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MOBILE VR USING SMARTPHONE’S INERTIA SENSORS 

By 

ANG YANG YI 

June 2020 

Chair : Puteri Suhaiza Binti Sulaiman, PhD 
Faculty  : Computer Science and Information Technology 

Mobile Virtual Reality (VR) headset that utilizes mobile smartphone for 
processing is a cheaper solution in experiencing VR immersion. However, 
locomotion in mobile VR is still a challenge because of the limitation to interact 
with the smartphone, as the smartphone is attached to VR headset. A common 
solution is walking-in-place (WIP), which is a hands-free input method to control 
locomotion inside the mobile VR environment. WIP uses inertia sensors in a 
smartphone such as accelerometer and gyroscope to capture the inertia data 
generated by the WIP gesture.   

This thesis introduces Swing-In-Place (SIP) implementation that addresses three 
VR locomotion research problems, which are: reducing the fatigue level of WIP 
locomotion, enable viewing to different direction while moving forward, and 
reducing the fatigue caused by speed controlling during WIP locomotion. 

First, in order to achieve a low fatigue level WIP technique, this thesis proposes 
a gesture, SIP which is less tired than the common jogging gesture used by WIP 
implementation in mobile VR environment. The SIP gesture generates 
acceleration by raising one foot and leaning the body to opposite site to create 
horizontal impulsive force. Bilateral Horizontal Impulse (BHI) detection algorithm 
is introduced to detect the positive and negative impulsive force captured from y-
axis of accelerometer. Experiment results show that there is a significant 
difference between the fatigue level of SIP and jogging gesture-based WIP 
implementation with a significance level of 0.001 using paired t-test, where SIP is 
reported to have lower fatigue level. 

Secondly, the steering direction of WIP techniques in mobile VR environment is 
commonly controlled based on the user’s gaze direction because the available 
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sensors in a smartphone are limited. However, in reality we may walk and look to 
different directions at the same time. Thus, this thesis presents a walking-in-
place method with the “Side View” feature, Side Viewing-enabled-Swing-In-Place 
(SV-SIP), which can detect the following situations: (1) user performs SIP 
gesture while looking to the front direction and (2) user performs SIP gesture 
while looking to the left or right directions. A Cross-Axis Cross-Sensors (CACS) 
algorithm is introduced to capture different situations using different axes input 
from accelerometer and gyroscope. Experiment results show that significant 
differences were found between the SV-SIP and a gaze-directed WIP 
implementation for the time taken to complete the side view task and the fatigue 
level using paired t-test, with a significant level of 0.02 and 0.01, respectively. 
The results show that the SV-SIP implementation can increase efficiency of side 
view task as compared to gaze-directed WIP implementation, and the fatigue 
level of SV-SIP is lower than the gaze-directed WIP implementation. 

Finally, WIP techniques for mobile VR typically use step frequency to control the 
locomotion speed, which will cause the user getting fatigued easily. This thesis 
proposes the Pace Switching-Swing-In-Place (PS-SIP) method to reduce the 
fatigue level of speed control during WIP locomotion. The PS-SIP method uses 
amplitude of body movement to switch the locomotion speed. The Amplitude 
Pace Switching (APS) detection algorithm is introduced to detect the amplitude 
of the user’s body movement for pace switching. The fatigue level of PS-SIP 
method is reported to be lower than step frequency speed control method. 
Significant difference was found between the fatigue level of the two methods 
using paired t-test with a significance level of 0.002 for quantitative measurement 
and significance level of 0.01 for qualitative measurement. 
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TEKNIK GERAK ALIH UNTUK BERJALAN SETEMPAT DENGAN KELESUAN 
YANG RENDAH BAGI REALITI MAYA MUDAH ALIH MENGGUNAKAN 

SENSOR INERSIA TELEFON PINTAR 

Oleh 

ANG YANG YI 

Jun 2020 

Pengerusi : Puteri Suhaiza Binti Sulaiman, PhD  
Fakulti : Sains Komputer dan Teknologi Maklumat 

