

METRIC-BASED CODE SMELL DETECTION TECHNIQUE FOR

PYTHON SOFTWARE

SAMAILA JA’AFARU LEEMAN

FSKTM 2019 55

i

METRIC-BASED CODE SMELL DETECTION TECHNIQUE FOR

PYTHON SOFTWARE

By

SAMAILA JA’AFARU LEEMAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,

in Fulfilment of the Requirements for the Degree of Master of Science

March 2018

© C
OPYRIG

HT U
PM

ii

COPYRIGHT

All material contained within the thesis, including without limitation text, logos,

icons, photographs, and all other artwork, is copyright material of Universiti Putra

Malaysia unless otherwise stated. Use may be made of any material contained within

the thesis for non-commercial purposes from the copyright holder. Commercial use

of material may only be made with the express, prior, written permission of

Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

© C
OPYRIG

HT U
PM

i

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment

of the requirement for the degree of Master of Science

METRIC-BASED CODE SMELL DETECTION TECHNIQUE FOR

PYTHON SOFTWARE

By

SAMAILA JA’AFARU LEEMAN

March 2018

Chairman : Norhayati Mohd Ali, PhD

Faculty : Computer Science and Information Technology

In software life cycle, maintenance is reported to cost between 80% and 90% of the

total software cost. Instead of improving, software quality can deteriorate if

maintenance of software is not carried out in line with design principles. A term,

“code smell” has been framed to refer to software constructs that deviates from

design principles’ implementation. Refactoring, a process of removing code smells

has been recommended to improve maintainability qualities. However, for

refactoring to be applied, code smells must be detected in the location where they

exist. While research on code smells in Java and C++ programmed codes is mature,

similar research in Python software is scarce. There are few literatures that show

metric-based approaches have been used to detect code smells in Python Software.

However, the techniques require selection of metrics and a tedious calibration of

threshold upon which detection is done. Existing metric-based techniques anticipates

parser to handle only one version of Python though Python 2 and 3 are popular and

end of life for Python 2 has been announced. This research proposes an enhanced

metric-based technique named PySTect that extracts structural information from

parsed models of any version of Python software and translates them into metrics for

detection of code smells. This research is divided into four phases. The first phase

involves reviewing the literatures on code smells detection techniques, parser

models, and code smells in Python software. In the second phase, details of

conceptual and architectural design of the metric-based technique are presented.

Thirdly, PySTect technique is implemented and evaluated in three experiments. In

the first experiment, precision and recall of 100% and 96% were recorded which

indicates the effectiveness of the PySTect technique in detecting five code smells. In

the second and third experiments 1,167,180 lines of code from 13 open source

Python projects are analysed. Results of the second experiment shows codes smell

increases with evolution of Python software projects and the third experiment

indicates the most dominant smells in Python SDKs are Lazy Class, Improper

Method Declaration, a Python specific smell and large class, in that order. This

© C
OPYRIG

HT U
PM

ii

research work has proposed an enhanced metric-based detection technique for

Python software that analyses Python codes irrespective of its versions and extracts

thresholds from good designed codes saving developers effort to calibrate threshold.

It has contributed in specifying and detecting a new code smell, Improper Method

Declaration and also confirmed that dynamic programming language suffers from

large class, lazy class, long method and long parameter list like static languages.

Lastly, this research found that code smells increases in Python programs with

evolution and, lazy class and improper method declaration should be prioritized in

SDK domain.

© C
OPYRIG

HT U
PM

iii

Abstrak tesis yang dikemukakan kepada Senat of Universiti Putra Malaysia sebagai

memenuhi keperluan untuk ijazah Master Sains

TEKNIK PENGESANAN Code Smell BERASASKAN METRIK UNTUK

PERISIAN Python

Oleh

SAMAILA JA’AFARU LEEMAN

Mac 2018

Pengerusi : Norhayati Mohd Ali, PhD

Fakulti : Sains Komputer dan Teknologi Maklumat

Di dalam kitaran hayat perisian, anggaran bagi kos penyelengaraan adalah di antara

80% hingga 90% daripada jumlah kos perisian. Jika penyelengaraan perisian tidak

dilaksanakan mengikut prinsip reka bentuk, kualiti perisian tidak akan bertambah

baik sebaliknya ia akan terus merosot. Istilah “code smell” telah diperkenalkan bagi

merujuk kepada pembangunan perisian yang tidak mengikut pelaksanaan prinsip

reka bentuk. Pemfaktoran semula, adalah satu proses pembuangan code smell yang

dicadang bagi meningkatkan kualiti penyelenggaraan. Walau bagaimanapun,

pemfaktoran semula hanya boleh dilaksanakan sekiranya lokasi code smell tersebut

dijumpai. Walaupun kajian code smell di dalam kod aturcara Java dan C++ sudah

matang, tetapi ia masih kurang bagi perisian Python. Terdapat beberapa literatur

yang menunjukkan pendekatan berasaskan metrik telah digunakan untuk mengesan

code smell dalam Perisian Python. Walau bagaimanapun, teknik ini memerlukan

pemilihan bagi metrik dan penentukuran ambang yang membosankan di mana

pengesanan dilakukan. Teknik berasaskan metrik yang sedia ada menjangkakan

parser untuk mengendalikan hanya satu versi Python walaupun Python 2 dan 3

adalah popular dan akhir hayat untuk Python 2 telah diumumkan. Kajian ini

mencadangkan satu teknik berasaskan metrik yang dipertingkatkan yang dinamakan

PySTect untuk ekstrak maklumat struktur dari model penghurai bagi mana-mana

versi perisian Python dan diterjemahkan ke dalam metrik untuk pengesanan code

smell. Kajian ini terbahagi kepada empat fasa. Fasa pertama melibatkan kajian

literatur ke atas teknik pengesanan code smell, model parser dan code smelldalam

perisian Python. Di dalam fasa kedua, reka bentuk konseptual dan seni bina bagi

teknik berasaskan metrik diperincikan. Untuk fasa ketiga, teknik ini akan dilaksana

dan diuji menggunakan bahasa aturcara Phython 3 di dalam satu alat prototaip yang

dipanggil PySTect. Pada fasa terakhir, tiga eksperimen dijalankan untuk menjawab

tiga soalan kajian yang dicadangkan di dalam tesis ini. Di dalam eksperimen

pertama, 100% ketepatan dan 96% perolehan telah direkodkan dan ia menunjukkan

keberkesanan teknik PySTect dalam mengesan lima code smell. Untuk eksperimen

© C
OPYRIG

HT U
PM

iv

kedua dan ketiga, sebanyak 1,167,180 baris kod daripada 13 projek Python dari

sumber terbuka dianalisis. Keputusan eksperimen kedua menunjukkan bilangan code

smell telah meningkat seiring dengan evolusi perisian Python. Eksperimen ketiga

pula menunjukkan code smell yang paling utama dalam SDK Python adalah Lazy

Class, Improper Method Declaration, code smell khas Python dan Large Class.

