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In software life cycle, maintenance is reported to cost between 80% and 90% of the 

total software cost. Instead of improving, software quality can deteriorate if 

maintenance of software is not carried out in line with design principles. A term, 

“code smell” has been framed to refer to software constructs that deviates from 

design principles’ implementation. Refactoring, a process of removing code smells 

has been recommended to improve maintainability qualities. However, for 

refactoring to be applied, code smells must be detected in the location where they 

exist. While research on code smells in Java and C++ programmed codes is mature, 

similar research in Python software is scarce. There are few literatures that show 

metric-based approaches have been used to detect code smells in Python Software. 

However, the techniques require selection of metrics and a tedious calibration of 

threshold upon which detection is done. Existing metric-based techniques anticipates 

parser to handle only one version of Python though Python 2 and 3 are popular and 

end of life for Python 2 has been announced. This research proposes an enhanced 

metric-based technique named PySTect that extracts structural information from 

parsed models of any version of Python software and translates them into metrics for 

detection of code smells. This research is divided into four phases. The first phase 

involves reviewing the literatures on code smells detection techniques, parser 

models, and code smells in Python software. In the second phase, details of 

conceptual and architectural design of the metric-based technique are presented. 

Thirdly, PySTect technique is implemented and evaluated in three experiments. In 

the first experiment, precision and recall of 100% and 96% were recorded which 

indicates the effectiveness of the PySTect technique in detecting five code smells. In 

the second and third experiments 1,167,180 lines of code from 13 open source 

Python projects are analysed. Results of the second experiment shows codes smell 

increases with evolution of Python software projects and the third experiment 

indicates the most dominant smells in Python SDKs are Lazy Class, Improper 

Method Declaration, a Python specific smell and large class, in that order. This 

© C
OPYRIG

HT U
PM



ii 

research work has proposed an enhanced metric-based detection technique for 

Python software that analyses Python codes irrespective of its versions and extracts 

thresholds from good designed codes saving developers effort to calibrate threshold. 

It has contributed in specifying and detecting a new code smell, Improper Method 

Declaration and also confirmed that dynamic programming language suffers from 

large class, lazy class, long method and long parameter list like static languages. 

Lastly, this research found that code smells increases in Python programs with 

evolution and, lazy class and improper method declaration should be prioritized in 

SDK domain.  
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Di dalam kitaran hayat perisian, anggaran bagi kos penyelengaraan adalah di antara 

80% hingga 90% daripada jumlah kos perisian. Jika penyelengaraan perisian tidak 

dilaksanakan mengikut prinsip reka bentuk, kualiti perisian tidak akan bertambah 

baik sebaliknya ia akan terus merosot.  Istilah “code smell” telah diperkenalkan bagi 

merujuk kepada pembangunan perisian yang tidak mengikut pelaksanaan prinsip 

reka bentuk. Pemfaktoran semula, adalah satu proses pembuangan code smell yang 

dicadang bagi meningkatkan kualiti penyelenggaraan. Walau bagaimanapun, 

pemfaktoran semula hanya boleh dilaksanakan sekiranya lokasi code smell tersebut 

dijumpai.  Walaupun kajian code smell di dalam kod aturcara Java dan C++ sudah 

matang, tetapi ia masih kurang bagi perisian Python. Terdapat beberapa literatur 

yang menunjukkan pendekatan berasaskan metrik telah digunakan untuk mengesan 

code smell dalam Perisian Python. Walau bagaimanapun, teknik ini memerlukan 

pemilihan bagi metrik dan penentukuran ambang yang membosankan di mana 

pengesanan dilakukan. Teknik berasaskan metrik yang sedia ada menjangkakan 

parser untuk mengendalikan hanya satu versi Python walaupun Python 2 dan 3 

adalah popular dan akhir hayat untuk Python 2 telah diumumkan. Kajian ini 

mencadangkan satu teknik berasaskan metrik yang dipertingkatkan yang dinamakan 

PySTect untuk ekstrak maklumat struktur dari model penghurai bagi mana-mana 

versi perisian Python dan diterjemahkan ke dalam metrik untuk pengesanan code 

smell. Kajian ini terbahagi kepada empat fasa. Fasa pertama melibatkan kajian 

literatur ke atas teknik pengesanan code smell, model parser dan code smelldalam 

perisian Python. Di dalam fasa kedua, reka bentuk konseptual dan seni bina bagi 

teknik berasaskan metrik diperincikan. Untuk fasa ketiga, teknik ini akan dilaksana 

