INFLUENCE OF ENVIRONMENTAL FACTORS ON WETLAND AVIAN SPECIES IN PAYA INDAH AND PUTRAJAYA WETLANDS USING HABITAT SUITABILITY MODELLING

OWNUKA MARTINS CHUKWUEMEKA

FPAS 2020 6
INFLUENCE OF ENVIRONMENTAL FACTORS ON WETLAND AVIAN SPECIES IN PAYA INDAH AND PUTRAJAYA WETLANDS USING HABITAT SUITABILITY MODELLING

By

ONWUKA MARTINS CHUKWUEMEKA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

February 2020
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

INFLUENCE OF ENVIRONMENTAL FACTORS ON WETLAND AVIAN SPECIES IN PAYA INDAH AND PUTRAJAYA WETLANDS USING HABITAT SUITABILITY MODELLING

By

ONWUKA MARTINS CHUKWUEMEKA

February 2020

Chairman : Professor Mohamed Zakaria bin Husin, PhD
Faculty : Forestry and Environment

In Malaysia, multiple lands use has opened the way to substantial loss of wetland ecosystem, and shrinkage of the populations, habitat and food bases of avian species. However, the study of the avian populations and environmental factors affecting their diversity become eminent to understand the complexity of Malaysian wetlands ecosystem structure, and also develop appropriate management with robust monitoring tools to ensure their ecological sustainability. The study aimed to determine and compared the population and occupancy estimates of selected rail species namely *Porphyrio porphyrio indicus* and *Amaurornis phoenicurus*, and other water and terrestrial dependent avian species in Paya Indah and Putrajaya wetlands, Peninsular Malaysia. The study also determined the environmental factors that influenced the occurrence of water birds and terrestrial birds particularly *Porphyrio porphyrio indicus* (PPI) and *Amaurornis phoenicurus* (AP), and to develop their habitat suitability models in Paya Indah (PIW) and Putrajaya (PW) wetlands, Malaysia. Distance sampling point count technique using stratified random design was employed to survey avian (from November 2016 to December 2018) from a total of 57 and 54 point stations established around 14 and 24 lakes in PIW and PW respectively. An automatic linear modelling algorithm (ALMA) and geographic information systems were employed to compute the importance ratios of 17 environmental factors (hydrology, climatic, waterscape, and landscape factors). A total of 124,032 and 125,643 bird observations were recorded in PIW and PW from November 2016 to December 2018. The results showed that the terrestrial birds in PIW had higher observed individuals (n = 104,872), species diversity (N = 7.25), richness (R1 = 13.25), evenness (E = 0.92) as compared to the terrestrial birds in PW (n =97340; N = 7.84; R1 = 24.00, E = 0.93). All the observed bird individuals and estimated indices were significantly different except for the Pielou’s J evenness index. However, PW had the highest observed water bird individuals (n=28,303) species diversity (N = 7.60), richness (R1 = 26.73), evenness (E = 0.73) as compared to the
water birds in PIW (n =19,160; N = 7.10; R1 = 15.60, E = 0.79). The ALMA results showed that the maximum and minimum weights of the environmental factors are land use/land cover (LULC) and water dissolved oxygen for *Porphyrio porphyrio indicus* in PIW, while the atmospheric pressure and Normalized Dominant Water Index (NDWI) in PW. This implies that environmental factors significantly contributed to occurrence of the bird species. Also, the maximum and minimum weights of the factors are water turbidity and electrical conductivity for *Amaurornis phoenicurus* in PIW, while the atmospheric pressure and six water parameters in PW. Large areas of PW were classified more suitable for terrestrial and water birds than PIW due to the favourable atmospheric pressure, LULC, rainfall, wind speed, relative humidity and NDWI. This approach of ranking the important environmental variables criteria using ALMA is very important to conservationist as it presents them with a tool to understand which factor affects the population of birds in their respective habitats. Thus, the models’ adoption as management tools coupled with a robust population monitoring database will enhance the management effectiveness of the species and wetlands. Thus, these wetland habitats need to be conserved in order to increase the population, perpetuity and sustainability of the avian species in the future.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENGARUH FAKTOR PERSEKITARAN KE ATAS SPESIES AVIAN TANAH PAYA DI PAYA INDAH DAN PUTRAJAYA WETLANDS MENGGUNAKAN KAEDAH PEMODELAN KESESUAIAN HABITAT

Oleh

ONWUKA MARTINS CHUKWUEMEKA

Februari 2020

Pengerusi : Profesor Mohamed Zakaria bin Husin, PhD
Fakulti : Perhutanan dan Alam Sekitar

