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Laccase, an oxidative enzyme naturally found in fungi and bacteria, has been widely 

used in the fields of chemical and bio-catalysis. Its active site contains several copper 

ions making it very interesting for studies related to the structure and catalytic 

mechanisms. However, extracting laccase uses large amounts of organic solvents to 

attain low yield; making it a less preferred choice for all green chemistry applications. 

The significance of this study is to mimic and enhance the catalytic activity of the 

highest oxidation activity reported laccase from Trametes versicolor. The four peptide 

sequences of the active sites found in most laccases was designed into nona (Np), hepta 

(Hp), tetrapeptides (Tp1 and Tp2) using computational techniques. The peptides were 

synthesized using Fmoc SPPS, analyzed and purified using HPLC and LC-MS. 

Copper(II)-peptides identified as Np-CuC, Np-CuS, Np-CuN, Hp-CuC, Hp-CuS, Hp-

CuN, Tp1-CuC, Tp1-CuS, Tp2-CuC and Tp2-CuS were synthesized, crystallized and 

analyzed using FTIR, Raman, NMR, AAS, XPS and CD. Different molar ratio of 

peptides to copper(II) ions were analyzed for binding studies. These peptides and 

copper-peptides were tested for their catalytic activity in oxidation reaction of benzyl 

alcohol where both oxidation to benzaldehyde and disproportionation to toluene and 

phenol were achieved simulataneously. Np-CuC was observed to have higher catalytic 

activity (62.3%, 100% selectivity) than laccase (40.8%, 19.1% selectivity) towards 

benzaldehyde. They were also used as catalysts in the degradation of twelve 

pharmaceutical active compounds (PhACs). Tp2-CuS (1:2) proved to be a better 

catalyst in the degradation of PhACs. Oxidation of 5-ASA and DCA catalyzed by these 

copper peptides where Hp-CuS provided the highest yield of the oxidized product 

(46.5%). These activities were compared with laccase (positive control) and no catalyst 

(negative control). Overall, Np-CuC, Tp2-CuS and Hp-CuS were found to be better 

catalysts for oxidation reactions compared to their parent peptides and laccase.     
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Laccase adalah enzim pengoksidaan semulajadi yang terdapat dalam kulat dan 

bakteria. Ia telah digunakan secara meluas dalam bidang kimia dan bio-pemangkinan. 

Tapak aktif laccase yang mengandungi ion-ion kuprum menjadi komponen penting 

bagi kajian berkaitan dengan struktur dan mekanisma pemangkin. Walaupun, jumlah 

pelarut organik yang banyak diperlukan untuk mengekstrak laccase, namun hasil 

ekstrak yang diperolehi adalah sedikit, sekaligus menjadikannya kurang sesuai untuk 

semua aplikasi kimia hijau. Kajian ini penting untuk cuba menyamai dan 

menambahbaik aktiviti pemangkinan oleh aktiviti pengoksidaan laccase laccase yang 

diperoleh Trametes versicolor. Empat rangkaian peptida bagi tapak aktif yang biasa 

didapati dalam kebanyakan laccase telah direka dan diubahsuai kepada nona (Np), 

hepta (Hp), tetrapeptida (Tp1 dan Tp2) menggunakan perisian dan teknik 

pengkomputeraan. Peptida telah disintesis menggunakan kaedah Fmoc SPPS, dianalisis 

dan ditulenkan menggunakan HPLC dan LC-MS. Kuprum (II) -peptida iaitu Np-CuC, 

Np-CuS, Np-CuN, Hp-CuC, Hp-CuS, Hp-CuN, Tp1-CuC, Tp1-CuS, Tp2-CuC dan 

Tp2-CuS telah disintesis, dihablur dan dianalisis menggunakan FTIR, raman, NMR, 

AAS, XPS dan CD. Beberapa nisbah molar peptida terhadap ion-ion kuprum(II) yang 

berbeza telah dianalisis untuk kajian mengikat. Peptida dan kuprum-peptida ini telah 

diuji untuk aktiviti pemangkin dalam tindak balas ringkas pengoksidaan benzil alkohol 

dimana kedua-dua pengoksidaan ke benzaldehid dan ketidakseimbangan ke toluene dan 

fenol telah dicapai serentak. Menurut pemerhatian, Np-CuC mempunyai aktiviti 

pemangkin yang lebih tinggi (62.3%, kepilihan 100%) daripada laccase (40.8%, 

kepilihan 19.1%) terhadap benzaldehid. Peptida dan kuprum(II)-peptida juga 

digunakan sebagai pemangkin dalam degradasi 12 sebatian atif farmaseutikal (PhACs). 

