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Metal organic frameworks (MOFs) represent a new class of porous crystalline 
materials which contains of organic linkers and inorganic joints. In particular, 
the synthesis of MOFs with nitrogen-rich ligands are extremely versatile 
materials. Nitrobenzene (NB) is a carcinogenic organic compound that is widely 
used in the manufacturing and chemical industries. The spill of industrial waste 
contain high level of NB can be harmful to human health. Hence, the 
development of MOFs as electrochemical sensors for determination of NB are 
essential. Three novel mixed ligand Cd(II) MOFs, namely MOF-717 
(Cd(NO3)2.4H2O with 4,4’-oxybis(benzoic acid) (H2oba) and 3,5-diamino-1,2,4-
triazole (Hdatrz)), MOF-718 (Cd(NO3)2.4H2O with H2oba and 3-amino-1,2,4-
triazole (Hatrz) and MOF-719 (Cd(NO3)2.4H2O with 2,6-napthalenedicarboxylic 
acid (H2ndc) and Hdatrz) were successfully synthesised using solvothermal 
with 1 : 2 :2 molar ratio of Cd : L1 : L2 condition (L1 = H2oba/H2ndc and L2 = 
Hdatrz/Hatrz) at 120 °C. The compounds were characterised via Powder X-ray 
Diffraction (PXRD) analysis, Fourier Transform Infrared (FTIR), Nuclear 
Magnetic Resonance (NMR) spectroscopies, thermogravimetric analysis 
(TGA), Scanning Emission Microscopy (SEM), N2 physisorption analysis and 
the structural determination of MOFs was performed by Single-crystal X-ray 
Diffraction analysis (SXRD). The peaks at low angles in the PXRD pattern 
indicated the formation of large lattice unit cell of the frameworks. FTIR 
analysis shows reduction of C=O peaks intensity and this indicated the 
successful bonding of H2oba/H2ndc with Cd ions. NMR analysis confirmed the 
presence of both ligands in the frameworks. Thermal analysis indicated the 
MOFs had high thermal stability MOF 717 up to 450 ºC, MOF-718 up to 467 °C 
and MOF-719 up to 480 °C. MOF-717 and MOF-718 crystallised in a 
monoclinic system with C2/m space group showing three dimensional (3D) 
structure with fluorite (flu) topology. MOF-719 crystallised in a triclinic system 
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with Pī space group showing a two dimensional (2D) underlayer structure and 
new topology. All the MOFs were modified with glassy carbon (GC) electrodes 
for electrochemical studies of nitrobenzene (NB) reduction using cyclic 
voltammetry (CV) and differential pulse voltammetry (DPV) techniques. MOF-
717/GC electrode showed the highest electrocatalytic activity with a low 
detection limit (LOD) of 2.9 × 10-8 M and high sensitivity of 3.36 µA µM cm-2. 
This is due the present of active group of nitrogen and oxygen donor ligands 
from MOF-717 structures. This preliminary work indicated that these materials 
could be effective electrocatalysts in the electrochemical detection of the 
environmental pollutant NB.  

 



© C
OPYRIG

HT U
PM

iii 
 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Master Sains 

 

SINTESIS DAN KAJIAN STRUKTUR RANGKA ORGANIK LOGAM 
BERASASKAN KADMIUM MENGANDUNGI AZOL UNTUK PENGESANAN 

ELEKTROKIMIA NITROBENZENA   
 
 