Di Malaysia, pelbagai guna tanah telah mengakibatkan kehilangan ekosistem tanah paya yang amat besar, dan pengecutan populasi, habitat dan pengkalan makanan bagi spesies avian. Walau bagaimanapun, kajian mengenai populasi dan faktor persekitaran yang mempengaruhi kepelbagaian mereka menjadi penting bagi memahami kompleksiti struktur ekosistem tanah paya Malaysia, dan juga membangunkan pengurusan yang wajar dengan alat pemantauan yang mantap untuk memastikan kelestarian ekologikal mereka. Kajian ini bertujuan untuk menentukan dan membandingkan populasi dan anggaran penghunian bagi spesies avian yang terpilih, iaitu Porphyrio porphyrio dan Amaurornis phoenicurus, dan spesies avian yang bergantung pada air dan terestrial lain di Paya Indah dan Putrajaya Wetlands, Semenanjung Malaysia. Kajian ini juga menentukan faktor persekitaran yang mempengaruhi kehadiran burung air dan burung terestrial, terutamanya Porphyrio porphyrio indicus (PPI) dan Amaurornis phoenicurus (AP), dan untuk membangunkan model kesesuaian habitat mereka di Paya Indah (PIW) dan Putrajaya Wetlands (PW), Malaysia. Teknik kiraan persampelan titik jarak jauh menggunakan reka bentuk rawak berstrata telah digunakan untuk meninjau avian (dari bulan November 2016 hingga Disember 2018) dari sejumlah 57 dan 54 stesen titik yang disasarkan di sekitar 14 dan 24 tasik, masing-masing di PIW dan PW. Algoritma pemodelan linear automatik (ALMA) dan sistem maklumat geografi telah digunakan untuk menghitung kepentingan nisbah 17 faktor alam sekitar (hidrologi, iklim, pandangan air, dan landskap). Sejumlah 124,032 dan 125,643 pemerhatian avian telah direkodkan di PIW dan PW dari November 2016 hingga Disember 2018. Hasil kajian menunjukkan bahawa avian terestrial di PIW mempunyai individu diperhati yang lebih tinggi (n = 104,872), kepelbagaian spesies (N = 7.25), kekayaan (R1 = 13.25), keserataan (E = 0.92) berbanding dengan avian terestrial di PW (n = 97,340; N = 7.84; R1 = 24.00, E = 0.93). Semua individu burung diperhati dan indeks teranggar secara signifikan adalah berbeza kecuali indeks keserataan Pielou ‘s J. Walau bagaimanapun, PW
mempunyai individu burung air diperhatikan tertinggi (n = 28,303) kepelbagaian spesies (N= 7.60), kekayaan (R1 = 26.73), keserataan (E = 0.73) berbanding dengan burung air di PIW (n = 19160; N = 7.10; R1 = 15.60, E = 0.79). Hasil ALMA menunjukkan bahawa beban maksimum dan minimum faktor alam sekitar ialah penggunaan tanah/pelitup tanah (LULC) dan oksigen terbubar air untuk *Porphyrio porphyrio indicus* di PIW, manakala tekanan atmosferik dan Indeks Air Dominan Normalisasi (NDWI) di PW. Hal ini menunjukkan faktor persekitaran secara signifikan menyumbang kepada kehadiran spesies burung. Selain itu, beban maksimum dan minimum bagi faktor tersebut ialah turbidity air dan konduktiviti elektrik untuk *Amaurornis phoenicurus* di PIW, manakala tekanan atmosferik dan enam parameter air di PW. Sebahagian besar kawasan PW telah diklasifikasikan lebih sesuai untuk burung terestrial dan air daripada PIW disebabkan tekanan atmosfera yang selesa, LULC, curahan hujan, kelajuan angin, kelembapan relatif dan NDWI. Pendekatan penarafan kriteria pemboleh ubah persekitaran yang penting ini yang menggunakan ALMA adalah sangat penting untuk penyokong pemuliharaan kerana ia mengutarakan mereka dengan suatu alat untuk memahami faktor mana yang memberikan kesan kepada populasi burung di habitat yang berkaitan. Oleh sebab itu, penerimagunaan model sebagai alat pengurusan berserta dengan pangkalan data pemantauan populasi yang mantap akan meningkatkan keberkesanan pengurusan spesies dan tanah paya. Oleh itu, habitat tanah paya ini perlu dipulihara agar dapat meningkatkan populasi dan keberterusan dan kelestarian spesies avian pada masa hadapan.

© COPYRIGHT UPM
ACKNOWLEDGEMENTS

First and foremost, I want to thank almighty God for the strength and wisdom to conduct this research. It was his mercies that kept me.

Secondly, I want to appreciate beautiful my wife and my parents for the support and encouragements to follow my dreams and for giving me the opportunity to do so.

Thirdly, I want to appreciate the chairman of the Supervisory Committee, Prof. Dr Mohammed Zakaria Hussin for his valuable assistance to complete this research. He was more of a friend than a supervisor to me.

Also, I wish to appreciate all my co-supervisory committee such as Assoc. Professor Mohd Hasmadi Bin Ismail, Dr Siti Nurhidayu, and Dr, Mohammad Roslan for their effort in ensuring this study was a success.

Fourthly, I want to thank the UPM grant fellowship and the UPM scholarship body for their enormous sacrifice in making available the funds needed for this novel research.

Also, I want to thank Dr. Olaniyi for his contribution to the success of this research.

Finally, I am grateful to Paya Indah wetland and Putrajaya wetland reserve management and the staff for their enormous assistance to ensure that this research became a reality.
This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mohamed Zakaria bin Husin, PhD
Professor
Faculty of Forestry and Environment
Universiti Putra Malaysia
(Chairman)

Mohd Hasmadi bin Ismail, PhD
Professor
Faculty of Forestry and Environment
Universiti Putra Malaysia
(Member)

Siti Nurhidayu binti Abu Bakar, PhD
Senior Lecturer
Faculty of Forestry and Environment
Universiti Putra Malaysia
(Member)

Mohamad Roslan bin Mohamad Kasim, PhD
Senior Lecturer
Faculty of Forestry and Environment
Universiti Putra Malaysia
(Member)

ZALILAH MOHD SHARIFF, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 13 August 2020
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: __ Date:____________________

Name and Matric No: Onwuka Martins Chukwuemeka, GS49318
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: ____________________________
Name of Chairman of Supervisory Committee: Professor Dr. Mohamed Zakaria bin Husin

Signature: ____________________________
Name of Member of Supervisory Committee: Professor Dr. Mohd Hasmadi bin Ismail

Signature: ____________________________
Name of Member of Supervisory Committee: Dr. Siti Nurhidayu binti Abu Bakar