Set kepala Realiti Maya (VR) mudah alih yang menggunakan telefon pintar 
mudah alih untuk pemprosesan adalah satu kaedah yang murah dalam 
mengalami rendaman VR. Walau bagaimanapun, lokomosi bagi VR mudah alih 
masih satu cabaran disebabkan oleh keterbatasan untuk berinteraksi dengan 
telefon pintar, kerana telefon pintar diletakkan di set kepala VR. Satu 
penyelesaian yang umum adalah berjalan setempat (WIP), iaitu satu kaedah 
input bebas tangan untuk mengawal lokomosi dalam persekitaran VR mudah 
alih. WIP menggunakan sensor inersia di dalam telefon pintar seperti 
accelerometer dan gyroscope untuk menangkap data inersia yang dijana oleh 
gerakan WIP.   

Tesis ini memperkenalkan pelaksanaan gerakan berayun-setempat (SIP) yang 
menangani tiga masalah penyelidikan lokomosi VR, iaitu: mengurangkan tahap 
keletihan lokomosi WIP, membolehkan memandang ke arah yang berbeza 
sambil bergerak ke hadapan, dan mengurangkan keletihan yang disebabkan 
oleh kawalan kelajuan semasa lokomosi WIP.  

Pertama, untuk mencapai satu teknik WIP tahap keletihan rendah, tesis ini 
mencadangkan satu gerakan, SIP yang kurang penat daripada gerakan joging 
biasa yang digunakan oleh pelaksanaan WIP dalam persekitaran VR mudah alih. 
Gerakan SIP menjana pecutan dengan mengangkat satu kaki dan menyandar 
badan ke arah bertentangan untuk mencipta daya impulsif mendatar. Algoritma 
pengesanan Bilateral Horizontal Impulse (BHI) diperkenalkan untuk mengesan 
daya impulsif positif dan negatif yang ditangkap dari paksi-y accelerometer. Hasil 
eksperimen menunjukkan terdapat perbezaan yang signifikan antara tahap 
keletihan SIP dan pelaksanan WIP berasaskan gerakan joging dengan tahap 
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signifikan 0.001 menggunakan paired t-test, di mana SIP dilaporkan mempunyai 
tahap keletihan yang lebih rendah. 

Kedua, arah kemudi teknik WIP dalam persekitaran VR mudah alih secara 
umumnya dikawal berasaskan arah pandangan pengguna kerana sensor sedia 
ada dalam telefon pintar adalah terhad. Walau bagaimanapun, dalam realiti kita 
mungkin berjalan dan memandang ke arah yang berlainan pada masa yang 
sama. Oleh itu, tesis ini membentangkan satu kaedah WIP dengan ciri 
“Pandangan Sisi”, Side Viewing-enabled-Swing-In-Place (SV-SIP), yang boleh 
mengesan keadaan berikut: (1) pengguna melakukan gerakan SIP sambil 
memandang ke arah hadapan dan (2) pengguna melakukan gerakan SIP sambil 
memandang ke arah kiri atau kanan. Algoritma Cross-Axis Cross-Sensors 
(CACS) diperkenalkan untuk menangkap  keadaan yang berbeza menggunakan 
input paksi yang berbeza daripada accelerometer dan gyroscope. Hasil 
eksperimen menunjukkan perbezaan yang signifikan telah dijumpai antara SV-
SIP dan satu pelaksanaan WIP pandangan terarah bagi masa yang diambil 
untuk menyelesaikan tugas pandangan sisi dan tahap keletihan menggunakan 
paired t-test, dengan tahap signifikan 0.02 and 0.01, masing-masing. Hasil ini 
menunjukkan pelaksanaan SV-SIP boleh meningkatkan kecekapan tugas 
pandangan sisi berbanding dengan pelaksanaan WIP pandangan terarah, dan 
tahap keletihan SV-SIP adalah lebih rendah daripada pelaksanaan WIP 
pandangan terarah. 

