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Optical characteristics of colloidal quantum dots (QDs) are influenced by the dot 
size, composition and the capping molecules. This thesis focuses on the study 
of PbS/MnS core shell (CS) QDs where PbS serves as the core and MnS is the 
shell. The colloidal chemistry method was used to synthesise PbS QDs at room 
temperature. The growth of MnS shell by a simple ions substitution called cation 
exchange was successfully applied to fabricate the PbS/MnS core shell QDs in 
this research. This is a unique chemistry reaction which only can be occurred in 
chalcogenide material. 
 
 
This research also focuses on structural and optical properties of the PbS QDs 
and PbS/MnS core shell QDs. The structural properties were characterised by 
using High Resolution Transmission Electron Microscopy (HRTEM) and Energy 
Dispersive X-ray (EDX). The HRTEM results show that the average size of the 
PbS QDs was 6.00 ± 1.00 nm with spherical in shape. For PbS/MnS core shell 
QDs, its average size was enlarged to 7.00 ± 0.50 nm and 7.40 ± 0.60 nm for 
PbS/MnS CS 0.3 and PbS/MnS CS 0.6, respectively. The size was increased 
due to the growth of MnS shell after the cation exchange. Besides that, the 
analysis of elemental composition via EDX has confirmed the presence of MnS 
composition. From the spectrum, an EDX peak associated with Mn was 
observed at 5.9 keV. 
 
 
The optical properties and the behaviour of the charge carriers inside the PbS 
and PbS/MnS QDs were investigated by photoluminescence (PL) at different 
temperature (10-300 K), power excitation (10-200 mW) and exposure time (3-
40 minutes). At room temperature, the PL peak energies of PbS/MnS core shell 
QDs were blue shifted upon the increasing shell thickness due to strong 
confinement effect induced by the shell.  
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Temperature dependent PL shows the effect on the PL peak energy, full width 
half maximum (FWHM) and PL intensity. In general, the PL peak energy and 
FWHM were monotonically increased as the temperature increased which 
related to the interaction of charge carriers with phonons. In contrast, the PL 
peak intensities were quenched as the temperature increased which associated 
with the excitation of carriers out of the QDs into non-radiative recombination 
centres. Photoenhancement phenomenon was studied by exposed the samples 
under illumination up to 40 minutes and we found that the PL intensity was 
increased over period of time due to the presence of oxygen. In power dependent 
PL, the integrated PL intensity (IPL) was increased with the increasing power 
density. From the graph of IPL as a function of power density, generally gradient 
of the graph was close to unity where the radiative recombination is dominant. 
The development of PbS/MnS core shell QDs would be useful in the future 
especially in the application of photovoltaic devices. 
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Sifat optik titik kuantum koloid dipengaruhi oleh saiz titik, komposisi dan molekul 
penutup. Tesis ini memberikan tumpuan kepada pembelajaran ke atas teras 
dalaman-luaran titik kuantum PbS/MnS di mana PbS bertindak sebagai teras 
dan MnS ialah petala. Kaedah kimia berkoloid telah digunakan sebagai teknik 
untuk sintesis titik kuantum PbS pada suhu bilik. Pertumbuhan petala MnS oleh 
penggantian ion mudah yang dipanggil pertukaran kation telah berjaya 
dilaksanakan untuk menghasilkan teras dalaman-luaran titik kuantum PbS/MnS 
di dalam penyelidikan ini. Ini adalah satu tindak balas kimia yang unik di mana 
ia hanya boleh dilakukan di dalam bahan kalkogen.  
 
 
Penyelidikan ini juga memberikan tumpuan kepada sifat struktur dan sifat optik 
titik kuantum PbS dan juga titik kuantum teras dalaman-luaran PbS/MnS. Sifat 
struktur dicirikan menggunakan mikroskop elektron transmisi tinggi (HRTEM) 
dan serakan tenaga X-ray (EDX). Keputusan HRTEM menunjukkan bahawa 
saiz titik kuantum PbS ialah 6.00 ± 1.00 nm serta berbentuk sfera. Untuk titik 
kuantum teras dalaman-luaran PbS/MnS, purata saiznya membesar kepada 
7.00 ± 0.50 nm dan 7.40 ± 0.60 nm masing-masing untuk PbS/MnS CS 0.3 dan 
PbS/MnS CS 0.6. Pembesaran saiz titik kuantum itu disebabkan oleh 
pertumbuhan petala MnS selepas pertukaran kation. Selain itu, analisis 
komposisi bahan oleh EDX telah mengesahkan kehadiran komposisi MnS. 
Daripada spektrum, puncak EDX yang bersekutu dengan Mn telah jelas 
diperhatikan pada 5.9 keV. 
 