Signature: ____________________________
Name of Member of Supervisory Committee: Dr. Mohamad Roslan bin Mohamad Kasim
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 General introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Problem Statement</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Importance of Study</td>
<td>3</td>
</tr>
<tr>
<td>1.3.1 Justification of the study</td>
<td>3</td>
</tr>
<tr>
<td>1.3.2 Justification for choice of waterbirds</td>
<td>5</td>
</tr>
<tr>
<td>(Porphyrio porphyrio indicus and Amaurornis</td>
<td></td>
</tr>
<tr>
<td>1.3.3 Justification of study site selection</td>
<td>6</td>
</tr>
<tr>
<td>phoenicurus)</td>
<td></td>
</tr>
<tr>
<td>1.4 General Aims and Research objectives</td>
<td>6</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td>8</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Wetlands in Urban Areas</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Bird Population Studies</td>
<td>11</td>
</tr>
<tr>
<td>2.4 Methods of Bird Observation</td>
<td>15</td>
</tr>
<tr>
<td>2.5 Bird Distribution</td>
<td>15</td>
</tr>
<tr>
<td>2.6 Status of biodiversity and Avifauna in</td>
<td>18</td>
</tr>
<tr>
<td>Malaysian Wetlands</td>
<td></td>
</tr>
<tr>
<td>2.6.1 Flora and Fauna of Malaysia (other taxa</td>
<td>20</td>
</tr>
<tr>
<td>in Malaysia)</td>
<td></td>
</tr>
<tr>
<td>2.6.2 Wetland Birds Malaysia</td>
<td>21</td>
</tr>
<tr>
<td>2.7 Description of Selected Birds</td>
<td>22</td>
</tr>
<tr>
<td>2.7.1 Purple Swamphen (Porphyrio porphyrio)</td>
<td>22</td>
</tr>
<tr>
<td>2.7.2 White-breasted Waterhen (Amaurornis</td>
<td>27</td>
</tr>
<tr>
<td>phoenicurus)</td>
<td></td>
</tr>
<tr>
<td>2.8 Ecological Modelling in bird’s studies</td>
<td>30</td>
</tr>
<tr>
<td>2.9 Assessing the Species Richness</td>
<td>32</td>
</tr>
<tr>
<td>2.9.1 Assessing species richness through</td>
<td>33</td>
</tr>
<tr>
<td>habitat suitability mapping</td>
<td></td>
</tr>
<tr>
<td>2.9.2 Assessing species richness through</td>
<td>35</td>
</tr>
<tr>
<td>spatial heterogeneity based on primary</td>
<td></td>
</tr>
<tr>
<td>productivity</td>
<td></td>
</tr>
<tr>
<td>2.9.3 Assessing species richness through</td>
<td>38</td>
</tr>
<tr>
<td>temporal heterogeneity</td>
<td></td>
</tr>
<tr>
<td>2.9.4 Assessing species richness through</td>
<td>39</td>
</tr>
<tr>
<td>heterogeneity based on landscape structural</td>
<td></td>
</tr>
<tr>
<td>properties</td>
<td></td>
</tr>
<tr>
<td>2.9.5 Assessing species richness through</td>
<td>40</td>
</tr>
<tr>
<td>heterogeneity based on plant chemical</td>
<td></td>
</tr>
<tr>
<td>constituent</td>
<td></td>
</tr>
</tbody>
</table>
2.10 Habitat Suitability Modelling (HSM)
2.10.1 Different modelling approaches and algorithms
2.10.2 Robustness and validation
2.10.3 Latest developments and perspectives in a global change context
2.11 Environmental Explanatory Variables
2.11.1 Vegetation Indices
2.11.2 Hydrology
2.11.2.1 Water Quality Index
2.11.3 Land Use/Cover and Climate impact on Avian Population

3 BIRD SPECIES COMPOSITION IN PAYA INDAH WETLAND AND PUTRAJAYA WETLAND
3.1 Introduction
3.1.1 Definition of Terrestrial and Waterbirds in the study
3.2 Objectives of Study
3.3 Methodology
3.3.1 Study Areas
3.3.1.1 Putrajaya Wetland
3.3.1.2 Paya Indah Wetland
3.3.2 Bird surveys and Sampling technique
3.4 Result
3.4.1 Terrestrial Bird Composition in Putrajaya
3.4.2 Terrestrial Bird Composition in Paya Indah Wetland
3.4.3 Water Bird Composition in Putrajaya
3.4.4 Water Bird Composition in Paya Indah Wetland
3.4.5 Paya Indah Wetland Vegetation
3.4.5.1 Marsh Swamp
3.4.5.2 Lotus Swamp
3.4.5.3 Open Water Body
3.4.5.4 Dryland
3.4.5.5 Shrub Patches
3.4.6 Description of Putrajaya Wetland vegetation
3.4.6.1 Shallow marsh
3.4.6.2 The Marsh
3.4.6.3 The Deep marsh
3.4.6.4 Swamp Plantation
3.5 Discussion
3.6 Conclusion