dan diuji menggunakan bahasa aturcara Phython 3 di dalam satu alat prototaip yang 

dipanggil PySTect. Pada fasa terakhir, tiga eksperimen dijalankan untuk menjawab 

tiga soalan kajian yang dicadangkan di dalam tesis ini. Di dalam eksperimen 

pertama, 100% ketepatan dan 96% perolehan telah direkodkan dan ia menunjukkan 

keberkesanan teknik PySTect dalam mengesan lima code smell. Untuk eksperimen 
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kedua dan ketiga, sebanyak 1,167,180 baris kod daripada 13 projek Python dari 

sumber terbuka dianalisis. Keputusan eksperimen kedua menunjukkan bilangan code 

smell telah meningkat seiring dengan evolusi perisian Python.  Eksperimen ketiga 

pula menunjukkan code smell yang paling utama dalam SDK Python adalah Lazy 

Class, Improper Method Declaration, code smell khas Python dan Large Class. 

Kajian ini mencadangkan teknik pengesanan berasaskan metrik untuk perisian 

Python di mana ia akan menganalisa kod Python tanpa mengira versi dan ia akan 

mengekstrak ambang dari kod yang mempunyai reka bentuk yang baik. Kesannya, ia 

menjimatkan masa pembangun perisian dalam menentukan nilai ambang. Kajian ini 

telah menyumbang kepada cara menentukan dan mengesan code smell yang baru, 

kesilapan pengisytiharan kaedah dan mengesahkan bahawa bahasa pengaturcaraan 

dinamik mempunyai masalah berkaitan kelas besar, kelas malas, kaedah yang 

panjang dan senarai parameter yang panjang seperti bahasa statik. Akhir sekali, 

penyelidikan ini mendapati bahawa bilangan code smell terus meningkat dalam 

program Python seiring dengan evolusi program. Selain daripada itu, Lazy Class dan 

Improper Method Declaration harus diutamakan dalam domain SDK. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background  

In software development life cycle, cost of software maintenance, is between 80% 

and 90% of the total software cost (Bavota, De Lucia, Marcus, & Oliveto, 2013; 

Bennett & Rajlich, 2000). Maintenance in software engineering refers to the 

modifications of software after it has been deployed. Some of maintenance activities 

include, addition of functionalities, correction of bugs, adaptation to new 

technologies and environment, and changes in development rules and practices in the 

cause of software evolution. These activities over time, tends to negatively affect the 

software qualities such as changeability, understandability, readability and testability 

of software  (Tripathy & Naik, 2015). The degradation of these qualities accumulates 

into maintainability issues and consequently raising cost of maintenance. While 

maintenance activities are unavoidable, carrying out the activities without adhering 

to design principles or design patterns are at the roots of factors that trigger 

degradation of software qualities (Ouni, Kessentini, Member, & Kessentini, 2014). If 

this quality degradation of software is allowed to continue, it may ultimately lead to 

software project failure as cost of maintenance becomes unaffordable. 

To reverse software degradation and consequently mitigate against imminent failure, 

restructuring of the software is recommended to bring the software in compliance 

with design heuristics and principles. In Object Oriented Design paradigm, 

restructuring is referred to as refactoring. Refactoring is defined by Fowler (Fowler, 

Beck, Brant, Opdyke, & Roberts, 1999) as the rearrangement of software structure 

without changing its observable characteristics. 

However, for refactoring to occur, fragment of codes in need of refactoring must be 

identified at a location since they are pervasive. Kent Beck is reported in Fowler et 

al. (1999) as the first to use the term Bad Code Smell to refer to fragment of codes 

that violates basic Object-Oriented Design principles. Code Smell therefore will 

require to be detected in a code base for refactoring to be applied (Bassey, Dladlu, & 

Ele, 2016). This has severally been suggested by researchers that detection of 

refactoring candidates in object oriented code bases is the first step towards applying 

refactoring. 