 
Sifat optik dan kelakuan pembawa cas di dalam titik kuantum pula disiasat 
menggunakan spektroskopi fotoluminesens (PL) pada suhu yang berbeza (10-
300 K), kuasa pengujaan (10-200 mW), dan masa pendedahan (3-40 minit). 
Pada suhu bilik, kuasa puncak PL titik kuantum teras dalaman-luaran PbS/MnS 
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terjadi anjakan biru setelah peningkatan ketebalan petala yang disebabkan 
kesan pengurungan kuat daripada petala. 
 
 
Kesandaran suhu PL menunjukkan kesan ke atas kuasa puncak PL, lebar 
separuh ketinggian maksimum (FWHM) dan keamatan PL. Secara umumnya, 
kuasa puncak PL dan (FWHM) menaik secara berkala apabila suhu dinaikkan 
yang berkaitan dengan tindak balas pembawa cas dengan fonon.  Sebaliknya, 
puncak keamatan PL menurun apabila suhu dinaikkan yang disebabkan oleh 
pengujaan pembawa yang keluar daripada titik kuantum kepada pusat 
penggabungan semula tidak menyinar. Fenomena foto-peningkatan telah dikaji 
dengan mendedahkan sampel selama 40 minit penyinaran yang berlarutan dan 
kami mendapati bahawa keamatan PL telah meningkat terhadap masa yang 
disebabkan oleh kehadiran oksigen. Dalam kesandaran kuasa PL, keamatan PL 
bersepadu (IPL) telah meningkat dengan peningkatan kuasa ketumpatan. 
Daripada graf IPL sebagai fungsi ketumpatan kuasa, secara umumnya 
kecerunan graf telah menghampiri keunitan di mana penggabungan semula 
menyinar ialah dominan. Pembangunan titik kuantum teras dalaman luaran 
PbS/MnS akan berguna pada masa akan datang terutamanya dalam aplikasi 
peranti fotovolta. 
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CHAPTER 1 
 
 
 

INTRODUCTION 
 

 
Study of materials at nano-scale has gained a great deal of interest as it fills the 
gap between bulk and molecules or atoms, thus improving our understanding of 
fundamental properties and providing new physical effects. Quantum dots 
(QDs), also can be called as semiconductor nanocrystals are particles that have 
physical dimension smaller than exciton Bohr radius and categorised in zero-
dimensional system (0-D). The advantage of QDs is the confinement of charge 
carriers in three dimensions, where the electrons and/or holes are fully localised. 
Studying the physics of QDs from optical spectroscopy enables us to understand 
quantum confinement due to their extremely small size.  
 
 
In the last few decades, this semiconductor nanocrystals have played vital roles 
in both theoretical and experimental physics. Research related to the QDs also 
has been expanding due to rapid advancements in growing and fabrication 
techniques as well as their numerous possible applications such as photovoltaic 
application (Xu & Heo, 2014; Reilly et al., 2014; Alam et al., 2015). The band 
gap of the QDs is tunable, therefore the QDs are desirable for photovoltaic 
devices. Frequencies in the near infrared are difficult to achieve with 
conventional solar cells. However, it can be obtained by using colloidal lead 
sulphide (PbS) QDs and PbS/MnS core shell QDs. This thesis begins with the 
fundamental of low dimensional system where it could give us understanding 
related to the QDs. 
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1.1 Fundamental of low dimensional system 
 
 
Nanomaterials are defined as a set of materials where at least one dimension 
approximately smaller than 100 nm (Tiwari et al., 2012). Nanomaterials can be 
classified into three-dimensional (3-D), two-dimensional (2-D), one-dimensional 
(1-D) and zero-dimensional (0-D) systems.  
 
 
Low dimensional systems are usually classified based on the number of reduced 
dimensions they have. As size of bulk materials reduced to nanoscale, the 
overall behaviour of bulk crystalline materials will change, and quantum effect 
will occur (Jitendra et al., 2012). Precisely, dimensionality is referred to the 
number of degrees of freedom in the particle momentum. The confinement of 
charge carriers (electron and hole) to a low dimensional system leads to 
dramatic change in their behaviour and properties. The classification depending 
on the dimensionality as shown in Figure 1.1. 
 