4 POPULATION AND SITE OCCUPANCY MODELLING OF AVIAN COMMUNITIES IN PAYA INDAH WETLAND AND PUTRAJAYA WETLANDS, PENINSULAR MALAYSIA
4.1 Introduction
4.2 Objectives
4.3 Materials and Methods
4.3.1 Bird surveys
4.3.2 Data analysis
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary of Some Ecological bird studies</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Malaysian Known Fauna and Flora species diversity (other taxa in Malaysia)</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>Porphyrio porphyrio subspecies and their natural geographical Range</td>
<td>24</td>
</tr>
<tr>
<td>2.4</td>
<td>Summary of the main remote sensing approaches used in animal diversity research, and the biodiversity spheres and levels (cf. Noss, 1990) to which they were applied, according to the literature analyzed in this review</td>
<td>43</td>
</tr>
<tr>
<td>2.5</td>
<td>Different Habitat Suitability Modelling (HSMs) methods and implementation</td>
<td>46</td>
</tr>
<tr>
<td>2.6</td>
<td>National Water Quality Index (WQI) of Malaysia (http://www.doe.gov.my 2014)</td>
<td>53</td>
</tr>
<tr>
<td>2.7</td>
<td>Recommended National Lake Water Quality Standard</td>
<td>56</td>
</tr>
<tr>
<td>2.8</td>
<td>List of selected water quality standards reviewed and compared</td>
<td>57</td>
</tr>
<tr>
<td>3.1</td>
<td>Description of the type of Habitat of Lakes in Paya Indah Wetlands</td>
<td>65</td>
</tr>
<tr>
<td>3.2</td>
<td>Terrestrial birds and their IUNC Status in Putrajaya Wetland</td>
<td>72</td>
</tr>
<tr>
<td>3.3</td>
<td>Terrestrial birds and their IUNC Status in Paya Indah Wetland</td>
<td>74</td>
</tr>
<tr>
<td>3.4</td>
<td>Waterbirds and their IUNC Status in Putrajaya Wetland</td>
<td>76</td>
</tr>
<tr>
<td>3.5</td>
<td>Waterbirds and their IUNC Status in Paya Indah Wetland</td>
<td>77</td>
</tr>
<tr>
<td>4.1</td>
<td>Bird diversity indices of terrestrial and water birds in Paya Indah and Putrajaya Wetland</td>
<td>96</td>
</tr>
<tr>
<td>4.2</td>
<td>Population densities of Porphyrio porphyrio indicus and Amaurornis phoenicurus in Paya Indah and Putrajaya Wetlands, Peninsular Malaysia</td>
<td>98</td>
</tr>
<tr>
<td>4.3</td>
<td>Ranking of Terrestrial bird density in Putrajaya Wetlands</td>
<td>100</td>
</tr>
<tr>
<td>4.4</td>
<td>Ranking of Terrestrial bird density in Paya Indah Wetlands</td>
<td>102</td>
</tr>
<tr>
<td>4.5</td>
<td>Ranking of Waterbirds density in Putrajaya Wetlands</td>
<td>104</td>
</tr>
<tr>
<td>4.6</td>
<td>Ranking of Waterbirds density Paya Indah Wetlands</td>
<td>105</td>
</tr>
<tr>
<td>4.7</td>
<td>Site occupancy estimates of Terrestrial and Waterbirds in Paya Indah and Putrajaya Wetlands, Peninsular Malaysia</td>
<td>106</td>
</tr>
<tr>
<td>4.8</td>
<td>Estimates of site occupancy for Porphyrio porphyrio indicus and Amaurornis phoenicurus in Paya Indah and Putrajaya Wetlands, Peninsular Malaysia</td>
<td>106</td>
</tr>
<tr>
<td>5.1</td>
<td>Error matrix of classified land use/cover map for Paya Indah Wetland</td>
<td>118</td>
</tr>
<tr>
<td>5.2</td>
<td>Error matrix of classified land use/cover map for Putrajaya Wetland</td>
<td>118</td>
</tr>
<tr>
<td>5.3</td>
<td>Hydrological Attributes for Paya Indah Wetland and Putrajaya Wetland</td>
<td>135</td>
</tr>
<tr>
<td>5.4</td>
<td>Climatic Attributes for Paya Indah Wetland and Putrajaya Wetland</td>
<td>142</td>
</tr>
<tr>
<td>5.5</td>
<td>Habitat suitability evaluation criteria importance judgment weights for terrestrial birds in Paya Indah and Putrajaya Wetlands</td>
<td>146</td>
</tr>
<tr>
<td>5.6</td>
<td>Habitat suitability evaluation criteria importance judgment weights for waterbirds in Paya Indah and Putrajaya Wetlands</td>
<td>148</td>
</tr>
<tr>
<td>5.7</td>
<td>Habitat suitability evaluation criteria importance judgment weights for Porphyrio porphyrio indicus in Paya Indah and Putrajaya Wetlands</td>
<td>150</td>
</tr>
<tr>
<td>5.8</td>
<td>Habitat suitability evaluation importance judgment weights for Amaurornis phoenicurus in Paya Indah and Putrajaya</td>
<td>152</td>
</tr>
<tr>
<td>5.9</td>
<td>Attributes of habitat suitability models for terrestrial and water birds in Paya Indah and Putrajaya Wetlands</td>
<td>155</td>
</tr>
<tr>
<td>5.10</td>
<td>Attributes of habitat suitability models for Porphyrio porphyrio indicus and Amaurornis phoenicurus in Paya Indah and Putrajaya Wetlands</td>
<td>158</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Geographical distribution of Porphyrio porphyrio indicus</td>
<td>23</td>
</tr>
<tr>
<td>2.2</td>
<td>Purple Swamphen (Porphyrio porphyrio)</td>
<td>25</td>
</tr>
<tr>
<td>2.3</td>
<td>White-breasted Waterhen (Amaurornis phoenicurus)</td>
<td>28</td>
</tr>
<tr>
<td>2.4</td>
<td>Geographical distribution of Amaurornis phoenicurus</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>Description of lakes in Putrajaya Wetland Malaysia</td>
<td>64</td>
</tr>
<tr>
<td>3.2</td>
<td>Location map of Paya Indah Wetlands Reserve, Peninsular Malaysia</td>
<td>66</td>
</tr>
<tr>
<td>3.3</td>
<td>Distribution of lakes in Paya Indah Wetland and their description of lakes</td>
<td>67</td>
</tr>
<tr>
<td>3.4</td>
<td>Description of Distance sampling point count method</td>
<td>68</td>
</tr>
<tr>
<td>3.5a</td>
<td>Distribution of point count station in Putrajaya Wetland</td>
<td>70</td>
</tr>
<tr>
<td>3.5b</td>
<td>Distribution of point count station in Paya Indah Wetland 71</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Marsh swamp habitat at Paya Indah Wetlands Reserve, Peninsular Malaysia</td>
<td>78</td>
</tr>
<tr>
<td>3.7</td>
<td>Lotus swamp habitat at Paya Indah Wetlands Reserve, Peninsular Malaysia</td>
<td>79</td>
</tr>
<tr>
<td>3.8</td>
<td>Open water body habitat at Paya Indah Wetland Reserve, Peninsular Malaysia</td>
<td>80</td>
</tr>
<tr>
<td>3.9</td>
<td>Dryland covered with trees, shrubs and grasses at Paya Indah Wetland</td>
<td>81</td>
</tr>
<tr>
<td>3.10</td>
<td>Shrub Patches at Paya Indah Wetland Reserve, Peninsular Malaysia</td>
<td>82</td>
</tr>
<tr>
<td>3.11</td>
<td>Shallow Marsh in Putrajaya Wetland Malaysia</td>
<td>83</td>
</tr>
<tr>
<td>3.12</td>
<td>The Marsh in Putrajaya Wetland Malaysia</td>
<td>84</td>
</tr>
<tr>
<td>3.13</td>
<td>Deep Marsh in Putrajaya Wetland Malaysia</td>
<td>85</td>
</tr>
<tr>
<td>3.14</td>
<td>Swamp plantation in Putrajaya Wetland Malaysia</td>
<td>86</td>
</tr>
<tr>
<td>4.1</td>
<td>Abundance distribution models of (A) Amaurornis phoenicurus and (B) Porphyrio porphyrio indicus in Paya Indah and Putrajaya Wetlands</td>
<td>99</td>
</tr>
</tbody>
</table>
5.1 Map showing the Meteorological Stations and the both study site (Putrajaya Wetland and Paya Indah Wetland) 114