Oleh 

NURUL NABIHAH BINTI MOHAMAD ISHAK 

November 2019 

Pengerusi :  Thahira Begum, PhD 
Fakulti    :  Sains 

 
Rangka organik logam (MOFs) merupakan bahan liang berkristal kelas baharu 
yang terdiri daripada penyambung organik dan blok tak organik. Sintesis MOFs 
khususnya dengan ligan yang mengandungi lambakan atom nitrogen adalah 
sangat versatil. Nitrobenzena (NB) merupakan bahan organik karsinogen yang 
digunakan dalam industri pembuatan dan kimia. Tumpahan sisa industri yang 
mengandungi NB yang tinggi boleh membahayakan kesihatan manusia. Oleh 
itu, pembinaan MOFs sebagai alat pengesan elektrokimia adalah sangat 
penting. Tiga novel campuran ligan Cd(ll) MOFs, dinamakan MOF-717 
(Cd(NO3)2.4H2O dengan 4,4’-oxibis(asid benzoik) (H2oba) dan 3,5-diamino-
1,2,4-triazol (Hdatrz)), MOF-718 (Cd(NO3)2.4H2O dengan H2oba dan 3-amino-
1,2,4-triazol (Hatrz) dan MOF-719 (Cd(NO3)2.4H2O dengan asid 2,6-
naptalenadikarbosilik (H2ndc) dan Hdatrz) telah berjaya disintesis melalui 
kaedah  solvoterma dengan nisbah mol  1 : 2 :2 mewakili  Cd : L1 : L2 (L1 = 
H2oba/H2ndc and L2 = Hdatrz/Hatrz) pads suhu 120 °C. Semua sebatian telah 
dicirikan melalui Analisis Belauan Sinar-X (PXRD), Spekstroskopi Transformasi 
Fourier Inframerah (FTIR), Resonans Magnetik Nuklear (NMR), Analisis 
Termogravimetri (TGA), Mikroskopi Pancaran Imbasan (SEM), Analisis 
penjerapan fizikal N2 dan struktur MOFs telah ditentukan melalui Analisis 
Belauan Sinar-X Hablur Tunggal (SXRD). Puncak pada sudut rendah dalam 
corak PXRD menunjukkan formasi unit kekisi besar pada rangka. Analisis FTIR 
menunjukkan berlaku penurunan intensiti puncak C=O menunjukkan ikatan 
antara H2oba/H2ndc dengan ion Cd telah berjaya. Analisis NMR mengesahkan 
kehadiran kedua-dua ligan di dalam rangka. Analisis terma mendapati MOFs 
mempunyai kestabilan terma yang tinggi dengan MOF-717 setinggi 450 ºC, 
MOF-718 setinggi 467 °C dan MOF-719 setinggi 480 °C. MOF-717 dan MOF-
718 telah dihablurkan dalam sistem monoklinik dengan kumpulan ruang C2/m 
yang menunjukkan struktur tiga dimensi (3D) serta topologi flourit (flu). 
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Manakala, MOF-719 telah dihablurkan dalam sistem triklinik dengan kumpulan 
ruang Pī menunjukkan struktur lapisan dua dimensi (2D) serta topologi yang 
baru. Kesemua MOFs telah diubah suai dengan elektrod karbon belemin (GC) 
bagi kajian elektrokimia terhadap pengurangan nitrobenzena (NB) dengan 
menggunakan teknik Voltametri Berkitar (CV) dan Voltametri Denyut 
Pembezaan (DPV). MOF-717/GC elektrod telah menunjukkan aktiviti 
eletrokatalitik yang tinggi dengan 2.9 × 10-8 M had pengesanan (LOD) dan 3.36 
µA µM cm-2 sensitiviti. Ini kerana kehadiran kumpulan aktif ligan penderma 
nitrogen dan oksigen dari struktur MOF-717. Kajian awal ini membuktikan 
bahan ini boleh menjadi efektif sebagai elektrokatalis untuk pengesanan 
elektrokimia bahan pencemar NB pada alam sekitar. 
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Cu(INA) MOF made from copper acetate and isonicotic acid 
Hatrz 3-amino-1,2,4- triazole 
Hdatrz 3,5-diamino-1,2,4- triazole  
H2ndc 2,6- napthalene dicarboxylic acid 
H2oba 4,4’-oxybis (benzoic acid) 
HINA   Isonicotic acid 
HKUST-1 Hong Kong University of Science and Technology, 

HKUST; MOF made from copper nitrates and 1,3,5-
benzenetricarboxylic acid 

IRMOF-16 MOF made from zinc nitrate and terphenyl-2,2’-
dicarboxylate (TPDC) 