 

 
 

Figure 1.1: Three-dimensional system of nanomaterials (Jitendra et al., 
2012). 

 
 
3-D system or bulk is material that are not confined to nanoscale in any 
dimension. Thus, this material is characterized by having three arbitrarily 
dimensions above 100 nm. The electrons are fully delocalised which means they 
are freely to move in three dimensions. 
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For 2-D system, two of the dimensions are not confined to nanoscale and only 
one of the dimensions is in nanoscale range. This factor leads the 2-D 
nanomaterials exhibit plate-like shape such as quantum well; where the 
electrons are free to move in two directions. In this case, the conduction 
electrons will be confined across the thickness and delocalised in the plane of 
the sheet. 
 
 
In 1-D system, there is only one dimension that is outside nanoscale and this 
leads to tube-like shape nanomaterials such as nanotubes, nanorods and 
nanowires. In this system, electron confinement occurs in two dimensions, 
whereas delocalisation takes place along the axis of the nanowire, nanorod or 
nanotube. 
 
 
For 0-D system, all of the dimensions are reduced within nanoscale. Electrons 
are confined in three dimensions space. The most common representation of 0-
D system are nanoparticles such as QDs. If any of the structural dimensions is 
reduced and squeezed to be comparable to the de Broglie wavelength of the 
charge carrier or the exciton Bohr radius, the motion of carriers become 
constrained in the corresponding direction. This leads to the quantum 
confinement effect where the energy carrier levels and DOS are strongly 
dependent to the structural size, and entirely different from the bulk form 
(Jitendra et al., 2012).  
 
 
In QDs, the charge carriers are confined in all three dimensions which the 
electrons exhibit a discrete energy spectrum, and will be described in subtopic 
2.1.2 related to the quantum confinement effect in the QDs. This research will 
focus on PbS and PbS/MnS core shell QDs in colloidal form. 
 
 
1.2 Introduction of quantum dots  
 
 
QDs are one type of semiconductor nanocrystals and can be defined as particles 
with physical dimensions smaller than the exciton Bohr radius. QDs also have 
special characteristic, which is the band gap of QDs is influenced by its size. 
Small size QDs emit higher energy light compared to larger QDs, making the 
wavelength of light emitted can be tuned by changing the size of the QDs (Guyot-
Sionnest, 2008).  
 
 
In 1980, Russian solid state physicist, Alexey I. Ekimov discovered QDs in a 
glass matrix and first colloidal QDs was discovered in AT&T Bell Lab 
Laboratories by Louis Brus back in 1982 (Angell, 2011). Following the successful 
discoveries, systematic advancement in the science of QDs was started after 
1982 when Alexander Efros derived a relation between size and energy gap for 
semiconductor nanoparticles by applying a particle in a sphere model 
approximation to the wave function for bulk 
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semiconductors (Kaya et al., 2014). However, it took nearly ten years to 
successful synthesis of colloidal cadmium chalcogenide CdY (Y= S, Se, Te) QDs 
with size-tunable band-edge absorption and emission, which was synthesised 
by Murray et al., (Murray et al., 1993). Their excellent optical and 
electrochemical properties make CdY widely investigated QDs. 
 
 
QDs have contributed a lot from their kinds to the various application areas. 
Traditional nanocrystals are composed of elements from groups III-V, II-VI and 
IV-VI of the periodic table such as GaAs, CdSe and PbS, respectively (Schöll et 
al., 2019; Landry et al., 2014; Zhao et al., 2005). QDs have many advantages 
such as producing excellent fluorescence properties and have been widely used 
in industry. One of the applications of these QDs is used in optoelectronic 
devices (Talapin et al., 2010; Angell, 2011). 
 
 
In the study of QDs, the interesting phenomena associated with it is the exciton 
(electron-hole) pair which are created through external energy. Upon the 
absorption of light, the electron will get excited if the energy absorbed is equal 
or more than the band gap. Vacancy it left behind is called a hole, that carries 
positive charge. The electron-hole pair is called an exciton and the separation 
distance between electron and hole is an exciton Bohr radius (Fang et al., 2012).  
 