5.2 Framework for the development of predictive habitat suitability models 115

5.3a Temperature Meteorological Report 121

5.3b Mean Relative Humidity Meteorological Report 122

5.3c Mean Windspeed Meteorological Report 122

5.3d Rainfall Meteorological Report 123

5.3e Mean Pressure Meteorological Report 123

5.4a The land use/land cover of Paya Indah Wetlands in Peninsular Malaysia 124

5.4b Land use cover metrics for Paya Indah 124

5.5a The land use/land cover of Putrajaya Wetlands in Peninsular Malaysia 125

5.5b Land use cover metrics for Putrajaya 125

5.6a Normalized Difference Vegetation Index of Paya Indah Wetlands 126

5.6b Attribute of Normalized Difference Vegetation Index of Paya Indah Wetlands 126

5.7a Normalized Difference Vegetation Index of Putrajaya Wetlands 127

5.7b Attribute of Normalized Difference Vegetation Index of Putrajaya Wetlands 127

5.8a Hydrological maps of Paya Indah Wetlands, Peninsular Malaysia 129

5.8b Hydrological maps of Paya Indah Wetlands, Peninsular Malaysia 130

5.8c Hydrological maps of Paya Indah Wetlands, Peninsular Malaysia 131

5.9a Hydrological maps of Putrajaya Wetlands, Peninsular Malaysia 132

5.9b Hydrological maps of Putrajaya Wetlands, Peninsular Malaysia 133

5.10a Climatic maps of Paya Indah Wetlands, Peninsular Malaysia 137

5.10b Climatic map for Paya Indah Wetland, Peninsular Malaysia 138

5.11a Climatic maps of Putrajaya Wetlands, Peninsular Malaysia 139
5.11b Climatic maps of Putrajaya Wetland, Peninicular Malaysia 140

5.12 The performance of the fitted habitat suitability models for (A) Waterbird species and (B) terrestrial bird species in Paya Indah and Putrajaya Wetlands 144

5.13 The performance of the fitted habitat suitability models for (A) Porphyrio porphyrio indicus and (B) Amaurornis phoenicurus in Paya Indah and Putrajaya Wetlands 145

5.14 Habitat suitability models of Terrestrial Birds (A) and Waterbirds (B) in Paya Indah and Putrajaya Wetlands of Peninsular Malaysia 153

5.15 Habitat suitability models of Porphyrio porphyrio indicus (A) and Amaurornis phoenicurus (B) in Paya Indah and Putrajaya Wetlands of Peninsular Malaysia 156
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>ha</td>
<td>Hectare</td>
</tr>
<tr>
<td>PIW</td>
<td>Paya Indah Wetland</td>
</tr>
<tr>
<td>PW</td>
<td>Putrajaya Wetland</td>
</tr>
<tr>
<td>HSMS</td>
<td>Habitat Suitability Models</td>
</tr>
<tr>
<td>ALMA</td>
<td>Automatic Linear Modelling Algorithm</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>WQI</td>
<td>Water Quality Index</td>
</tr>
<tr>
<td>LULC</td>
<td>Land Use Land Cover</td>
</tr>
<tr>
<td>IBM</td>
<td>International Business Machines Corporation</td>
</tr>
<tr>
<td>UNFPA</td>
<td>United Nations Population Fund</td>
</tr>
<tr>
<td>NWR</td>
<td>National Wildlife Refuge</td>
</tr>
<tr>
<td>IUCN</td>
<td>International Union For Conservation Of Nature</td>
</tr>
<tr>
<td>RS</td>
<td>Remote Sensing</td>
</tr>
<tr>
<td>GARP</td>
<td>Genetic Algorithm For Rule-Set Prediction</td>
</tr>
<tr>
<td>AIC</td>
<td>Akaike Information Criterion</td>
</tr>
<tr>
<td>ROC</td>
<td>Receiver Operating Characteristics Plots</td>
</tr>
<tr>
<td>SPOT</td>
<td>Satellite Probatoire D’observation De La Terre</td>
</tr>
<tr>
<td>MESSR</td>
<td>Multispectral Electronic Self-Scanning Radiometer</td>
</tr>
<tr>
<td>MOS</td>
<td>Marine Observation Satellite</td>
</tr>
<tr>
<td>NDVI</td>
<td>Normalized Difference Vegetation Index</td>
</tr>
<tr>
<td>EVI</td>
<td>Enhanced Vegetation Index</td>
</tr>
<tr>
<td>AVHRR</td>
<td>Advanced Very-High-Resolution Radiometer</td>
</tr>
</tbody>
</table>
NOAA National Oceanic And Atmospheric Administration
LIDAR Light Detection And Ranging
SAR Synthetic Aperture Radar
MISR Multi-Angular Imaging Spectro-Radiometer
LANDSAT TM Landsat Thematic Mapper
GLMS Generalized Linear Models
ANN Artificial Neural Networks;
BA Bayesian Approach
BRT Boosted Regression Trees,
CE Climatic Envelope
MARS Multivariate Adaptive Regression Splines
MDA Mixture Discriminant Analysis,
GDM Generalized Dissimilarity Modelling
SVM Support Vector Machine
MAXENT Maximum Entropy
GA Genetic Algorithm
BRT Boosted Regression Trees
NIR Near-Infrared And Red
LAI Leaf Area Index
PAI Plant Area Index
DOE-WQI Department Of Environment-Water Quality Index
NDWQS National Drinking Water Quality Standards
NWQS National Water Quality Standards
NLWQS National Lake Water Quality Criteria And Standards
TSS Total Suspended Solids
IUNC International Union For Conservation Of Nature
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC</td>
<td>Least Concern</td>
</tr>
<tr>
<td>NT</td>
<td>Near Threatened</td>
</tr>
<tr>
<td>VC</td>
<td>Vulnerable</td>
</tr>
<tr>
<td>IUCN</td>
<td>International Union For Conservation of Nature's</td>
</tr>
<tr>
<td>NO</td>
<td>Naïve Occupancy</td>
</tr>
<tr>
<td>MSI</td>
<td>Multi-Spectral Instrument</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geological Survey</td>
</tr>
<tr>
<td>LULC</td>
<td>Land Use/Land Cover</td>
</tr>
<tr>
<td>WGS84</td>
<td>World Geodetic System 1984</td>
</tr>
<tr>
<td>ERDAS</td>
<td>Earth Resources Data Analysis System</td>
</tr>
<tr>
<td>GDM</td>
<td>Geocentric Datum For Malaysia</td>
</tr>
<tr>
<td>ROC</td>
<td>Receiver Operating Characteristic Analysis</td>
</tr>
<tr>
<td>AUC</td>
<td>Area Under The Curve</td>
</tr>
<tr>
<td>AP</td>
<td>Amaurornis Phoenicurus</td>
</tr>
<tr>
<td>PPI</td>
<td>Porphyrio Porphyrio Indicus</td>
</tr>
<tr>
<td>GAM</td>
<td>Gross Arithmetic Mean</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 General introduction