Akhirnya, teknik WIP bagi VR mudah alih biasanya menggunakan kekerapan 
langkah untuk mengawal kelajuan lokomosi, yang akan menyebabkan pengguna 
berasa letih dengan mudah. Tesis ini mencadangkan kaedah Pace Switching-
Swing-In-Place (PS-SIP) untuk mengurangkan tahap keletihan kawalan kelajuan 
semasa lokomosi WIP. Kaedah PS-SIP menggunakan amplitud pergerakan 
badan untuk mengalih kelajuan lokomosi. Algoritma pengesanan Amplitude 
Pace Switching (APS) diperkenalkan untuk mengesan amplitud pengerakan 
badan pengguna bagi peralihan langkah. Tahap keletihan kaedah PS-SIP 
dilaporkan lebih rendah daripada kaedah kawalan kelajuan kekerapan langkah. 
Perbezaan yang signifikan telah dijumpai antara tahap keletihan kedua kaedah 
tersebut menggunakan paired t-test dengan tahap signifikan 0.002 bagi 
pengukuran kuantitatif dan tahap signifikan 0.01 bagi pengukuran kualitatif. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

Virtual Reality (VR) technology is undergoing a revival (Boletsis, 2017) and 
gradually into our daily lives along with the rapid development of mobile 
smartphone and the introduction of VR headset, which is a ski-masked shaped 
goggle device designed specifically for VR (Desai et al., 2014). In recent years, 
many VR headsets which are portable and essentially rely on smartphone as 
the main unit for display and data processing have been released in the market. 
For example, Samsung Gear VR, Google Daydream, Pansonite VR, and etc. 
This kind of mobile smartphone-dedicated VR products is commonly named as 
“Mobile VR” by the researchers of the field of virtual reality such as Hanson et 
al. (2019), Wallgrün et al. (2019), Shi et al. (2019), and Lee et al. (2019).   

Mobile VR is acting as an important part of the VR industry, because it has the 
advantages of what a mobile application has, which are: anywhere, and 
anytime. Moreover, mobile VR can be realized with relatively low cost because 
the necessities for implementation are only a smartphone and a mobile VR 
headset. Since smartphone has already become one of our daily necessities, 
whereas the VR headset usually can be bought with a reasonable low price, 
range from $8 to $130 USD depending on the brand and specifications (Noble, 
2019), hence the cost to get started with a mobile VR is low. These kind of low 
cost smartphone VR headsets were actually can achieve similar immersive 
experience as those expensive head-mounted displays such as Oculus Rift 
(Papachristos et al, 2017).  

1.2 Motivation 

Locomotion, which is the ability to move from one point to another point, is an 
important aspect for a VR application because locomotion is a fundamental 
human activity, and it provides a basic way for the users to explore the virtual 
environment. However, facilitating locomotion in virtual reality is still a 
challenge (Al Zayer, et al., 2018), especially the locomotion in mobile VR since 
there are limited ways to interact with the smartphone (Anthes et al., 2016) 
because the smartphone is being placed inside the VR headset when the user 
is exploring the mobile VR environment. Some of the common locomotion 
methods used in mobile VR including: using a controller, teleportation, auto 
navigation and walking-in-place. 

Using a controller for locomotion is reliable and easy to use, but it is less 
immersive than walking-in-place (Boletsis & Cedergren, 2019). In fact, you will 
be pulling back to the reality every time you realize you have to press the 
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button in order to move ahead. On the other hand, teleportation required users 
to point to a location to move on, and users will “jump” to the location 
immediately after that. Teleportation usually use a controller or gaze selection 
as a pointer. The nature of teleportation, which is totally different from normal 
locomotion, can break the immersion feeling of users (Boletsis & Cedergren, 
2019).  