IR-MOF-9/10 
  

Isoreticular MOF made from of zinc nitrate and 4,4’- 
biphenyldicarboxylic acid 

IRMOFs Isoreticular MOFs 
ITQMOF-1 /-2 Instituto de Tecnologia Quimica Metal Organic 

Framework, ITQMOF; MOF made from lanthanide 
salts and 4,4’-(hexafluoroisopropylidene)-bis(benzoic 
acid) 

IUPAC International Union of Pure and Applied Chemist  
LOD Limit of detection 
MAF Metal azolate frameworks 
MAF-4 MAF consist of 2-methylimidazolate (Hmim) and Zn 

metal ions 
MgMOF-1  MOF made from magnesium and pyridine-3,5-

dicarboxylic acid 
MgMOF-2 MOF made from magnesium and pyridine-2,6-

dicarboxylic acid 
MIL-53 MOF made from chromium nitrate and 

bezenedicarboxylic acid 
MIL-68 MOF made from ferum nitrate and benzendicarboxylic 

acid 
MIL-88  MOF made from iron(III) nitrate and 

bezenedicarboxylic acid 
MOF-5 MOF made from zinc nitrate and benzendicarboxylic 

acid 
MOF-717 MOF made from cadmium nitrate with 4,4’-oxybis 

(benzoic acid) (H2oba) and 3,5-diamino-1,2,4- triazole 
(Hdatrz) ligand 
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MOF-718 MOF made from cadmium nitrate with 4,4’-oxybis 
(benzoic acid) (H2oba) and 3-amino-1,2,4- triazole 
(Hatrz) ligand 

MOF-719 MOF made from cadmium nitrate with 2,6- napthalene 
dicarboxylic acid (H2ndc) and 3,5-diamino-1,2,4- 
triazole (Hdatrz) ligand 

MOF-74 MOF made from magnesium nitrate and 2,5-
dihydroxyterephthalic 

MTBS Methyl tributyl ammonium methyl sulfate 
NHCPs-750 Nitrogen doped hollow carbon nanospheres 
NU-1000 Northwestern University, NU; MOF made from 

zirconium chloride and tetratopic linker, 1,3,6,8-(p-
benzoate)pyrene 

PCN-6 Porous coordination network, PCN; MOF made from 
copper nitrate and 4,4',4"-s-triazine-2,4,6-triyl-
tribenzoic acid 

SBUs Secondary Building Units 
TMPP/N-OMC Tetra (4‑methoxyphenyl/porphyrin functionalised N-

doped mesoporous carbon 
TPDC  Terphenyl-2,2’-dicarboxylate 
UiO-66 Universitetet i Oslo, UiO (University of Oslo); MOF 

made from zirconium dichloride and benzene 
dicarboxylic acid 

ZIF-8 Zeolitic Imidazolate Frameworks-8 ; MOF made from 
zinc nitrate and imidazole 
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CHAPTER 1 

 
 

INTRODUCTION 

 
 
1.1 Background of research 

Porous materials are a class of materials with low density, large specific 
surface area, and interesting physical, mechanical, thermal and electrical 
properties (Nishiyabu, 2012). According to International Union of Pure and 
Applied Chemistry (IUPAC), these materials can be classified based on their 
pore diameters, which are microporous (< 2 nm), mesoporous (2-0 nm) and 
macroporous (> 50 nm) (Xuan et al., 2012). Porous materials such as zeolites, 
mesoporous silica, activated carbon and microporous polymer have been 
intensively investigated as ideal platforms for various applications especially in 
gas storage, chemical sensing, energy conversion and catalysis (Benzigar et 
al., 2018).  
 