Kajian ini mencadangkan teknik pengesanan berasaskan metrik untuk perisian

Python di mana ia akan menganalisa kod Python tanpa mengira versi dan ia akan

mengekstrak ambang dari kod yang mempunyai reka bentuk yang baik. Kesannya, ia

menjimatkan masa pembangun perisian dalam menentukan nilai ambang. Kajian ini

telah menyumbang kepada cara menentukan dan mengesan code smell yang baru,

kesilapan pengisytiharan kaedah dan mengesahkan bahawa bahasa pengaturcaraan

dinamik mempunyai masalah berkaitan kelas besar, kelas malas, kaedah yang

panjang dan senarai parameter yang panjang seperti bahasa statik. Akhir sekali,

penyelidikan ini mendapati bahawa bilangan code smell terus meningkat dalam

program Python seiring dengan evolusi program. Selain daripada itu, Lazy Class dan

Improper Method Declaration harus diutamakan dalam domain SDK.

© C
OPYRIG

HT U
PM

v

ACKNOWLEDGEMENTS

Research of this nature cannot be accomplished without the guidance and support

of experienced hands. In recognition of this, may I acknowledge the contribution of

my supervisory committee who held my hands along this journey. It was a great

privilege for me to work under the expert guidance of Assoc. Professor Rodziah

Binti Atan and Dr. Khaironi Yatim Sharif. I wish to single out the Chairman of the

research committee, Dr. Norhayati Mohd Ali for horning my research skills. Her

kind words, constructive criticism and patient allowances for my weaknesses were

great sources of inspiration and encouragement for me.

I want to thank members of my research group especially members of the Software

Engineering Lab. Here, Osman, Luqman and Ididi Williams easily comes to mind.

May I also acknowledge the support of Dr. Aliyu and Engr. Maryam Ahmed, Mr.

Kabu, Yapilami, Pudza, Timothy, Irene, Eevon and others too numerous to mention.

Their friendship and inputs made great impact on my rewarding experience at UPM.

Let me now thank my dearest wife, Myhrt who filled every gap during my long

absence. She provided succour and encouragement to the children, Shekwolaye,

Shay’amu, Salman to bear my absence. I will forever be indebted for their patience,

endurance and many sacrifices. May I also express appreciation to my Mama, Ladi

and my siblings who were left to mourn the transition of my dad in my absence. I

must thank Engr. Hassan Odediran, Hon. Marcus Yari, my friends and pastors in

Nigeria and Malaysia who provided me support both spiritual and temporal during

the period of my studies.

Special thanks to management of Kaduna Polytechnic for granting me the

permission and support to travel abroad for the studies.

Now to the King Eternal, Immortal, Invisible, the only God, be honour and glory for

ever and ever. Amen.

© C
OPYRIG

HT U
PM

vii

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been

accepted as fulfilment of the requirement for the degree of Master of Science. The

members of the Supervisory Committee were as follows:

Norhayati Mohd Ali, PhD

Senior Lecturer

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Chairman)

Rodziah Atan, PhD

Associate Professor

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Member)

Khaironi Yatim Sharif, PhD

Senior Lecturer

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Member)

ROBIAH BINTI YUNUS, PhD

Professor and Dean

School of Graduate Studies

Universiti Putra Malaysia

Date:

© C
OPYRIG

HT U
PM

ix

Declaration by Members of Supervisory Committee

This is to confirm that:

 the research conducted and the writing of this thesis was under our

supervision;

 supervision responsibilities as stated in the Universiti Putra Malaysia

(Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature:

Name of Chairman

of Supervisory

Committee:

Dr. Norhayati Mohd Ali

Signature:

Name of Member

of Supervisory

Committee:

Associate Professor Dr. Rodziah Atan

Signature:

Name of Member

of Supervisory

Committee:

Dr. Khaironi Yatim Sharif

© C
OPYRIG

HT U
PM

x

TABLE OF CONTENTS

Page

ABSTRACT i

ABSTRAK iii

ACKNOWLEDGEMENTS v

APPROVAL vi

DECLARATION viii

LIST OF TABLES xiii

LIST OF FIGURES xiv

LIST OF APPENDICES xvi

LIST OF ABBREVIATIONS xvii

CHAPTER

1 INTRODUCTION 1

1.1 Background 1
1.2 Problem Statement 2

1.3 Research Questions 3
1.4 Research Objectives 3

1.5 Scope of the Research 3
1.6 Significance of the Research 4

1.7 Organization of the Thesis 4

2 LITERATURE REVIEW 6
2.1 Introduction 6

2.2 Code Smell in Software Engineering 6
2.3 Concept of Code Smell in Software Engineering 6

2.4 Code Smell in Dynamic Programming Languages 8
2.5 Python Programming Language 10

2.6 Python Code Parsers 11
2.7 Classification of Code Smell 11

2.8 Code Smell Detection Tools and Techniques 14
2.9 Software Metrics 15

2.9.1 Threshold Value for Detection of Code Smells 16
2.10 Selected Code Smells and their Detection Metrics 17

2.10.1 Large Class 18
2.10.2 Lazy Class 18

2.10.3 Long Parameter List 18
2.10.4 Long Method 19

2.10.5 Improper Method Declaration 19
2.11 Metric-Based Technique in Code Smell Detection 19

2.12 Change in Density of Code Smell with Software Evolution 20
2.13 Predominant Code Smells in Specific Domains 21

2.14 Effects of Code Smell on Software Maintainability 22
2.15 Summary of Literature Review 23

© C
OPYRIG

HT U
PM

xi

3 METHODOLOGY 24
3.1 Introduction 24

3.2 Phase 1: Review and Analysis of Literatures 25
3.2.1 Code Smell Definitions and Classification 25

3.2.2 Dynamic Programming Paradigm and Python

Language 26

3.2.3 Source Code Parsing 26
3.2.4 Code Smell Detection Tools and Metric-based

Techniques 26
3.2.5 Effects of Code Smell on Software Maintenance 26

3.3 Phase 2: Design Automated Metric-based Technique for

Detection of Code Smell 27

3.3.1 Identifying Keywords and Properties of Code Smell 27
3.3.2 Conceptual Design of the Metric-based Technique 27

3.3.3 Algorithm of the Metric-based Technique for

Detection of Code Smell 27

3.4 Phase 3: Implementation of Prototype Tool (PySTect) for

Code Smell Detection 28

3.4.1 Identify Metrics Required for Detection of Code Smell 28
3.4.2 Architecture and System Model 28

3.4.3 Prototype Tool Development 29
3.4.4 Testing of Prototype Tool 29

3.5 Phase 4: Experiments and Evaluation of Technique 29
3.5.1 Experiment to Evaluate Effectiveness 29

3.5.2 Experiment to Evaluate Code Smell Change with

Evolution 30

3.5.3 Experiment to Evaluate Predominant Code Smell in

SDKs 30

3.6 Summary 30

4 AUTOMATED METRIC-BASED CODE SMELL DETECTION

TECHNIQUE 32

4.1 Introduction 32
4.2 Requirements for Metric-based Code Smell Detection

Technique for Python Software 32
4.2.1 Data Input and Cleaning Component 33

4.2.2 Parser Model Component 34
4.2.3 Detection of Code Smell Component 34

4.2.4 Reporting Detection Component 35
4.3 Specification of Code Smell 35

4.4 Implementation of Metric-based Technique Prototype Tool

(PySTect) 38

4.4.1 Composition of Detection Rule for Code Smell

Detection 38

4.4.2 Metrics for the Detection of Code Smells 40
4.5 Algorithm for Detection of Code Smell 41

4.6 Testing of Prototype Tool (PySTect) 42
4.7 Summary 45

© C
OPYRIG

HT U
PM

xii

5 EXPERIMENTS, RESULTS AND DISCUSSIONS 46
5.1 Introduction 46

5.2 Experiment and Evaluation of Technique 46
5.2.1 Purpose of Experiment 46

5.2.2 Quality Focus 47
5.2.3 Perspective 47

5.2.4 Context 47
5.2.5 Experimental Subjects 47

5.2.6 Experimental Object 48
5.2.7 Evaluation of Effectiveness of the Automated

Technique 48
5.2.8 Expert Review Evaluation 52

5.2.9 Validity Threats 55
5.2.9.1 Internal Validity 55

5.2.9.2 Construct Validity 55
5.2.9.3 External Validity 55

5.3 Experiment II: Evaluate Change in Code Smell with Evolution 55
5.3.1 Purpose 56

5.3.2 Quality Focus 56
5.3.3 Perspective 56

5.3.4 Context 56
5.3.5 Object of the Experiment 56

5.3.6 Analysis of Results of Code Smell Detection 58
5.3.7 Conclusion on Experiment II 63

5.4 Experiment III: Evaluate the Predominant Code Smell in SDK 63
5.4.1 Purpose 63

5.4.2 Quality Focus 64
5.4.3 Perspective 64

5.4.4 Context 64
5.4.5 Experimental Object 64

5.4.6 Discussion of Results 65
5.4.7 Conclusion on Experiment III 68

5.5 Conclusion 69

6 CONCLUSION AND FUTURE WORK 70
6.1 Introduction 70

6.2 Benefits of the Research 70
6.3 Limitations of the Research 71

6.4 Future Work 71
6.5 Conclusion 71

REFERENCES 73

APPENDICES 83
BIODATA OF STUDENT 93

© C
OPYRIG

HT U
PM

xiii

LIST OF TABLES

Table Page

2.1 Comparison of Code Smell Detection Technique 9

2.2 Classification of Code Smells based on Object-Oriented Principle

Violation 13

2.3 Code Smell Detection Tools and Techniques 15

2.4 Software Metrics 16

2.5 Definition of Code Smell 17

4.1 Rules for the Specification of Code Smells 37

4.2 Rules for Detection of Selected Smells 40

5.1 Statistics of Structure of Watson Dataset 48

5.2 Results of Computed Precision and Recall 51

5.3 Evaluation by the Expert 54

5.4 Comparison of PySTect with Pysmell 54

5.5 Statistics of Project Abstractions 57

5.6 Detected Code Smells in Three Generations of Datasets 58

5.7 Statistics of Structure of SDK Projects 65

5.8 Detected Code Smells in SDKs 66

5.9 Density of Code Smells in 4 Projects 67

© C
OPYRIG

HT U
PM

xiv

LIST OF FIGURES

Figure Page

3.1 Overview of Research Methodology for Detection of Code Smell

(CS) 24

4.1 Architecture of Automated Metric-based Code Smell Detection

Technique 33

4.2 Specification of Code Smell 36

4.3 Structure representation of Detection Rule 38

4.4 A Rule for detection of Large Class 39

4.5 Tree representation of Code Smell Detection Rule 39

4.6 High level Pseudo-code for PySTect 41

4.7 Screenshot of reports of code smell detections 42

4.8 Screenshot of Results of detection 43

4.9 Results stored in CSV format 44

4.10 Detected code smells 45

5.1 A snapshot of Watson dataset from PyCharm IDE 49

5.2 Respondent Detection of Long Parameter List Smell 50

5.3 Filled Respondent Form 51

5.4 Expert’s Detection on Source Code 52

5.5 Markings agreeing with PySTect 53

5.6 Questionnaire as Filled by the Expert Reviewer 53

5.7 Structural Statistics of 3 versions of Pandas project 59

5.8 Code smells in 3 Panda Version 59

5.9 Statistics of structures in 3 versions of PySNMP projects 60

5.10 Code Smells in PySNMP in three generations 61

5.11 Statistics of structures in 3 Versions of PyLearn2 Projects 62

5.12 Code Smells in 3 Versions of Pylearn2 Projects 62

5.13 Code Smells in SDKs 66

5.14 Aggregate of Code Smells in SDKs 68

© C
OPYRIG

HT U
PM

xv

LIST OF APPENDICES

Appendix Page

1 Respondents Questionnaires 84

2 Expert’s Questionnaire 88

© C
OPYRIG

HT U
PM