 
Generally, there are two methods to fabricate QDs. The first method is top-down 
approach in which the dimension of the bulk is reduced to a smallest dimension 
particle. Other method is bottom-up approach in which QDs are grown via 
chemical synthesis or epitaxial growth to produce large dimension particle 
(Mousa, 2011). These methods have been able to produce QDs with diameters 
of a few nanometres, whose sizes are small enough to display quantum 
mechanical properties.  
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1.3 Properties of bulk materials  
 

 
It is important to introduce the main semiconductor materials used in this 
research which are lead sulphide (PbS) and manganese sulphide (MnS). An 
overview of the properties of these bulk materials is presented in the following 
subtopic. 
 
 
1.3.1 Bulk lead sulphide  
 
 
Lead chalcogenides such as lead selenide (PbSe), lead telluride (PbTe) and 
lead sulphide (PbS) are materials that play a major role for infrared 
optoelectronics devices. They have large dielectric constants, narrow band gaps 
and share similar band structures (Smith et al., 2011).  
 
 
PbS is categorised in the group of IV-VI semiconductor with a direct narrow band 
gap of Eg = 0.259 eV at 4 K and 0.41 eV at room temperature (Dalven, 1969). It 
has a rock salt structure with a lattice constant, a = 5.963 Å. The electronic band 
structure of PbS is shown in Figure 1.2 where the position of the conduction 
band and valence band was highlighted with the red arrow. The conduction and 
valence bands extrema are at the L-point of the first Brillouin zone, which make 
PbS a direct band gap semiconductor (Smith et al., 2011).  
 
 
The reduction in Eg as the temperature decreases means the temperature 
coefficient, dEg/dT of bulk PbS is positive, where dEg/dT = +0.52 meV/K (Dalven, 
1969). This means that the energy band gap of the PbS is temperature 
dependent. It can be seen in Figure 1.2 that the band gap of bulk PbS is 0.41 
eV at room temperature. This unique property also can be observed in other 
lead chalcogenides. Furthermore, PbS has an exciton Bohr radius of 18 nm 
arising from effective electrons and holes masses, which are almost equal and 
relatively small: me*≈ mh*≈ 0.08m0, where m0 is the electron mass in vacuum. 
This Bohr radius is considered large compared to other semiconductor materials 
such as CdSe (5.4 nm). These make the PbS QDs is easily to synthesise and 
leads to the strong confinement of charge carriers in nanocrystals when the 
radius of QDs is less than the exciton Bohr radius. 
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Figure 1.2: Electronic band structure of bulk PbS (Bergman & McHale, 
2012). 

 
 
Due to these factor, PbS QDs are essential semiconductor material for various 
potential applications, such as optoelectronic devices and photovoltaic solar 
cells (Tessler et al., 2002; Phuruangrat et al., 2009). In photovoltaic application, 
PbS can be an interesting material for semiconductor nanocrystals because PbS 
can tune the band gap with QDs size to make solar light absorption more 
efficient.  
 
 
1.3.2 Bulk manganese sulphide  
 
 
Manganese sulphide (MnS) is a direct wide band gap semiconductor with a band 
gap of Eg = 3.2 eV, lattice constant of 5.2 Å and temperature coefficient dEg/dT 
= -2 meV/K (Nishitani et al, 1991). Both of PbS and MnS have similar rock-salt 
crystal structure. However, their band gap energies and dEg/dT are different. 
Table 1.1 shows a comparison of important properties of bulk PbS and MnS.  
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Table 1.1: Properties of bulk PbS and bulk MnS. 
 

                  PbS                   MnS 
Lattice Constant, α (Å)                 5.9                    5.2  
Energy band gap, Eg (at 300 K) 
(eV) 

                0.41                    3.2  

dEg/dT (meV/K)                +0.52                    -2  
 
 
1.4 Motivation and problem statements 
 
 
In recent years, many researchers have been working on the synthesis of 
colloidal QDs that can improve efficiency and produce excellent optical 
properties. However, QDs nanoparticles capped with organic ligands have low 
fluorescence quantum yield due to surface defects and surface trap state. This 
problem can be solved by growing a semiconductor shell layer around QDs core, 
forming core shell QDs. The shell will passivate the surface of the core from 
oxidation and provide stability to enhance the luminescence properties. This is 
due to smoothening of core-surface defects results in saturation of defect states 
and dangling bond that can cause non-radiative recombination of electron-hole 
pair.  
 
 
There are numerous methods had been used to synthesise core shell QDs such 
as organometallic and electrochemical synthesis (Reilly et al., 2014; Gu et al., 
2009). However, these methods produced low quality structure and used long 
synthetic procedure.  Among mentioned methods, organometallic method 
commonly used to synthesise core shell QDs where high temperature and long 
procedure are needed. Unfortunately, it is also produced higher defect density 
introduced by high temperature synthesis which restricted by boiling point of 
solvents.  
 