 
Since the early 1990s, research into materials with polymeric and porous 
structures based on organic/inorganic hybrid materials has been on the rise. In 
relation to this, metal-organic frameworks (MOFs) are a rapidly emerging 
unique type of crystalline porous materials. MOFs are self-assembled from 
inorganic metal clusters and organic bridging ligands via strong covalent 
bonds. Via a self-assembly mechanism, the extended 1 dimensional (1D), 2 
dimensional (2D) and 3 dimensional (3D) structures are built where the metal 
centres (known as the connector) are linked by ditopic or multitopic organic 
ligands, known as linkers (Figure 1.1) (Kitagawa et al., 2004). An important 
feature of MOFs is that their framework structure, pore environment, 
functionality can be fine controlled by the choice of metal and organic building 
unit. Therefore, the topology of the network is determined by the intrinsic 
structural features of the choice of metal ions with different oxidation states and 
organic linkers (Lu et al., 2014).  
 
 
In the synthesis of such inorganic-organic hybrid materials, transition metal or 
lanthanide salts are reacted with rigid, often aromatic, organic donor ligands, 
which feature two or more Lewis-basic functional groups, usually neutral 
nitrogen donors (e.g., pyridyl, cyanide groups) or neutral/anionic oxygen donors 
(e.g., carbonyl, alkoxy, carboxylate groups) (Robson, 2008). The synthesis of 
MOFs are normally conducted under mild conditions. A few methods to 
synthesise MOFs have been reported including conventional synthesis which 
used electrical heating and non-conventional synthesis at room temperature. 
Other alternative synthetic routes including microwave-assisted, 
electrochemical, mechanochemical and sonochemical methods have also been 
used in the synthesis of MOFs. These methods can produce MOFs with 
varying particle sizes and size distributions as well as the morphologies that 
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can influence the material properties. In fact, the pore size, the pore shape, the 
network topology and surface functionality are more important to develop the 
unique structure of MOFs (Furukawa et al., 2013). The structure of MOFs can 
also influenced by a lot of other factors, such as the coordination environment 
of metal ions, the metal-to-ligand molar ratio, the ligand structure, the presence 
of solvent molecules, counter ions, reaction temperature, pH value of the 
solution and many other factors (Wang et al., 2010). 
 
 

 
 

Figure 1.1: Extended structures of Metal-organic frameworks (MOFs) 
based on metal centre and linear ditopic ligands featuring different 
structural dimensionalities (Kitagawa et al., 2004) 
 
 
MOFs have numerous advantages compared to conventional porous materials 
like zeolites or activated carbon, in terms of their ability to fine-tune the 
structures by rational design and incorporate functionalities into the molecular 
material. MOFs possess a highly crystalline nature, extraordinarily low 
densities (1.0 to 0.2 g/cm3), large pore sizes (up to 29 Å), large free volume, 
high surface area (500-4500 m2/g), and fascinating topologies (Li et al., 2009). 
The choice of the initial metal cluster and organic linkers makes it possible to 
vary some parameters, such as the pore size as well as the specific surface 
area which leads to new ways to produce materials with tailored 
physicochemical properties.  
 
 
Recently, the design on isostructural MOFs have been widely studied by using 
derivatives of aromatic rings contains substituents as a linker. Isostructural 
MOFs are MOFs that have same crystal morphology with different substituents 
on the organic linkers (for example; NO2, CH3, NH2 and Cl).  These 
isostructural MOFs are promising as they have good active sites for specific 
applications such as gas adsorption, catalysis and chemical sensing.  
However, the presence of substituents in organic structure results in the 
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decrease of pore volumes and sizes (Morris et al., 2011). Instead of having of 
one linker, the use of two different linkers were then introduced which offered 
advantageous in their properties with interesting crystal structures. 
 
 
Many studies have reported the use of polycarboxylates and polypyridyls 
linkers due to their good ligating ability to metal ions and adjustable length and 
geometry. The approach of mixing carboxylate and pyridyl-types linkers was 
found to be very effective due to the versatility of oxygen donors to bind with 
metal ions of carboxylates and simple coordination nodes from pyridyls (Zhang 
et al., 2012). However, pyridyl-type linkers have weak coordination ability and 
charge neutrality making them disadvantageous in controlling the compositions 
(such as metal /ligand ratio) during the synthesis (Gu et al., 2010). Apart from 
that, azolate linkers are known as five-membered aromatic nitrogen 
heterocycle ligands that have strong and directional coordination bridging with 
metal ions (Zhang et al., 2012). Hence, the strategies of designing mixed 
linkers consisting of polycarboxylate and azolate compounds were desirable to 
synthesise a wide range of coordination networks.  
 