xvi

LIST OF ABBREVIATIONS

BDFL Benevolent Dictator For Life

CM Class Method

F_arg First Argument

IMD Improper Method Declaration

IDE Integrated Development Environment

JSNose JavaScript Nose

LOC Lines of Code

MDec Method Decorated

MDecl Method Declaration

NOA Number of Attribute

NOM Number of Methods

NOP Number of Parameter

PEP Python Enhancement Proposal

PYPI Python Packages Index

Pysmell Python Smell

Pystect Python Smell Detector

SDK Software Development Kit

SM Static Class

Us_f_arg Used First Argument

© C
OPYRIG

HT U
PM

1

CHAPTER 1

1 INTRODUCTION

1.1 Background

In software development life cycle, cost of software maintenance, is between 80%

and 90% of the total software cost (Bavota, De Lucia, Marcus, & Oliveto, 2013;

Bennett & Rajlich, 2000). Maintenance in software engineering refers to the

modifications of software after it has been deployed. Some of maintenance activities

include, addition of functionalities, correction of bugs, adaptation to new

technologies and environment, and changes in development rules and practices in the

cause of software evolution. These activities over time, tends to negatively affect the

software qualities such as changeability, understandability, readability and testability

of software (Tripathy & Naik, 2015). The degradation of these qualities accumulates

into maintainability issues and consequently raising cost of maintenance. While

maintenance activities are unavoidable, carrying out the activities without adhering

to design principles or design patterns are at the roots of factors that trigger

degradation of software qualities (Ouni, Kessentini, Member, & Kessentini, 2014). If

this quality degradation of software is allowed to continue, it may ultimately lead to

software project failure as cost of maintenance becomes unaffordable.

To reverse software degradation and consequently mitigate against imminent failure,

restructuring of the software is recommended to bring the software in compliance

with design heuristics and principles. In Object Oriented Design paradigm,

restructuring is referred to as refactoring. Refactoring is defined by Fowler (Fowler,

Beck, Brant, Opdyke, & Roberts, 1999) as the rearrangement of software structure

without changing its observable characteristics.

However, for refactoring to occur, fragment of codes in need of refactoring must be

identified at a location since they are pervasive. Kent Beck is reported in Fowler et

al. (1999) as the first to use the term Bad Code Smell to refer to fragment of codes

that violates basic Object-Oriented Design principles. Code Smell therefore will

require to be detected in a code base for refactoring to be applied (Bassey, Dladlu, &

Ele, 2016). This has severally been suggested by researchers that detection of

refactoring candidates in object oriented code bases is the first step towards applying

refactoring.

Manual inspection of codes has been a historic practice in software engineering for

identifying fragments of codes that require attention (Moonen, 2002). Manual

inspection, however does not scale with size especially now that code bases are

burgeoning into thousands of lines. Manual detection of patterns in codes that

deviate from design principles is not only laborious, unrepeatable and prone to

errors, it also requires experience to track (Murphy-Hill, Zimmermann, Bird, &

Nagappan, 2014). There are a number of automated or semi-automated tools that

© C
OPYRIG

HT U
PM

2

have shown good promise in assisting developers using Object Oriented Languages

with code smell detection (Fernandes, Oliveira, Vale, Paiva, & Figueiredo, 2016).

However, majority of these tools do not support developers working with dynamic

languages such as Python (Chen, Chen, Ma, & Xu, 2016; Fard & Mesbah, 2013).

Research on code smells in dynamically-typed languages is scarce and if attention is

not given to it, it might pose great challenge to the future of promising programming

language development.

In this research, an enhanced metric-based technique is proposed for the detection of

code smells in Python software. The technique compares with previous techniques

proposed by (Chen et al., 2016; Fard & Mesbah, 2013; Moha, Guehenuec, Meur,

Laurence, & Tiberghien, 2010) in specification and detection of code smell.

1.2 Problem Statement

Research has shown that code smell is capable of negatively affecting software

quality such as understandability, readability, reusability testability and

modifiability (Abbes, Khomh, Guéhéneuc, & Antoniol, 2011; Sz, Antal, Nagy,

Ferenc, & Gyimóthy, 2017). Among many techniques for detection of code smells,

literatures have indicated that metric-based technique is most reliable (Yamashita &

Moonen, 2013b). Research by Chen et al., (2016) detects code smells in Python

programs using Pysmell, a metric-based technique. However, the detection process

is not transparent, threshold upon which detection is carried out is manually

computed and there is no indication the technique can analyse various versions of

Python. The technique uses a syntax tree analyser to collect metrics for detection but

it does not compute the criteria by which code smells are detected. This saddles the

user with the responsibility to manually determine the detection threshold which

leaves so much to the whims or experience of the user as calibration of appropriate

threshold requires some expertise.

Code smell detection is critical to refactoring and is evidenced by the attention

researchers have accorded code smell in DÉCOR (Moha, Duchein, Guehenuec, &

Meur, 2010), JDeodorant (Fokaefs, Tsantalis, Stroulia, & Chatzigeorgiou, 2012),

inCode (Yamashita & Moonen, 2013b), TrueRefactor (Griffith, Wahl, & Izurieta,

2011). Previous studies have indicated that Large Class, Long Method, Lazy Class,

dead code and Long Parameter List are predominant code smells in statically-typed

languages (Chen et al., 2016; Fard & Mesbah, 2013; Moha, Duchein, et al., 2010).

However, works by Chen et al., (2016) and Fard & Mesbah (2013) did not provide

information on which code smell is predominant in specific software domain of

Python software such as SDK. Knowledge about domain-specific code smell can

assist Python developers to pay attention to certain pitfalls that deteriorate software

quality as a results of code smells.

Python is an object-oriented language whose functions are first class objects. This

refers to Pythons feature in which functions have attributes and can be referenced,

© C
OPYRIG

HT U
PM

3

passed as argument of another function and be assigned to variables (Lott, 2014).