Next, auto navigation is a method that follows user’s gaze direction to travel 
forward automatically, regardless the actual intention of the user. For example, 
a user might not want to move at that moment. Hence, auto navigation method 
will lower down the feeling of immersion when compared to walking-in-place. 
The research by Usoh et al. (1999) has also stated that walking-in-place 
method can achieves higher sense of presence than auto navigation method. 
Nevertheless, auto navigation method has the advantage to allow the user 
under a hands-free condition. A navigation method with hands-free condition 
provides advantage for a VR application to maximize the ability of user 
interaction with the virtual environment (LaViola et al., 2001), for instance, user 
can use their hands to do others operation such as interacting with objects in 
the virtual environment. 

Although real walking can definitely provide the greatest immersive feeling in a 
virtual environment. However, complicated apparatus setup and preparation of 
a large area in the real world is required in order to apply real walking in VR. 
Therefore, real walking is not suitable for mobile VR because of the spatial and 
apparatus constraints. 

In conclusion, walking-in-place is a better solution for locomotion in mobile VR 
because it can provide better immersive feeling, and at the same time allows a 
hands-free situation. In addition, locomotion methods which using the user’s 
own legs to perform a gesture similar to “walking” can reduce motion sickness 
(Lee et al., 2017).  

Nevertheless, one of the critical concerns of walking-in-place method is it will 
cause physical fatigue when compared to controller-based or teleportation 
method (Bozgeyikli et al, 2016). Furthermore, due to the limitation of apparatus, 
some of the realistic movement of human in real world such as walk to a 
direction and look to a different direction simultaneously is not realizable 
without adding additional apparatus requirements. 

Finally, it can be seen that the challenge of walking-in-place method for mobile 
VR applications is to reduce the fatigue level caused by the walking-in-place 
gesture so that walking-in-place method will be more suitable and acceptable 
by the users of non-sport designed VR application which requires longer usage 
time because a general consumer just wants to experience VR leisurely. 
Moreover, it is a good challenge to simulate and realize some real world 
situation during locomotion to enhance the reality presented by a mobile VR 
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application, but at the same time, without using additional apparatus to avoid 
adding installation requirements of a mobile VR application.  

1.3 Problem Statement 

The fatigue resulting from a walking-in-place method is because of the walking-
in-place gesture. In a walking-in-place implemented mobile VR application, a 
user has to perform the walking-in-place gesture to travel in the virtual 
environment. In this case, if the walking-in-place gesture requires high energy 
consumption, this will cause the user to feel fatigue easily. Therefore, the use 
of a new walking-alike gesture which requires less energy consumption is able 
to reduce the fatigue level caused by walking-in-place method.  

Next, the steering methods used in the walking-in-place locomotion technique 
remain as a challenge because of hardware limitation (Nilsson et al., 2018). 
One of the common situations during locomotion in the real world is the human 
walking to a direction and looking to a different direction. This situation 
happens on our real life naturally when we are walking. Therefore, simulating 
this situation in virtual locomotion should be able to improve the user 
experience on virtual locomotion. However, the common walking-in-place 
method implemented in mobile VR does not support this situation because the 
available sensors for mobile VR are limited. 

Lastly, the common walking-in-place method used in mobile VR usually control 
the travel speed using the step frequency, which means that, the user has to 
perform the walking-in-place gesture faster in order to travel in higher speed. 
However, this action will increase the fatigue level of the whole locomotion 
process because the user has to perform the gesture many times within a 
shorter time period. 

The problem statement is discussed in detail in the following sub-sections. 

1.3.1 Fatigue 

The common walking-in-place gesture used in mobile VR application such as 
the gesture used in VR-STEP (Tregillus & Folmer, 2016) causes physical strain. 
This is because the VR-STEP implementation relies on the user’s head upward 
acceleration to detect a step. In order to achieve upward head acceleration, a 
user has to perform big body movement which is similar as “jogging”. As the 
result, the fatigue level of the gesture is high. Hanson et al. (2019) have point 
out that the marching gesture which is commonly used as the walking-in-place 
gesture can cause the user to become tired easily. 