 
Electrochemical synthesis has been used due to their advantages such as 
usage of aqueous solvent, room temperature deposition and low cost. 
Unfortunately, due to difficulty of preparing electrically addressable arrays of 
nanoparticles, the use of electrochemical technique to produce core shell QDs 
was difficult. This motivates us to synthesise core shell QDs by another 
technique which is simple yet effective; cation exchange method.  
 
 
In cation exchange method, only the precursor of cationic component of the shell 
material is introduced and the formation of the shell proceeds through the 
cationic replacement of the core material. Also, the exchange between cations 
within the core and cations in the surrounding solution may produce defect-free 
heterostructure. In this work, cation exchange was used to synthesise the core 
shell QDs in aqueous solution following the method described by Levina et al., 
(Levina et al., 2005).  
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This method uses low cost of production as water is used as a solvent. The 
cation exchange method also suitable for lead chalcogenide. In this case, PbS 
core QDs was synthesised as a control sample. By introducing Mn2+ precursor, 
the exchange between between Mn2+ and Pb2+ will form MnS shell. Hence, a 
great attention to synthesise the core shell QDs by making MnS (Eg= 3.2 eV) 
shell over the PbS (Eg= 0.41 eV) core to further study on the effects of the MnS 
shell towards the structural and optical properties. 
 
 
As mentioned before, the cation exchange method was used to fabricate the 
PbS/MnS core shell QDs, and MnS shell is expected to grow on the PbS core 
QDs. In order to confirm the growth of the shell, HRTEM and EDX were used to 
identify the particle size and the elemental composition can then be analysed.  
 
 
Temperature and power dependence of PL emission of PbS QDs and PbS/MnS 
core shell QDs were studied in order to examine the effect of temperature and 
power excitation on the QDs. Since all of electronic devices mostly perform at 
room temperature, the ability of the devices to working well at any temperature 
is still on-going improvement. Varying the temperature and the power excitation, 
dominant carrier recombination in the PbS QDs and PbS/MnS core shell QDs 
can be examined. In addition, performing PL measurements at low temperature 
can yield information about low energy states of the QDs that would otherwise 
be hidden by thermal effects at room temperature (Fomin et al., 1998).  
 
 
Despite many works have been conducted on the PL enhancement of 
semiconductor nanocrystals, the mechanism of this process is not yet fully 
understood. This is because the parameters factor such as water, oxygen and 
stabilising agents can influence the QDs during photoenhancement process 
(Llopis et al., 2011). This motivates us to study on the photoenhancement 
phenomenon of the PbS QDs and PbS/MnS core shell QDs.  
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1.5 Research objectives 
 
 
The objectives of this research are: 
 
 
i. To synthesise colloidal PbS QDs and PbS/MnS core shell QDs with different 
shell thicknesses by cation exchange method. 
ii. To examine the structural properties of PbS QDs and PbS/MnS core shell 
QDs with the variation of shell thicknesses. 
iii. To investigate the behaviour of the charge carriers (carrier transport) in the 
PbS QDs and PbS/MnS core shell QDs with the variation of temperature, power 
excitation and time exposure of photoluminescence measurements. 
 
 
1.6 Thesis outlines 
 
 
This thesis starts with Chapter 1 where the introduction of the low dimensional 
system and the properties of bulk lead sulphide (PbS) and manganese sulphide 
(MnS) are presented. In Chapter 2, a brief explanation of the background theory 
of fundamental semiconductor properties and quantum dots are described. A 
description of a cation exchange method, core shell band alignments and the 
photoluminescence (PL) peak shift will be reviewed to give more information 
related to this research. Next, in Chapter 3, the methodology of this research 
including calculations and materials used to synthesise PbS core and PbS/MnS 
core shell QDs samples will be explained. Then, in Chapter 4, the 
characterisation will be analysed and elaborated comprehensively. The results 
include the effects of MnS shell thickness towards the structural and optical 
properties. The photoenhancement of photoluminescence (PL) of the PbS core 
QDs and PbS/MnS core shell sample is described in Chapter 5. A mechanism 
and recombination of charge carriers inside the QDs based on the PL analysis 
also will be explained in this chapter. Finally, the last chapter will conclude the 
research and suggestions for any future works will be discussed in Chapter 6. 
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