Though these features of Python offers so much flexibility, it opens up opportunity

for breeding of code smells capable of ruining software qualities especially as

software evolve with every maintenance cycle (Yamashita & Moonen, 2013a; Fard

& Mesbah, 2013). There is scarcity of information on how code smell density

changes as Python software undergo evolution.

1.3 Research Questions

The purpose of this research is to answer the following questions:

1. How effective is the proposed automated metric-based technique in

detecting code smells in a parser model of Python software?

2. How does code smell density change with evolution in Python codes?

3. What are the predominant code smells in SDK domain?

1.4 Research Objectives

The objective of this research is to detect code smells in Python source codes using

the proposed automated metric-based technique. The specific objectives are itemised

as follows:

1. To propose an automated metric-based technique (PySTect) to detect code

smells in Python parser model.

2. To evaluate the density of code smell changes with software evolution.

3. To determine predominant code smells in SDK domain via four Python

open source projects and PySTect tool.

1.5 Scope of the Research

This research proposes an automated metric-based technique for detection of code

smell in Python software. There are many code smells discussed in literature

however, this work focused on five code smells among which are four most

researched code smells, namely; Large Class, Lazy Class, Long Method and Long

Parameter List. The fifth code smell, Improper Method Declaration is a newly

defined code smell in this research. The famous four code smells were selected to be

detected in this thesis to provide information whether Python software similarly

suffers from the five code smells. The automated metric-based technique in this

thesis detects code smell statically and is validated on Python software. However,

the technique can be extended to analyse codes in other dynamic languages with

little modification in the presence of the language’s parser model.

© C
OPYRIG

HT U
PM

4

1.6 Significance of the Research

The research discussed in this thesis contributes to the field of software engineering

particularly in the area of software maintenance. Code smell detection in software is

the primary step to refactor source code. The main contributions from this research

are as follows:

1. This research provides an automated metric-based technique for detection

code smells in Python software. The technique incorporates a version

converter to allow for detection of code smells in Python software

irrespective of its version. The technique automates extraction of metrics

and threshold values for detection of five code smells saving developers’

effort in calibration of threshold. The technique can be extended with little

modification to detect code smells in other dynamic languages other than

Python.

2. This research provides an architecture to specify and detect code smell in

Python software. Four major components are defined: Input and cleaning of

data, parser component, smell detection, and detection report components.

3. The automated metric-based technique is implemented into a prototype tool

for code smell detection in Python software called PySTect as a proof-of-

concept of the technique. The prototype is evaluated using three

experiments. Results from the evaluation shows that Python software

suffers from code smells and code smell density increases with the software

evolution.

4. The result also shows that Python SDKs suffer more from Lazy Class,

Improper Method Declaration and Large Class smells than from Long

Method and Long Parameter List. This information will guide Python SDK

developers prioritize this code smells.

1.7 Organization of the Thesis

This work is broadly structured into six chapters as outlined in the following:

In chapter one, the general overview of the thesis is presented. The problems the

research sets out to solve are reduced to research questions. The research questions

are transformed into objectives of the research. The chapter closes with stating the

scope and itemising significance of the research.

In chapter two, the related literatures that form the body of knowledge of the domain

is reviewed to gain deep insight into previous studies that have been carried out in

the area of design and code defects and various solutions that have been proposed.

Techniques that have been proposed by researchers to assist developers analyse and

detect code defects are described to bring the researcher abreast of the state the art.

In reviewing the literatures, gaps are identified and described.

© C
OPYRIG

HT U
PM

5

Chapter three describes the methodology adopted in the research. It presents the

framework of the thesis detailing steps taken to achieve the objectives stated in

chapter one. The chapter also describes the steps taken to evaluate the

implementation and data used to validate it.

The proposed concept is described in details in chapter four. The frameworks,

architectural designs, algorithms and the details of the automated technique and its

implementation are described. The chapter closes with screenshots of output

generated by the prototype tool, PySTect to prove the concept enunciated in the

technique.

Chapter five presents the results and discussions of the experiments conducted to

answer research questions. The results of PySTect detections and validation by

human subjects is presented. Others are results of experiments to find how density of

code smells changes with evolution and what are the predominant smells in SDK

domain. The results are discussed and conclusions drawn.

Chapter six describes benefits, limitations and suggestions for future work of the

research. Lastly, a general conclusion of the entire research is drawn to provide a

summary of what has been achieved by the research.

© C
OPYRIG

HT U
PM

73

7 REFERENCES

Abbes, M., Khomh, F., Guéhéneuc, Y. G., & Antoniol, G. (2011). An empirical

study of the impact of two antipatterns, Blob and Spaghetti Code, on program

comprehension. Proceedings of the European Conference on Software

Maintenance and Reengineering, CSMR, 181–190.

https://doi.org/10.1109/CSMR.2011.24

Ahmed, I., Ghorashi, S., & Jensen, C. (2014). An Exploration of Code Quality in

FOSS Projects. In IFIP International Conf. on Open Source Systems. Springer

Berlin Heidelberg. https://doi.org/10.1007/978-3-642-55128-4_26

Arcelli Fontana, F., & Zanoni, M. (2017). Code smell severity classification using

machine learning techniques. Knowledge-Based Systems, 0, 1–16.

https://doi.org/10.1016/j.knosys.2017.04.014

Bassey, I., Dladlu, N., & Ele, B. (2016). Object-Oriented Code Metric-Based

Refactoring Opportunities Identification Approaches: analysis.

https://doi.org/10.1109/ACIT-CSII-BCD.2016.24

Bavota, G., De Lucia, A., Marcus, A., & Oliveto, R. (2013). Using structural and

semantic measures to improve software modularization. Empirical Software

Engineering (Vol. 18). https://doi.org/10.1007/s10664-012-9226-8

Bennett, K. H., & Rajlich, V. T. V. T. (2000). Software maintenance and evolution:

a roadmap. In Proceedings of the Conference on the Future of Software

Engineering (ICSE ’00) (Vol. 225, pp. 73–87). Limerick, Ireland: ACM New

York, NY, USA. https://doi.org/10.1145/336512.336534

Bott, R. (2014). Learning Python 3rd Ed. Igarss 2014.

https://doi.org/10.1007/s13398-014-0173-7.2

Bowes, D., Randall, D., & Hall, T. (2013). The Inconsistent Measurement of

Message Chains, 62–68.