The tiredness causes by walking-in-place locomotion technique is an important 
issue that should not be neglected as compare to other locomotion techniques 
(Bozgeyikli et al., 2016) because fatiguing will affect the user experience when 

© C
OPYRIG

HT U
PM



4 
 

they perform locomotion and limit the user from exploring a larger environment 
(Cherni et al., 2020). The fatigue issue has been discussed as a limitation in 
the researches regarding to walking-in-place, such as VR-STEP by Tregillus 
and Folmer (2016), and the research by Lee et al. (2018). Besides that, the 
research by Lee et al. (2019) has also considered the tiredness as one of their 
measurements to evaluate their proposed method.  

The fatigue level caused by the walking-in-place method can be reduced by 
introducing a new walking-alike gesture which is less energy consuming to 
replace the walking-in-place gesture. However, using a new gesture requires a 
new algorithm to detect the gesture. Likewise, the new algorithm should not 
increase the needs of additional apparatus others than the sensors inside a 
smartphone, so that it is ready to be implemented on a basic mobile VR 
application. Therefore, further research on a less-fatigue walking-alike gesture 
and the gesture detection algorithm is needed. 

1.3.2 Gaze-directed Steering 

The common walking-in-place method implemented in most of the mobile VR 
applications rely on the inertia sensors inside the smartphone, for example, the 
method used by VR-STEP (Tregillus & Folmer, 2016). By using the 
smartphone’s built-in sensors, additional apparatus is not needed. However, 
this walking-in-place implementation can only navigate based on gaze direction. 

The difficulty of gaze-directed steering was reported in early years (Bowman et 
al., 1997), whereas researchers on recent years also highlight the limitations of 
gaze-directed steering method which gaze-directed steering method will limit 
the user from looking into different directions while doing locomotion (Al Zayer 
et al., 2018). Moreover, the ability to travel and look to different direction is 
reported to be more natural (Ruddle et al., 1999) because it is similar to the 
real world situation. In addition, Nilsson et al. (2016) have reported that gaze-
directed steering method is less natural because it is different from how people 
walk in the real world.  

The VR-STEP method uses gaze-directed steering technique because VR-
STEP relies on the upward acceleration signal to detect a step, as the result, 
the acceleration pattern of a step when a user is looking forward or looking to 
other direction is similar, thus, it is hard to differentiate the head orientation and 
body orientation while the user is walking-in-place using only the built-in 
sensors of a smartphone.  

Park et al. (2018) proposed a method to track the sight view direction and body 
direction separately using an additional waist-worn sensor. However, this 
method required additional apparatus, which is not desirable for a normal 
mobile VR user. It is ideally to enable the user to look to the side direction while 
travelling forward during virtual locomotion without adding additional apparatus 
requirements. 
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Therefore, in order to identify the user’s situation, which whether the user is 
looking to the front or looking to the side direction during walking-in-place using 
only the sensors inside a mobile smartphone, a gesture which is able to 
generate different acceleration patterns while the user is under different 
situations can be used. So, a new algorithm to recognize the different 
acceleration patterns and detect the different situations has to be developed. 

1.3.3 Speed Controlling 

The traditional way of speed controlling in a walking-in-place implementation 
using the step frequency requires the user to perform high intense of body 
movement in a short period of time in order to increase the travelling speed. 
This will cause the user to feel extremely tired if the user continues to perform 
the walking-in-place gesture in high frequency. The fatigue issue of walking-in-
place method is an important concern when compare to other locomotion 
methods as discussed by Bozgeyikli et al. (2016) and highlighted by 
researchers who worked with walking-in-place technique such as Lee et al. 
(2019). In order to achieve less fatigue experience, Bruno et al. (2013) and 
Bruno et al. (2017) have introduced the use of step amplitude instead of step 
frequency for speed controlling. Therefore, an alternative way to control the 
travel speed of walking-in-place implementation is feasible to reduce the 
physical strain caused by speed controlling in locomotion. However, the 
methods proposed by Bruno et al. (2013) and Bruno et al. (2017) use additional 
sensing camera in front of the user to capture the footstep height of the user, 
which is not workable in mobile VR. Thus, it is possible to introduce a similar 
way to control the travelling speed of the walking-in-place locomotion method, 
which is less tired than using the step frequency. However, a new algorithm for 
the newly introduced speed control method has to be developed. 