 
Many well-designed MOFs with mixed-ligands have showed fascinating 
physiochemical properties (Du et al., 2013). Owing to their flexibility, high 
stability and porous structures, the diffusion of guest molecules to form 
permanent and highly ordered frameworks was easy. In addition, the presence 
of active sites in the frameworks promote host-guest interactions. (Morozan & 
Jaouen, 2012). These properties made MOFs promising candidates in gas 
separation, gas storage, and catalysis. The optical, electrical, and magnetic 
properties of MOFs extend their applications to chemical sensing and 
bioimaging. Among them, electrochemical sensing applications has received 
huge attention by electrodes modification with MOFs. It has been shown that 
the use of functional molecules and immobilization of metal nanoparticles with 
MOFs have improved the electrochemical sensing performance (Liu et al., 
2018). 
 
 
Recently, MOF and MOF based composite modified electrodes have been 
reported have great performance as sensors in the detection of glutathione, 
L‑cysteine, ascorbic acid, hydrogen peroxide and NADH (Arul & John, 2018). 
(NB) is known as an important raw material that is widely used in 
manufacturing industries. The huge waste disposal containing NB may lead to 
NB pollution which is considered harmful and can affect blood and nervous 
system leading to liver cancer (Emmanuel et al., 2014). Therefore, 
development of selective and sensitive sensors for NB using electrodes 
modified with simple procedures is essential. Since there are limited studies on 
the use of MOF materials for the detection of NB, this study aimed to 
synthesise novel mixed-linkers MOFs using dicarboxylate and azolate 
derivatives as linkers. These materials were then modified with glassy carbon 
electrode and evaluated their electrochemical sensor properties in the 
detection of nitrobenzene by using cyclic voltammetry (CV) and dispersive 
pulse voltammetry (DPV) techniques. It is hoped that, the presence of 
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functional group in the organic ligands could enhance the performance of MOF 
modified electrodes in the nitrobenzene reduction. 
 
 
1.2 Problem statement 

Nitrobenzene (NB) is an important raw material in the chemical industry, which 
widely used as an intermediate in the synthesis of resins, pesticides, dyes and 
pharmaceutical (Arul & John, 2018). Generally, NB is stable in aqueous 
medium due to the presence of strong electron withdrawing groups in the nitro 
aromatic ring. There are several possible sources for NB pollution which 
include oil spills from industrial and domestic wastes. NB is harmful when its 
concentration level exceeds 0.11 mg/L and it affects mainly the blood and 
nervous systems in human which can lead to liver cancer (Emmanuel et al., 
2014). According to clear water act of USA, the permissible limit of NB in 
drinking water is 17 μg/L (OPPT, 1995).  
 
 
Various techniques have been employed for the determination of NB in 
environmental samples such as High Performance Liquid Chromatography 
(HPLC) (Wang & Chen, 2002), Gas Chromatography (GC) (Ebrahimzadeh et 
al., 2009), spectrophotometry (Cui et al., 2010),  spectrofluorimetry (Li et al., 
2014),  and electrochemical techniques (Liu et al., 2018; Velmurugan et al., 
2017). Among of these methods, electrochemical techniques are the most 
advantageous since they are low cost, highly selective, sensitive and have less 
time consumption (Zhang et al., 2015).  
 