Tp2-CuS (1:2) terbukti menjadi pemangkin yang lebih baik dalam degradasi PhACs. 

Pengoksidaan asid 5-ASA dan DCA dipangkin oleh kuprum-peptida, dimana Hp-CuS 

menghasilkan produk oksida (46.5%) yang tertinggi. Aktiviti pemangkinan peptida dan 

kuprum (II) -peptida ini dibandingkan dengan laccase (kawalan positif) dan tiada 

pemangkin (kawalan negatif). Secara keseluruhan, Np-CuC, Tp2-CuS dan Hp-CuS 

dilaporkan sebagai pemangkin yang terbaik dalam tindak balas pengoksidaan 

berbanding dengan peptida dan laccase induknya. 
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CHAPTER 1  

INTRODUCTION 

This research is dedicated to oxidation reactions catalyzed by peptides and copper(II)-

peptides for the synthesis of new metabolite drugs and in the degradation of harmful 

phenolic-based xenobiotics. Laccases, (EC 1.10.3.2, benzenediol: oxygen 

oxidoreductases), commonly known as the blue oxidase metalloenzymes were used as 

the basis for the design of various organocatalysts in the form of peptides and 

copper(II)-peptides. They are excellent catalysts for oxidizing phenols and cyclic 

substrates in the presence of mediators such as 2,2`-azinobis-(3-ethylbenzothiazoline-6-

sulfonate) (ABTS) and 1-hydroxybenzotriazole (HBT) that aids in the oxidation 

reactions. Without the laccase mediators; also known as electron transfer agents, they 

have low catalytic activity. They are often found in plants, bacteria, insects and white 

rot fungi (Call and Mücke, 1997). Laccases are well known for their environmentally 

benign nature as they only require O2 as their co-substrate to produce H2O as the sole 

by-product. Researchers like to term such oxidation reactions “green catalytic 

reactions” since they can contribute to a clean environment (Cannatelli, 2017).  

 

 

The active site of laccase highlighted in Figure 1.1 has four copper ions in mononuclear 

(Cu+) and trinuclear sites (Cu2+ and Cu-O-Cu) that contribute significantly in oxidation 

reactions to form new C-C and C-N bonds (Bertrand et al., 2002). The mononuclear 

Cu+ is located in a wide, hydrophobic binding pocket containing imidazole rings of 

histidine which contributes to the high π-electron density. It is also known to be the 

primary electron acceptor where the organic substrates bind and undergo rapid four-

electron oxidation. These electrons are transferred through the tripeptide, His-Cys-His, 

to the trinuclear site where the reduction of oxygen (O2) to water (H2O) takes place 

(Solomon et al., 2008).  

 
 

Figure 1.1: Laccase from Trametes versicolor and its’ active site (PDB: 1gyc) 

(Jackson et al., 2016) 

*Blue spheres refer to copper ions. 

*Brown spheres refer to the catalytic active site 

* Red spheres refer to oxidation substrates  
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Laccase-catalyzed oxidations are biochemically versatile and being an enzyme that 

accepts vast range of substrates is an excellent catalyst for organic synthesis. Laccases 

are well known to oxidize low-molecular weight, natural phenols to degradable wastes, 

hence sustaining to the concept of green chemistry. However, due to its lock-and-key 

mechanism, only specific phenolic substrates can be oxidized to polymers through 

cross-coupling or via radicals that combine with non-laccase substrates to form dead-

end products or degraded aliphatic compounds. The oxidized products play an 

important role in the food, medical and cosmetic industries (Jeon et al., 2012). Due to 

the limitations mentioned in the problem statement, copper(II) peptides mimicking the 

active site of laccase were designed, synthesized and applied as organocatalysts in 

oxidation reactions. 

1.1    Problem Statement 

 

Laccases cannot be chemically synthesized due to their extremely long sequences and 

the complex structure of their active sites. Like all other oxidative enzymes, they are 

isolated from various bacteria, fungi and plant sources (Muthukumarasamy and 

Murugan, 2014). Although these raw materials are cheaper than amino acids, large 

amounts of fungi/bacteria are required to extract a small amount of laccase. Various 

organic solvents such as 3,4-dimethoxybenzylalcohol are needed to extract the laccase 

and once extractions are complete, remnants of organic solvents are detected using 

spectroscopic methods (Thurston, 1994). Although laccase can be recovered and 

reused, its catalytic activity decreases after each cycle. Being enzymes, laccases are 

stable at a specific range of temperature. Since denaturation occurs at temperatures 

higher than 30 °C, it is not suitable for the temperature optimization of catalytic activity 

(Mikolasch et al., 2002) .  