1.4 Goal and Objectives 

The goal of this research is to develop a low fatigue walking-in-place 
locomotion method for mobile VR using a walking-alike gesture which requires 
less intense body movement. The walking-in-place locomotion method should 
support different travel and view direction, and has a speed control mechanism 
which uses the step amplitude as the main control unit to reduce the fatigue 
level of the overall locomotion process without adding additional apparatus 
requirements. In order to achieve the goal, the following objectives have to be 
accomplished: 

 To propose a gesture detection algorithm for detecting a less intense 
walking-alike gesture in order to decrease the fatigue level of mobile 
VR walking-in-place locomotion. 

 To propose a side viewing feature which enable a user to walk and 
look to the side direction during walking-in-place locomotion as an 
efficient supporting feature for side view task. © C
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 To propose a speed control method based on the amplitude of the 
walking-alike gesture for reducing the fatigue caused by step frequency 
speed control method. 

1.5 Scope of Research 

Mobile VR uses a low cost VR headset with a smartphone to realize a relatively 
low costing VR experience (Wallgrün et al., 2019). Besides that, the nature of 
mobile VR that uses only an untethered VR headset and a smartphone has 
allowed the user to experience VR anywhere and anytime (Shen et al., 2019), 
and this is an ideal situation for a general user (Li & Gao, 2019). Therefore, the 
research scope is limited to the implementation on mobile VR application 
without adding additional apparatus requirements to avoid hindering the 
inherent advantages of mobile VR, which are low cost, anywhere, and anytime. 

For that reason, only the sensors available in a common smartphone are being 
considered in the research. The use of VR controller is not considered in order 
to achieve the hands-free condition and avoid adding additional apparatus 
requirements.  

Since the proposed walking-in-place implementation is specifically for the low 
cost mobile VR application only, thus implementation on others VR gaming 
devices, such as PlayStation VR and HTC Vive is not under the scope. This is 
because the VR gaming device is expensive, and the VR headset is tethered 
with the processing unit, thus it is difficult to be used in anytime and anywhere. 
Moreover, a comparison between the low cost mobile VR headset and an 
expensive VR headset, Oculus Rift have been conducted by Papachristos et al. 
(2017), and their results show that there are no differences in term of 
immersion levels between these two types of VR hardware. Hence, the uses of 
low cost mobile VR hardware will not affect the immersive feeling of the user. 

1.6 Thesis Organization 

The overview of the thesis organization is as follows: 

Chapter 1 is an introductory chapter, which describes the research motivation, 
then clarify the problem statements, goal and objectives, and the scope of the 
research. 

Chapter 2 discusses the related studies, starting with an overview of 
locomotion techniques used in virtual reality and focus on the walking-in-place 
techniques. Then, the chapter continues to cover the locomotion techniques in 
related to fatigue, multi-directional walking-in-place techniques, and alternative 
speed controlling methods, which are the important issues which constitute to 
the thesis. 
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Chapter 3 reports the overall research framework, and the following chapters 
elaborate the separate study in related to each research objective.  

Chapter 4 explains the details of the SIP gesture detection, including the SIP 
gesture and the Bilateral Horizontal Impulse (BHI) detection algorithm, followed 
by the experiment, results and discussion. 

Chapter 5 explains the details of side viewing detection, including the Side 
View Side Viewing-enabled-Swing-in-Place (SV-SIP) method and the Cross-
Axis Cross-Sensors (CACS) algorithm, followed by the experiment, results and 
discussion. 

Chapter 6 explains the details of pace switching method, including the Pace 
Switchable-Swing-In-Place (PS-SIP) and the Amplitude Pace Switching (APS) 
detection algorithm, followed by the experiment, results and discussion. 

Chapter 7 provides the conclusions of each of the research chapters related to 
the research objectives, followed by the clarification of research contributions of 
this thesis. Finally, the recommendations for future works are given at the end 
of the chapter. 
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