Manual inspection of codes has been a historic practice in software engineering for 

identifying fragments of codes that require attention (Moonen, 2002). Manual 

inspection, however does not scale with size especially now that code bases are 

burgeoning into thousands of lines. Manual detection of patterns in codes that 

deviate from design principles is not only laborious, unrepeatable and  prone to 

errors, it also requires experience to track (Murphy-Hill, Zimmermann, Bird, & 

Nagappan, 2014). There are a number of automated or semi-automated tools that 
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have shown good promise in assisting developers using Object Oriented Languages 

with code smell detection (Fernandes, Oliveira, Vale, Paiva, & Figueiredo, 2016). 

However, majority of these tools do not support developers working with dynamic 

languages such as Python (Chen, Chen, Ma, & Xu, 2016; Fard & Mesbah, 2013). 

Research on code smells in dynamically-typed languages is scarce and if attention is 

not given to it, it might pose great challenge to the future of promising programming 

language development. 

In this research, an enhanced metric-based technique is proposed for the detection of 

code smells in Python software. The technique compares with previous techniques 

proposed by (Chen et al., 2016; Fard & Mesbah, 2013; Moha, Guehenuec, Meur, 

Laurence, & Tiberghien, 2010) in specification and detection of code smell. 

1.2 Problem Statement 

Research has shown that code smell is capable of negatively affecting software 

quality  such as understandability, readability, reusability testability and 

modifiability (Abbes, Khomh, Guéhéneuc, & Antoniol, 2011; Sz, Antal, Nagy, 

Ferenc, & Gyimóthy, 2017). Among many techniques for detection of code smells, 

literatures have indicated that metric-based technique is most reliable (Yamashita & 

Moonen, 2013b).  Research by Chen et al., (2016) detects code smells in Python 

programs using Pysmell, a metric-based technique. However, the detection process 

is not transparent, threshold upon which detection is carried out is manually 

computed and there is no indication the technique can analyse various versions of 

Python. The technique uses a syntax tree analyser to collect metrics for detection but 

it does not compute the criteria by which code smells are detected. This saddles the 

user with the responsibility to manually determine the detection threshold which 

leaves so much to the whims or experience of the user as calibration of appropriate 

threshold requires some expertise. 

Code smell detection is critical to refactoring and is evidenced by the attention 

researchers have accorded code smell in DÉCOR (Moha, Duchein, Guehenuec, & 

Meur, 2010), JDeodorant (Fokaefs, Tsantalis, Stroulia, & Chatzigeorgiou, 2012), 

inCode (Yamashita & Moonen, 2013b), TrueRefactor (Griffith, Wahl, & Izurieta, 

2011). Previous studies have indicated that Large Class, Long Method, Lazy Class, 

dead code and Long Parameter List are predominant code smells in statically-typed 

languages (Chen et al., 2016; Fard & Mesbah, 2013; Moha, Duchein, et al., 2010). 

However, works by Chen et al., (2016) and Fard & Mesbah (2013) did not provide 

information on which code smell is predominant in specific software domain of 

Python software such as SDK. Knowledge about domain-specific code smell can 

assist Python developers to pay attention to certain pitfalls that deteriorate software 

quality as a results of code smells. 

Python is an object-oriented language whose functions are first class objects. This 

refers to Pythons feature in which functions have attributes and can be referenced, 
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passed as argument of another function and be assigned to variables (Lott, 2014). 

Though these features of Python offers so much flexibility, it opens up opportunity 

for breeding of code smells capable of ruining software qualities especially as 

software evolve with every maintenance cycle (Yamashita & Moonen, 2013a; Fard 

& Mesbah, 2013). There is scarcity of information on how code smell density 

changes as Python software undergo evolution.  

1.3 Research Questions 

The purpose of this research is to answer the following questions: 

1. How effective is the proposed automated metric-based technique in 

detecting code smells in a parser model of Python software? 

