latest reviews related to the research scope. This 

chapter discusses the issues and limitation of current obfuscation techniques and guides 

the researcher towards forming final and best technique possible as compare with the 

similar current techniques. 
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Chapter 3: Research Methodology  

This chapter presents the flow of the research methodology in conducting the thesis. The 

main purpose of the research is to propose a Hybrid Obfuscation Technique to prevent 

prohibited reverse engineering for java’s applications source file, and to select a test 

strategy to validate the effectiveness of the proposed technique. To achieve the research 
purpose, a sequence of activities and stages should be planned consequently. 

Chapter 4: Hybrid Obfuscation Technique  

This chapter presents the new proposed Hybrid Obfuscation Technique to protect the 

code in the source file. The chapter presents the architecture of the proposed technique, 

the output of the obfuscated code, and discussion on the performance of it.  

Chapter 5: Empirical Evaluation 

This chapter presents the empirical study that was conducted in this research. Experiment 

contains two phases; first phase was conducted with reversing tools against the 

applications that are not protected to get evidence of the need for protection.  Second 

phase of the experiment was conducted with reversing tools against hybrid obfuscated 
code, to get evidence of the technique effectiveness. Data set for the experiment were 

four types of applications; procedure math application, image logo, expert system, and 

obfuscated java application. The reversing tools that were used for reversing are CAVAJ, 

JAD, DJ, and JD.  

Chapter 6: Qualitative Analysis 

This chapter focuses on interview. The interview was conducted with four experts who 

are involved in the research and development of software applications. 

Chapter 7: Conclusion  

This research focuses on the contributions of the proposed hybrid obfuscation technique. 
Then it discusses the suggested future works in which improves the protection 

techniques. This chapter discusses the needed recommendation to improve the protection 

techniques.  
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