Brown, W. J., Malveau, R. C., Mowbray, T. J., & Wiley, J. (1998). AntiPatterns:

Refactoring Software , Architectures, and Projects in Crisis. (T. M. F. Hudson,

Ed.), John Wiley & Sons, Inc (Vol. 3). Robert Ipsen. Retrieved from

http://www.amazon.com/dp/0849329949

Bulychev, P., & Minea, M. (2008). Duplicate code detection using anti-unification.

In In Proceedings of the 2nd Spring/Summer Young Researchers’ Colloquium

on Software Engineering (SYRCoSE),.

Chatzigeorgiou, A., & Manakos, A. (2014). Investigating the evolution of code

smells in object-oriented systems. Innovations in Systems and Software

Engineering, 10(1), 3–18. https://doi.org/10.1007/s11334-013-0205-z

© C
OPYRIG

HT U
PM

74

Chen, Z., Chen, L., Ma, W., & Xu, B. (2016). Detecting Code Smells in Python

Programs. In 2016 International Conference on Software Analysis, Testing and

Evolution (SATE). https://doi.org/10.1109/SATE.2016.10

Delchev, M., & Harun, M. F. (2015). Investigation of Code Smells in Different

Software Domains. Full-Scale Software Engineering FsSE, (November), 31–36.

Dewes, A., & Neumann, C. (2018). Python Anti-Patterns. Berlin, Germany:

QuantifiedCode. Retrieved from https://docs.quantifiedcode.com/python-anti-

patterns/

Dos Reis, J. P. D., Brito E Abreu, F., & De Carneiro, F. G. (2017). Code smells

incidence: Does it depend on the application domain? In Proceedings - 2016

10th International Conference on the Quality of Information and

Communications Technology, QUATIC 2016 (pp. 172–177).

https://doi.org/10.1109/QUATIC.2016.044

Fan, H., & Mu, Y. (2014). A PERFORMANCE TESTING AND OPTIMIZATION

TOOL, 24–27.

Fard, A. M., & Mesbah, A. (2013). JSNOSE: Detecting javascript code smells. In

IEEE 13th International Working Conference on Source Code Analysis and

Manipulation, SCAM 2013 (pp. 116–125).

https://doi.org/10.1109/SCAM.2013.6648192

Fenton, N. E., & Neil, M. (1998). Software Metrics : Successes , Failures and New

Directions, 1–19.

Fernandes, E., Oliveira, J., Vale, G., Paiva, T., & Figueiredo, E. (2016). A Review-

based Comparative Study of Bad Smell Detection Tools.

Fokaefs, M., Tsantalis, N., Stroulia, E., & Chatzigeorgiou, A. (2012). Identification

and application of Extract Class refactorings in object-oriented systems.

Journal of Systems and Software, 85(10), 2241–2260.

https://doi.org/10.1016/j.jss.2012.04.013

Fontana, F. A., B, M. Z., & Zanoni, F. (2015). A Duplicated Code Refactoring

Advisor. In L. et al. (Eds.) (Ed.) (pp. 3–14). Switzerland: Springer International

Publishing Switzerland. https://doi.org/10.1007/978-3-319-18612-2

Fontana, F. A., Ferme, V., Marino, A., Walter, B., & Martenka, P. (2013).

Investigating the impact of code smells on system’s quality: An empirical study

on systems of different application domains. In IEEE International Conference

on Software Maintenance, ICSM (pp. 260–269). IEEE Computer Society.

https://doi.org/10.1109/ICSM.2013.37

Fontana, F. A., Ferme, V., Zanoni, M., & Yamashita, A. (2015). Automatic metric

thresholds derivation for code smell detection. International Workshop on

Emerging Trends in Software Metrics, WETSoM, 2015-Augus(October), 44–53.

https://doi.org/10.1109/WETSoM.2015.14

© C
OPYRIG

HT U
PM

75

Fontana, F. A., Mangiacavalli, M., Pochiero, D., & Zanoni, M. (2015). On

experimenting refactoring tools to remove code smells. In Scientific Workshop

Proceedings of the XP2015 on - XP ’15 workshops (pp. 1–8). Helsinki, Finland:

ACM. https://doi.org/10.1145/2764979.2764986

Fontana, F. A., Mäntylä, M. V, Zanoni, M., & Marino, A. (2016a). Comparing and

experimenting machine learning techniques for code smell detection. Empirical

Software Engineering, 1143–1191. https://doi.org/10.1007/s10664-015-9378-4

Fontana, F. A., Mäntylä, M. V, Zanoni, M., & Marino, A. (2016b). Comparing and

Experimenting Machine Learning Techniques for Code Smell Detection 1

Introduction. Empirical Software Engineering, Volume 21, Pages 1143-119.

Fontana, F. A., Mariani, E., Morniroli, A., Sormani, R., & Tonello, A. (2011). An

experience report on using code smells detection tools. Proceedings - 4th IEEE

International Conference on Software Testing, Verification, and Validation

Workshops, ICSTW 2011, (August 2017), 450–457.

https://doi.org/10.1109/ICSTW.2011.12

Fontana, F. A., Zanoni, M., Marino, A., & Mäntylä, M. V. (2013). Code smell

detection: Towards a machine learning-based approach. IEEE International

Conference on Software Maintenance, ICSM, 396–399.

https://doi.org/10.1109/ICSM.2013.56

Fowler, M. (1997). Refactoring : Improving the Design of Existing Code, 1–82.

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (1999). Refactoring:

Improving the Design of Existing Code.

Ganesh, S. G., Sharma, T., & Suryanarayana, G. (2011). Towards a Principle-based

Classification of Structural Design Smells, 12(2), 1–29.

https://doi.org/10.5381/jot.2013.12.2.a1

Garcia, J., Popescu, D., Edwards, G., & Medvidovic, N. (2009). Toward a Catalogue

of Architectural Bad Smells. In C. Mirandola, R., Gorton, I., Hofmeister (Ed.),

Architectures for Adaptive Software Systems QoSA. Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-02351-4_10

Griffith, I., Wahl, S., & Izurieta, C. (2011). TrueRefactor : An Automated

Refactoring Tool to Improve Legacy System and Application

Comprehensibility. In In the Proceedings of the 24th International Conference

of Computer Applications in Industry and Engineering (CAINE).