The study of the bird populations is important for the understanding of the complexity of wetlands ecosystem structure and for providing updated information on each type of wetlands in the ecosystem (Weller, 1999; Matsinos and Wolf, 2003; Burger and Eichhorst, 2005; Amat and Green, 2010; Rahman and Ismail, 2018). Some of these bird species are distributed within one of the most varied and diverse wetland ecosystems across the country mainly due to the heterogeneity of vegetation phytosociological characteristics, unpredictable rainfall patterns and occurrence of contiguous different adjoining landscapes (Rajpar and Zakaria, 2014). But, the wetland ecosystems are threatened with a risk of extinction due to habitat loss, invasive species and human interventions (World Bank Report, 2011; Legape, 2013). Urbanization and increased agricultural activities such as oil palm plantations have largely replaced a large swath of wetlands vegetation areas (Munira et al., 2011; Russi et al., 2013).

Despite the undue human pressure on Malaysian wetlands, the birds density and distribution are pivotal on their vegetation dynamics, availability of water and food resources, protection from predators and climatic condition (Zakaria and Rajpar, 2010; Rajpar and Zakaria, 2014). Inland wetlands most especially in highly urbanized areas are critical to birds conservation (Morganti et al., 2019). PIW and PW are examples of highly urbanized and the largest wetlands located in the Selangor State (the largest populous and most developed state) and Putrajaya (the fastest-growing region) of Malaysia respectively (Ho, 2006; Malaysian Department of Information, Ministry of Communications and Multimedia, 2015). These two homogenous wetlands due to proximity (10km) with different wetland types (natural and artificial) could convey a varied abundance distribution of bird species to their ecological and micro-climatic factors.

The development of habitat suitability models (HSMs) remains an effective tool to resolve the fundamental research gap of determining the ecological and microclimatic factors that significantly influence the birds distribution within homogenous wetlands in an urbanized setting. In the past three decades, the usage of HSMs has increased to predict the likelihood of species’ occurrence or presence/absence or distribution as it relates to environmental variables in a particular area (Franklin, 1995; Guisan and Zimmermann, 2000; Rushton et al., 2004; Hirzel and Lay, 2008). Different approaches had been employed in the variable selection or weighting of factors during the habitat suitability modelling. Some of these approaches are generalized additive models, generalized linear models, multivariate adaptive regression splines, Bayesian approach, artificial neural networks, climatic envelop, fuzzy logics, boosted regression trees, generalized dissimilarity modelling, genetic algorithm, mixture discriminant
analysis, classification and regression trees, ecological niche factor analysis, maximum entropy, support vector machine (Busby, 1991; Carpenter et al., 1993; Stockwell and Peters, 1999; Hijmans et al., 2001; Pearson et al., 2002, Hirzel et al., 2002, Thuiller, 2003; Lehmann et al., 2003; Phillips et al., 2006; David and Stockwell, 2006; Ferrier et al., 2007; Sutton et al., 2007; Thuiller et al., 2009).

These study explored the integration of birds presence and absence data with associated environmental variables to predict their habitat suitability using the Automatic Linear Modelling Algorithm (ALMA) and Geographic Information System methods. Yang (2013) introduced the Automatic Linear Modelling Algorithm, a form of a regression model with various model selection methods (such as forward stepwise, best subsets, include all predictors) to rank the independent variables based on the computation of predictor importance coefficient (referred to importance ratios in this study). These predictor importance coefficients are relative values, sum up to 1.0 and rank each independent (predictor) variable according to its importance to the model (IBM Corporation, 2011). The novel variable selection capability of ALMA was integrated with geospatial techniques to determine the influence of environmental variables on the occurrence of the birds.