 

 

A laccase-lipase co-catalytic system was used to catalyse asymmetric reactions such as 

Michael addition reactions between catechol and aromatic amines (Witayakran & 

Ragauskas, 2009). New C-C or C-N bonds can be formed through various asymmetric 

reactions such as aldol, Michael, etc and organic reactions such as Fielder-Crafts 

acylation, Suzuki coupling reactions, etc. All these reactions use vast amounts of 

organic solvents making oxidation a better option for catalysis. It was said that laccase 

from fungal Trametes versicolor gave the highest oxidation activity (Tominaga et al., 

2004) when compared with other extracted oxidative enzymes and organocatalysts. 

Laccase and peroxidase catalyzed the reaction of 3,3`,5,5`-tetramethylbenzidine with 5-

aminosalicylic acid (5-ASA) whereby peroxidase produced a higher yield compared to 

laccase but hydrogen peroxide was produced as the side product (Touahar et al., 2014).   

 

1.2    Scope of research 

This research focuses on the laccases’ active site as template for Cu(II)-peptides as 

catalysts in the oxidation of 5-aminosalicylic acid (5-ASA) with dihydrocaffeic acid 

(DCA) and in xenobiotic degradation of pharmaceutical waste containing 

phenolic/aromatic side chains. The scope of the research is shown in Figure 3.1. 
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Figure 1.2: Scope of research 

1.3    Aim, significant of study and objectives 

 

The primary objective of this project is to enhance the catalytic activity of laccase 

without using any organic solvents and mediators that are potentially harmful to the 

environment. Mimicking the design of peptides and chemically synthesizing the active 

site of laccase with slight modifications is not only time-saving but it is expected to 

produce compounds that are more structurally-stable than the parent enzyme especially 

at higher temperatures The aim of this project is to design and synthesize copper-

peptides modified from the active site of laccase from Trametes versicolor to be used 

as catalysts in the oxidation of benzyl alcohol, degradation of phenolic pharmaceutical 

waste into biodegradable ones and in the reaction of 5-aminosalicylic acid (insoluble 

drug) and dihydrocaffeic acid to obtain soluble metabolite of the drug.. The 

significance of this study is that these copper-peptides will achieve equal or higher 

catalytic activities in oxidation reactions of laccase without the use of any organic 

mediators. The copper-peptides should be able to be recovered and reused several times 

as they can be purified through chromatographic methods. The potential advantages of 

persuing a copper-peptide strategy in oxidation reactions were: 

 

 

1) Since the sequences of these mimicked peptides are much shorter (<10 amino 

acids) than natural laccases that are made up within the range of 300-700 

amino acids (Hakulinen et al., 2002), they are said to be more stable than the 

tertiary structures of the protein in the enzyme, especially at extreme ends of 

temperature and pH ranges. 

2) These copper-peptides, classified as organocatalysts, have activities higher 

than or similar to catalytic laccases that utilize lock and key mechanism. © C
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3) The copper peptides would not only mimic part of the active sites of laccases, 

but also mimic the spectroscopic, structural and redox features of the parent 

enzyme. 

4) The coordination chemistry of copper binding to certain amino acids that act 

as ligands, such as imidazole ring in histidine (H), carboxylic group in aspartic 

(D) and glutamic acid (E), the C-S ligands in cysteine (C) and methionine (M) 

in oligopeptides (Plegaria et al., 2015) is similar to the coordination chemistry 

of copper ions bound to the amino acids found in active site of laccases. 

 

The objectives of this project are: 

 

1) To design and synthesize nona-, hepta-, tetrapeptides (Np, Hp, Tp1 and Tp2) 

and copper(II)-peptides designed from the active site of laccase. 

2) To characterize and elucidate the structures of structures copper(II)-peptides.  

3) To determine the catalytic activity of the synthesized peptides and copper(II)-

peptides in oxidation reaction of benzyl alcohol  

4) To determine the activities of the synthesized peptides and copper(II)-peptides 

in xenobiotics degradation of pharmaceutical waste containing phenolic 

compounds. 

5) To employ the peptides and copper-peptides as catalysts in the reaction of 5-

aminosalicylic acid (5-ASA) with dihydrocaffeic acid (DCA) and the 

conjugated products tested for the cytotoxicity (MTT) and the anti-

inflammatory activity. 
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