2. How does code smell density change with evolution in Python codes? 

3. What are the predominant code smells in SDK domain? 

 

 

1.4 Research Objectives 

The objective of this research is to detect code smells in Python source codes using 

the proposed automated metric-based technique. The specific objectives are itemised 

as follows: 

1. To propose an automated metric-based technique (PySTect) to detect code 

smells in Python parser model. 

2. To evaluate the density of code smell changes with software evolution. 

3. To determine predominant code smells in SDK domain via four Python 

open source projects and PySTect tool. 

 

 

1.5 Scope of the Research 

This research proposes an automated metric-based technique for detection of code 

smell in Python software. There are many code smells discussed in literature 

however, this work focused on five code smells among which are four most 

researched code smells, namely; Large Class, Lazy Class, Long Method and Long 

Parameter List. The fifth code smell, Improper Method Declaration is a newly 

defined code smell in this research. The famous four code smells were selected to be 

detected in this thesis to provide information whether Python software similarly 

suffers from the five code smells. The automated metric-based technique in this 

thesis detects code smell statically and is validated on Python software. However, 

the technique can be extended to analyse codes in other dynamic languages with 

little modification in the presence of the language’s parser model. 
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1.6 Significance of the Research 

The research discussed in this thesis contributes to the field of software engineering 

particularly in the area of software maintenance. Code smell detection in software is 

the primary step to refactor source code. The main contributions from this research 

are as follows: 

1. This research provides an automated metric-based technique for detection 

code smells in Python software. The technique incorporates a version 

converter to allow for detection of code smells in Python software 

irrespective of its version. The technique automates extraction of metrics 

and threshold values for detection of five code smells saving developers’ 

effort in calibration of threshold. The technique can be extended with little 

modification to detect code smells in other dynamic languages other than 

Python. 

2. This research provides an architecture to specify and detect code smell in 

Python software. Four major components are defined: Input and cleaning of 

data, parser component, smell detection, and detection report components. 

3. The automated metric-based technique is implemented into a prototype tool 

for code smell detection in Python software called PySTect as a proof-of-

concept of the technique. The prototype is evaluated using three 

experiments. Results from the evaluation shows that Python software 

suffers from code smells and code smell density increases with the software 

evolution. 

4. The result also shows that Python SDKs suffer more from Lazy Class, 

Improper Method Declaration and Large Class smells than from Long 

Method and Long Parameter List. This information will guide Python SDK 

developers prioritize this code smells. 

 

 

1.7 Organization of the Thesis 

This work is broadly structured into six chapters as outlined in the following: 

In chapter one, the general overview of the thesis is presented. The problems the 

research sets out to solve are reduced to research questions. The research questions 

are transformed into objectives of the research. The chapter closes with stating the 

scope and itemising significance of the research. 

In chapter two, the related literatures that form the body of knowledge of the domain 

is reviewed to gain deep insight into previous studies that have been carried out in 

the area of design and code defects and various solutions that have been proposed. 

Techniques that have been proposed by researchers to assist developers analyse and 

detect code defects are described to bring the researcher abreast of the state the art. 

In reviewing the literatures, gaps are identified and described. 
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Chapter three describes the methodology adopted in the research. It presents the 

framework of the thesis detailing steps taken to achieve the objectives stated in 

chapter one. The chapter also describes the steps taken to evaluate the 

implementation and data used to validate it. 

The proposed concept is described in details in chapter four. The frameworks, 

architectural designs, algorithms and the details of the automated technique and its 

implementation are described. The chapter closes with screenshots of output 

generated by the prototype tool, PySTect to prove the concept enunciated in the 

technique. 

Chapter five presents the results and discussions of the experiments conducted to 

answer research questions. The results of PySTect detections and validation by 

human subjects is presented. Others are results of experiments to find how density of 

code smells changes with evolution and what are the predominant smells in SDK 

domain. The results are discussed and conclusions drawn. 

Chapter six describes benefits, limitations and suggestions for future work of the 

research. Lastly, a general conclusion of the entire research is drawn to provide a 

summary of what has been achieved by the research. 
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