1.2 Problem Statement

Malaysia has lost more than half of its wetlands to agricultural development and urbanization (Zakaria and Rajpar 2009; Dahl et al., 1991). Despite heavy wetland losses, the wetlands in Malaysia remains one of the most important migration, wintering and breeding areas for wetland-dependent birds in North America, supporting over 60% of the total Pacific Flyway waterfowl population (Central Valley Joint Venture, 2006). Hence, documentation on this current status of birds and the environmental factor affecting their occurrences in these wetlands is crucial. This will help conservationists manage their wetlands to conserve an attract avian communities.

Avian diversity faces growing pressures from human actions, including habitat conversion and degradation, habitat fragmentation, climate change, harvesting and pollution (Tittensor et al., 2014). As a result, global assessments showed that avian communities extinction risk is increasing on average while population sizes are declining (Pimm et al., 2014; Tittensor et al., 2014). Such assessments have usually focused on some bird’s species, so might not reflect broader biodiversity (Collen et al., 2009). Furthermore, most have concentrated on the global status of species, whereas the long-term security of many ecosystems especially in changing environments is likely to depend upon local avian biodiversity (Isbell et al., 2011; Hooper et al., 2012; Cardinale et al., 2012).

Average trends in local avian diversity remain unclear: analyses of temporal changes in assemblages have suggested no systematic change in species richness (Vellend et al., 2013; Dornelas et al., 2014). The spatial analysis provides an alternative source of evidence on how ecological or environmental affect avian diversity, (Alkemade et al.,
The prevalence of published spatial analysis makes it possible to go beyond particular taxa or regions (Gibson et al., 2011; Mendenhall et al., 2014) to develop global, taxonomically and habitat suitability representative models. Furthermore, the unwillingness of many researchers to share their raw data makes it impossible to consider multiple aspects of diversity, rather than the single, simple metrics of most existing models (Alkemade et al., 2009) which cannot capture all key aspects of diversity (Pereira et al., 2013). Hence, this study aims at addressing this gap by acquiring a comprehensive dataset of birds in PIW and PW for 26 month and understand their environmental influence on bird population and diversity.

Land-use/Land cover changes are currently a major threat to bird diversity across southeast Asia (Forcey et al., 2011) and severe impacts from climate change should also be expected (Forcey et al., 2014). Birds have also been shown to be responding to climate change (Crick, 2004, Devictor et al., 2012), inclusively in the southeast Asia region (Hamilton et al., 2014). However, much remains to be explored regarding the effects of changes in land use/landcover and climate on Malaysian wetlands bird assemblages across the region.

The knowledge basis on the effects of climate change is even scarcer. The lack of long-term bird diversity monitoring, particularly in southeast Asia (Malaysia), makes it difficult to evaluate the impacts of climate change on biodiversity and to disentangle them from those of other drivers of change. Hence, it is important to understand the impacts of these climatic factors on the bird population of wetland birds.

In this study water birds refer to the bird species that entirely depend on wetlands for a variety of activities such as foraging, nesting, loafing and moulting, whereas, terrestrial birds refer to bird species that do not entirely depend on wetland habitat but may visit the wetland occasionally in search of food, shelter and perch (Rajpar & Zakaria 2009; 2010).

1.3 Importance of Study

1.3.1 Justification of the study

Estimating the bird population and diversity in man-made marsh wetland is an important tool to understand the avian assemblages, population trends and the current status of biodiversity in the wetland or habitats, for effective conservation and better management in the future. Accurate population estimates and detailed information about habitat use of marsh bird species in Malaysia are lacking. No detailed study has been carried out in man-made marshes wetlands to determine the population and diversity of avian communities. Due to the important role that birds play in maintaining ecosystems and supporting biodiversity, many seek their protection to manage biological threats and efficiently protect the environment (Stevenson and Fanshawe, 2002). Birds fulfil many ecological functions in their habitats. For instance,
they are bioindicators of healthy ecosystems (Mistry et al., 2008, Slabbekoorn and Ripmeester, 2008). In addition, insectivorous species and raptors regulate disease vectors, including mosquitoes and rodents. Scavenger birds, such as the Pied Crow (*Corvus albus*), contribute to biomass recycling and to some degree reduce levels of disposable wastes. Frugivorous birds play an important role in seed dispersal of fleshy fruit-producing plants environment (Stevenson and Fanshawe, 2002). Birds are also important in plant pollination as demonstrated by sunbirds, which participate in crossbreeding of flowering plants, especially those with the bird-pollination syndrome (Judd, 2008). These ecosystem services are important for many communities, and to ensure that birds can fulfil these biological roles at an appropriate level for current and future generations, hence, there is a pressing need to study the population and how environmental factors affect the bird diversity in Malaysian wetlands, especially in urban areas as higher bird population leads to a better habitat or ecosystem which directly or indirectly improves the urban communities.

In this study, the bird/avian population is the size of each bird species per hectare while diversity is a variation in bird species inhabited man-made marsh wetland. Determining the bird population and diversity provide information on population size, population changes over a specific period across different wetlands or habitats, the impact of wetland or habitat loss and degradation in different wetlands or habitats (Githiru & Lens, 2006; Norvell et al., 2003). For this purpose, a distance sampling point count method was chosen because it was more appropriate technique and extensively used to determine the avian population and diversity in different habitats (Buckland et al., 2008; Harrison & Kilgo, 2004). This method provides a uniform way of counting birds over time across the locations, reduces bias in estimates of avian populations and each point count station represents an independent data that can generate a large sample size and a robust data set (Thomas et al., 2010; Wilson et al., 2000).

With global increases in human population growth, there is a need for research regarding the relationship between environmental factors affecting wetlands and bird diversity (Mattison, 2005; Crossman, 2013). Human-induced changes to bird diversity have occurred more rapidly in the past 50 years than at any other time in history, and the forces driving such changes are steady, showing no evidence of decline over time (Millennium, 2005). In the past, conservation efforts have largely focused on conserving individual species and habitats. More recently, conservation ecologists have focused on wetland services or the goods and services from ecological systems that benefit people (Millennium, 2005).