 
Basically, the determination of NB by electrochemical techniques is by using 
electrodes. By fabricating the electrode with active materials containing NH2, 
NO2 and OH group, the sensitivity and selectivity towards NB detection can be 
enhanced. This is due to the molecular interactions of the functional groups to 
reduce nitrobenzene to aminobenzene. Previously, many fabricated electrodes 
such as SiO2-AuNPs, Bi-film, Ni‑tetraphenyl porphyrin nanocomposite, 

tetra(4‑methoxyphenyl/porphyrin functionalised N-doped mesoporous carbon 
(TMPP/N-OMC), β‑cyclodextrin graphene oxide (β-CD/GO, γ alumina polished 
(γ-Al2O3) and nitrogen doped hollow carbon nanospheres (NHCPs-750) 
modified GC electrode have been reported (Arul & John, 2018). MOF modified 
electrodes such as AuNPs-Zn-MOF and Co-MOF-MPC also have been 
reported for their good stability and permanent porosity (Yadav et al., 2016; 
Zhang et al., 2015). However, these electrodes required complicated 
fabrication procedure, high cost, less sensitivity and selectivity and tedious 
synthetic procedures.  
 
 
Therefore, the designing of novel MOFs with more active site and development 
of selective and sensitive modified electrode sensors for the determination of 
NB is very important. MOFs containing of two mixed linkers with electron donor 
group such as oxygen and nitrogen are believed to enhance the sensing 
properties. Thus, the present work aims to fabricate novel mixed linkers MOFs 
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on GC electrodes by a simple method for the selective and sensitive 
determination of NB.  
 
 
1.3 Research objectives 

The general objectives of this study are to synthesise and structurally 
characterise new Metal-organic frameworks (MOFs) derived from triazole and 
dicarboxylate linkers. The specific objectives of this research include: 

1. To synthesise and characterise new MOFs derived from triazole and 
dicarboxylate linkers via physicochemical and spectroscopic 
techniques including Powder X-ray Diffraction (PXRD) analysis, Fourier 
Transform Infrared (FTIR), Nuclear Magnetic Resonance (NMR) 
spectroscopies, thermogravimetric analysis (TGA), Scanning Emission 
Microscopy (SEM) and N2 physisorption analysis. 

2. To elucidate the structure of the novel synthesised MOFs by Single 
Crystal X-ray diffraction (SXRD) analysis. 

3. To investigate the electrocatalytic properties of the novel MOFs in 
nitrobenzene reduction 
 
 

1.4 Scope of research 

The scope of this study can be divided into three parts. The first part is 
synthesising new MOFs by using dicarboxylate and azolate derivatives. 
Different parameters were investigated in order to determine optimum 
synthesis condition and to grow high quality crystal. These parameters included 
the molar ratio of metal and ligand, temperature, time, type of solvents, volume 
of solvents and the use of modulator (acid or base). The compounds were then 
characterised with Powder X-ray Diffraction (PXRD) to determine crystal lattice 
of the MOFs. Fourier Transform Infrared Spectroscopy was used to determine 
presence of functional groups of the linkers. In order to determine the thermal 
stability and element composition of the MOFs, Thermogravimetric (TGA) and 
Elemental analysis (EA) were conducted.  Nuclear Magnetic Resonance (NMR) 
spectroscopy analysis was used to determine the presence of both ligands in 
the frameworks. Scanning Emission Microscopy was done to observe the 
morphology of the crystals. Lastly, Nitrogen physisorption analysis was carried 
to determine the surface area and pore volume of the MOFs.  
 
 
The second part is the elucidation and structural study of the new MOFs. 
Single crystal X-ray Diffraction analysis was performed as to determine the 
crystal structures of the new MOFs with two ligands bonded to the metal ions. 
The crystal data collected were then solved using OLEX2 software. The solvent 
disorder in voids was subtracted from the reflection data by the SQUEEZE 
procedure as implemented in the PLATON software package. The topological 
study was performed using TOPOS 4.0 Professional software. This study was 
conducted to determine the bridging nodes between ligands and metals. 
 
 



© C
OPYRIG

HT U
PM

6 
 

Lastly, the potential sensing applications of the novel synthesised MOFs in the 
detection of nitrobenzene were investigated. Electrochemical studies were 
conducted using cyclic voltammetry (CV) and differential pulse voltammetry 
(DPV) techniques on the modified MOFs with glassy carbon (GC) electrodes.  
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