Khomh, F., Penta, M. Di, Guéhéneuc, Y. G., & Antoniol, G. (2012). An exploratory

study of the impact of antipatterns on class change- and fault-proneness. In

Empirical Software Engineering (Vol. 17, pp. 243–275). IEEE.

https://doi.org/10.1007/s10664-011-9171-y

Lanza, M., & Marinescu, R. (2006). Object-Oriented Metrics in Practice. Springer-

Verlag.

© C
OPYRIG

HT U
PM

76

Lee, J., Lee, D., Kim, D., & Park, S. (2012). A Semantic-Based Approach for

Detecting and Decomposing God Classes. In ArXiv e-prints. Retrieved from

http://arxiv.org/abs/1204.1967

Lin, Y., & Holt, R. C. (2004). Formalizing Fact Extraction. Electronic Notes in

Theoretical Computer Science, 94, 93–102.

https://doi.org/10.1016/j.entcs.2004.01.001

Liu, X., & Zhang, C. (2017). DT : a detection tool to automatically detect code smell

in software project, 71(Icmmita 2016), 681–684.

Lott, S. F. (2014). Mastering Object-oriented Python. Birhingham - Mumbai: Packt

Publishing Ltd.

Mansoor, U., Kessentini, M., Maxim, B. R., & Deb, K. (2016). Multi-objective code-

smells detection using good and bad design examples. Software Quality

Journal, 1–24. https://doi.org/10.1007/s11219-016-9309-7

Mäntylä, M. V., & Lassenius, C. (2006). Subjective evaluation of software

evolvability using code smells: An empirical study. In Empirical Software

Engineering (Vol. 11, pp. 395–431). https://doi.org/10.1007/s10664-006-9002-

8

Marinescu, C., Marinescu, R., Mihancea, P., Ratiu, D., & Wettel, R. (2005).

iPlasma:An Integrated Platform for Quality Assessment of Object-Oriented

Design. Proceedings of the 21st IEEE International Conference on Software

Maintenance ICSM 2005, (August 2016), 77–80.

Marinescu, R, Ganea, G., & Verebi, I. (2010). InCode: Continuous Quality

Assessment and Improvement. 2010 14th European Conference on Software

Maintenance and Reengineering, 274–275.

https://doi.org/10.1109/CSMR.2010.44

Marinescu, Radu. (2004). Detection Strategies : Metrics-Based Rules for Detecting

Design Flaws.

Mihancea, P. F., & Marinescu, R. (2005). Towards the Optimization of Automatic

Detection of Design Flaws in Object-Oriented Software Systems.

Moha, N., Duchein, L., Guehenuec, Y.-G., & Meur, L. (2010). DECOR: A Method

for the Specification and Detection of Code and Design Smells. IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING, 36(1), 20–36.

https://doi.org/10.1007/s00165-009-0115-x

Moha, N., Guehenuec, Y.-G., Meur, L., Laurence, D., & Tiberghien, A. (2010).

From a Domain Analysis to the Specification and Detection of Code and

Design Smells. Formal Aspectes of Omputing. https://doi.org/10.1007/s00165-

009-0115-x

© C
OPYRIG

HT U
PM

77

Moonen, L. M. F. (2002). Java Quality Assurance by Detecting Code Smell. UvA-

DARE (Digital Academic Repository) Exploring Software Systems.

Munro, M. J. (2005). Product Metrics for Automatic Identification of “ Bad Smell ”

Design Problems in Java Source-Code, (Metrics).

Murphy-Hill, E., & Black, A. P. (2010). An interactive ambient visualization for

code smells. Proceedings of the 5th International Symposium on Software

Visualization, 5–14. https://doi.org/10.1145/1879211.1879216

Murphy-Hill, E., Zimmermann, T., Bird, C., & Nagappan, N. (2014). The Design

Space of Bug Fixes and How Developers Navigate It. IEEE Transactions on

Software Engineering, 1–1. https://doi.org/10.1109/TSE.2014.2357438

Nunez-Varela, A. S., Perez-Gonzalez, H. G., Martinez-Perez, F. E., & Soubervielle-

Montalvo, C. (2017). Source code metrics: A systematic mapping study. In

Journal of Systems and Software (Vol. 128, pp. 164–197). Elsevier Inc.

https://doi.org/10.1016/j.jss.2017.03.044

Olbrich, S. M., Cruzes, D. S., & Sjøberg, D. I. K. (2010). Are all Code Smells

Harmful ? A Study of God Classes and Brain Classes in the Evolution of three

Open Source Systems.

Ouni, A. (2014). A Mono- and Multi-objective Approach for Recommending

Software Refactoring. Université de Montréal.

Ouni, A., Kessentini, M., Sahraoui, H., Inoue, K., & Salah, M. (2015). The Journal

of Systems and Software Improving multi-objective code-smells correction

using development history. The Journal of Systems & Software, 105, 18–39.

https://doi.org/10.1016/j.jss.2015.03.040

Ouni, A., Kessentini, W., Member, S., & Kessentini, M. (2014). A Cooperative

Parallel Search-Based Software Engineering Approach for Code-Smells A

Cooperative Parallel Search-Based Software Engineering Approach for Code-

Smells Detection, (September). https://doi.org/10.1109/TSE.2014.2331057

Padilha, J., Pereira, J., Figueiredo, E., Almeida, J., Garcia, A., & Sant’Anna, C.

(2014). On the effectiveness of concern metrics to detect code smells: An

empirical study. In J. M. et Al. (Ed.), Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics) (Vol. 8484 LNCS, pp. 656–671). Springer, Cham.

https://doi.org/10.1007/978-3-319-07881-6_44

Paiva, T., Damasceno, A., Padilha, J., Figueiredo, E., & Sant’Anna, C. (2015).

Experimental Evaluation of Code Smell Detection Tools. 3th Workshop on

Software Visualization, Evolution, and Maintenance (VEM 2015), 8.

Palomba, F. (2016). Alternative Sources of Information for Code Smell Detection :

Postcards From Far Away. In 2016 IEEE International Conference on Software

Maintenance and Evolution (ICSME). Raleigh, NC, US: IEE.

© C
OPYRIG

HT U
PM

78

Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., Poshyvanyk, D., & De Lucia, A.