Hence, the development of habitat suitability models remains an effective tool to resolve this fundamental research gap. Over the years, different approaches had been employed in the variable selection or weighting of factors during the habitat suitability modelling of birds. For instance, the Analytic hierarchy process (Zhang et al., 2016, Tian et al., 2016), maximum entropy (Vallecillo et al., 2016), etc had been applied to investigate the factors influencing the distribution of these avian groups. Amidst these methods, Elith et al. (2006) and Aguirre-Gutiérrez et al. (2013) argued that the
maximum entropy method offered better predictive performance, most especially for presence-only data. However, Yang (2013) introduced the Automatic Linear Modeling Algorithm (ALMA), a forward stepwise model selection method to rank the independent variables based on the computation of importance ratios. It is an extension of the multiple linear regression functions in the Statistical Package for Social Sciences software that can explore both the species’ presence and absence data. Also, it has not been applied in any studies related to habitat suitability modelling. In this study, the novelty of variable selection capability of ALMA was integrated with geospatial techniques to determine the influence of environmental variables on the occurrence of the Avian community and some selected rails species (*Porphyrio porphyrio indicus* and *Amaurornis phoenicurus*). The research aimed at developing robust habitat suitability models towards improved conservation of these Avian communities in the Paya Indah and Putrajaya Wetlands of Peninsular Malaysia.

1.3.2 Justification for choice of waterbirds (*Porphyrio porphyrio indicus* and *Amaurornis phoenicurus*)

Purple Swamphen (*Porphyrio porphyrio indicus*) and White-breasted Waterhen (*Amaurornis phoenicurus*) are important species of the family Rallidae (Rails, Gallinules, and Coots) in Peninsular Malaysia. Globally, a lot of research had been undertaken most especially in the areas of their estimated population, habits, habitats, foods, nesting and reproduction, and potential ecological impacts in different habitats (del Hoyo *et al.*, 1996; Taylor and Van Perlo, 1998; Gopakumar and Kaimal, 2008; Pearlstine and Ortiz, 2009; Buden and Retogral, 2010; BirdLife International, 2012; Taylor, 2016; Moreno-Opo and Pique, 2018; Chen *et al.*, 2019). These different habitats of Purple Swamphen and White-breasted Waterhen include natural and man-made wetlands, rivers, lakes, reservoirs, ponds, freshwater swamps, mangroves and tidal mudflats, coral reefs, rice fields, grasslands, sewage farms, etc. Given the uncertainty in the population trends of the two species within severely fragmented areas in recent times (BirdLife International, 2015; BirdLife International, 2016b), it is highly expedient to consider their current estimated populations in different urban wetlands despite their present “least concern” status on the IUCN Red data list (BirdLife International, 2016a; BirdLife International, 2016b). Also there are insufficient baseline data and the diversity of this species within most tropical wetlands especially Malaysian wetlands remains a major issue in its management effectiveness (Leveau et al., 2018). Having established some of the concerns from BirdLife International, (2019), they suggested that the following should be done on this species:

- This species should be fully protected, included in the appropriate category in the national catalogues and have a National Recovery Plan.
- Also there should be a continuous monitoring scheme for this species. Key sites should be adequately protected, as should smaller sites and appropriate restoration, conservation and enhancement measures applied.
- Also, restrictions on hunting at important sites are also needed and monitoring should be standardised throughout its range.
• Research should focus on *mortality and migration caused by environmental factors and habitat use*. (de Vergara and Ripoll, 1999).

Hence, it was highly imperative to establish the influence of environmental variability on their natural relics and distribution areas with immense scientific value.

1.3.3 **Justification of study site selection**

Continuous human development and urbanization have changed most natural habitats, including wetlands. Hence, the current trend of landscaping, and particularly for new townships, incorporates artificial habitat as one of its primary components to treat the effluent and maintain the water quality and environmental health. Comparative studies of avian community composition in different habitats, including urbanized areas, can improve our knowledge of the general patterns and processes that characterize bird species and communities. A number of studies that describe avian responses to urbanization (conducted mainly in temperate areas) suggest that urbanization affects landscape heterogeneity and consequently, the distribution, abundance and resources upon which birds depend (Marzluff, 2001; Jokimaki et al., 2002; Blair, 2004; Chace and Walsh, 2004; Manhaes and Alan, 2005), hence Paya Indah Wetland and Putrajaya Wetland were chosen because of its uniqueness in avian diversity and its location in Malaysia.

1.4 **General Aims and Research objectives**

The research aimed at comparing the population estimate of avian species, and developing robust habitat suitability models towards improved conservation of avian species in Paya Indah Wetland and Putrajaya Wetland of Peninsular Malaysia.

The objectives were as follows:

- To determine the population size, occupancy modelling, and diversity of terrestrial birds, waterbirds, and selected waterbird species (*Porphyrio porphyrio* and *Amaurornis phoenicurus*) in Putrajaya Wetland and Paya Indah Wetlands of Peninsular Malaysia;
- To examine environmental factors that influence the population and diversity of terrestrial birds, waterbirds, and selected species (*Porphyrio porphyrio* and *Amaurornis phoenicurus*) within Paya Indah Wetland and Putrajaya Wetland.
- To develop habitat suitability models for terrestrial birds, waterbirds, and selected species (*Porphyrio porphyrio* and *Amaurornis phoenicurus*) within Paya Indah and Putrajaya Wetland in the study area.
This study, therefore, provides policymakers and conservationists of the wetlands with scientific information about the ecological status of birds and how their population and diversity can be affected by wetland environmental characteristics.
REFERENCES

González, C. G. (2019). EcoIndR: Ecological Indicators. Retrieved February 24, 2020, from R-Packages website:

Yale University Press, New Haven, CT (1990)

Zhang Y., Yao Z., Liu L., (2016). Final report on study on land use and land cover change and erosion in the Koshi River Basin. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, China.