(2015). Mining version histories for detecting code smells. IEEE Transactions

on Software Engineering, 41(5), 462–489.

https://doi.org/10.1109/TSE.2014.2372760

Peters, T. (2010). The Zen of Python. In Zen of Python (pp. 301–302). Apress.

Retrieved from http://download.springer.com/static/pdf/898/chp%253A

10.1007%252F978-1-4302-2758-8_14.pdf?originUrl=http%3A%2F%2

Flink.springer.com%2Fchapter%2F10.1007%2F978-1-4302-2758-

8_14&token2=exp=1497511758~acl=%2Fstatic%2Fpdf%2F898%2Fchp%2525

3A10.1007%25252F978-1-43

Rasool, G., & Arshad, Z. (2015). A Review of Code Smell Mining Techniques.

Journal Software Evolution and Process, 27:867–895.

https://doi.org/10.1002/smr.1737

Ray, B., Posnett, D., Filkov, V., & Devanbu, P. (2016). A Large Scale Study of

Multiple Programming Languages and Code Quality. 2016 IEEE 23rd

International Conference on Software Analysis, Evolution, and Reengineering

(SANER), 1, 563–573. https://doi.org/10.1109/SANER.2016.112

Reitz, K., & Schlusser, T. (2016). The Hitchhiker’s Guide To Python (1st Editio).

Sebastopol, CA 95472: O’Reilly Media, Inc.

Schumacher, J., Zazworka, N., Shull, F., Seaman, C., & Shaw, M. (2010). Building

empirical support for automated code smell detection. In Proceedings of the

2010 ACM-IEEE International Symposium on Empirical Software Engineering

and Measurement - ESEM ’10 (p. 1). Bolzano-Bozen, Italy.: ACM-IEEE

International Symposium on Empirical Engineering & Measurement.

https://doi.org/10.1145/1852786.1852797

Sjoberg, D. I. K., Yamashita, A., Anda, B. C. D., Mockus, A., & Dyba, T. (2013).

Quantifying the effect of code smells on maintenance effort. IEEE Transactions

on Software Engineering, 39(8), 1144–1156.

https://doi.org/10.1109/TSE.2012.89

Sz, G., Antal, G., Nagy, C., Ferenc, R., & Gyimóthy, T. (2017). The Journal of

Systems and Software Empirical study on refactoring large-scale industrial

systems and its effects on maintainability, 129, 107–126.

https://doi.org/10.1016/j.jss.2016.08.071

Tahmid, A., Nahar, N., & Sakib, K. (2016). Understanding the Evolution of Code

Smells by Observing Code Smell Clusters, 8–11.

https://doi.org/10.1109/saner.2016.45

Travassos, G., Shull, F., Fredericks, M., & Basili, V. R. (1999). Detecting Defects in

Object-oriented Designs: Using Reading Techniques to Increase Software

Quality. SIGPLAN Not., 34(10), 47–56. https://doi.org/10.1145/320385.320389

© C
OPYRIG

HT U
PM

79

Tripathy, P., & Naik, K. (2015). Software Evolution and Maintenance. Hoboken,

New Jersey & Canada: John Wiley & Sons, Inc.

https://doi.org/10.1002/9781118964637

Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Penta, M. Di, De Lucia, A., &

Poshyvanyk, D. (2017). When and Why Your Code Starts to Smell Bad (and

Whether the Smells Go Away). IEEE Transactions on Software Engineering,

43(11), 1063–1088. https://doi.org/10.1109/TSE.2017.2653105

Van Rossum, G., & Drake Jr., F. L. (2011). The Python Language Reference

Manual. Retrieved from https://www.amazon.com/Python-Language-

Reference-Manual/dp/1906966141

Wake, W. C. (2003). Refactoring Workbook. Addison-Wesley Professional.

Retrieved from http://www.amazon.com/dp/0321109295

Walter, B., Matuszyk, B., & Fontana, F. A. (2015). Including structural factors into

the metrics-based code smells detection. In XP 2015 Workshops. Helsinki,

Finland: ACM. https://doi.org/http://dx.doi.org/10.1145/2764979.2764990

Wang, B., Chen, L., Ma, W., Chen, Z., & Xu, B. (2015). An empirical study on the

impact of Python dynamic features on change-proneness.

https://doi.org/10.18293/SEKE2015-097

Wentworth, P., Elkner, J., Downey, A. B., & Meyers, C. (2012). How to Think Like

a Computer Scientist : Learning with Python 3 Documentation.

Williams, L., Ho, D., Heckman, S., & Authors, C. (2005). Software Metrics in

Eclipse. Retrieved May 24, 2017, from

http://realsearchgroup.org/SEMaterials/tutorials/metrics/

Wohlin, C., Runeson, P., Bost, M., Ohlsson, M. C., Regnell, B., & Wessl6n, A.

(2000). Experimentation in software engineering An Introduction. (V. . Basili,

Ed.). The Kluwer International Series in Software Engineering.

Yamashita, A., & Moonen, L. (2012). Do code smells reflect important

maintainability aspects? IEEE International Conference on Software

Maintenance, ICSM, 306–315. https://doi.org/10.1109/ICSM.2012.6405287

Yamashita, A., & Moonen, L. (2013a). Exploring the impact of inter-smell relations

on software maintainability: An empirical study. Proceedings - International

Conference on Software Engineering, 682–691.

https://doi.org/10.1109/ICSE.2013.6606614

Yamashita, A., & Moonen, L. (2013b). To what extent can maintenance problems be

predicted by code smell detection? -An empirical study. Information and

Software Technology, 55(12), 2223–2242.

https://doi.org/10.1016/j.infsof.2013.08.002

© C
OPYRIG

HT U
PM

80

Zaytsev, V., & Bagge, A. H. (2014). Parsing in a Broad Sense. In 17th International

Conference, Models 2014, Valencia (pp. 50–67). Valencia, Spain: Springer

International Publishing Switzerland.

Zhang, M., Baddoo, N., Wernick, P., & Hall, T. (2011). Prioritising Refactoring

using Code Bad Smells. In 2011 Fourth International Conference on Software

Testing, Verification and Validation Workshops. IEEE Computer Society.

https://doi.org/10.1109/ICSTW.2011.69

© C
OPYRIG

HT U
PM

	Blank Page
	Blank Page
	Blank Page

