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Repeat-in-Toxin (RTX) represents a broad family of protein produced by Gram-
negative bacteria. RTX protein consists of RTX parallel β-roll motif repeat 
structure. Previously, AMS8 lipase from Antarctic Pseudomonas fluorescens 
strain AMS8 was classified as RTX lipase. The previous study has been 
reported the Ca2+ ions play a role in the formation of RTX parallel β-roll motif
repeat structure and involve in the folding and stabilization of many RTX 
protein. However, the contributions of Ca2+ ions towards the folding and
stabilization of AMS8 lipase have not been understood. It is hypothesized that 
the Ca2+ ions induce the formation of RTX parallel β-roll motif repeat structure
and involve in the folding and stabilization of AMS8 lipase. Thus, this research 
aimed to examine the influence of Ca2+ ion towards the activity, folding and
stabilization of AMS8 lipase through the in-silico approach and various 
biophysical characterizations. 

AMS8 lipase contains six Ca2+ ions (Ca1, Ca2, Ca3, Ca4, Ca5 and Ca6) and
RTX parallel β-roll motif repeat structures. In-silico studies were done to 
analyze the structural conformational changes of the AMS8 lipase structure 
using molecular docking and molecular dynamics (MD) simulation. As a result, 
metal ion docking analysis gives high binding energy, especially for Ca4 and 
Ca5. To further analyze the function of each Ca2+ ions, MD simulation was
performed. The removal of Ca3, Ca4 and Ca5 caused the AMS8 lipase 
structure to become unstable and unfolded. These suggested that Ca3, Ca4 
and Ca5 were involved in the stabilization and folding of the RTX parallel β-roll 
motif repeat structure.  Ⓒ C
OPYRIG
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AMS8 lipase activity was increased in the presence of CaCl2, where the 
optimum CaCl2 concentration was detected at 80 mM. To further confirm the 
contribution of Ca2+ ion, various biophysical characterizations using circular
dichroism (CD), fourier-transform infrared (FTIR), intrinsic and extrinsic 
fluorescence, dynamic light scattering (DLS) and isothermal titration calorimetry 
(ITC) were performed. The far-UV CD and FTIR analyses suggested that the 
secondary structure content was improved with the addition of CaCl2. Intrinsic 
and extrinsic fluorescence analysis showed that the presence of CaCl2 
increased protein folding and compactness. DLS analysis suggested the AMS8 
lipase became aggregated at a high concentration of CaCl2. The binding 
constant (Kd) value from the ITC analysis proved that the Ca2+ ion was tightly
bound to the AMS8 lipase.  

In conclusion, in-silico approach and various biophysical characterizations 
revealed that Ca2+ ions play essential roles in the activity, folding and stability
of the AMS8 lipase. Furthermore, Ca2+ ions also induced the folding of the RTX
parallel β-roll motif repeat structure and played a crucial role in the folding and 
stabilization purposes of the whole AMS8 lipase structure. 

Ⓒ C
OPYRIG

HT U
PM



iii 
 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah ijazah Sarjana Sains 

 

ARUHAN KALSIUM KEPADA PENGLIPATAN DAN PENSTABILAN LIPASE 
RTX AKTIF SEJUK DARIPADA Pseudomonas sp. STRAIN AMS8 

 

Oleh 

NUR SHIDAA MOHD ALI 

Jun 2020 

Pengerusi : Mohd Shukuri Mohamad Ali, PhD 
Fakulti  : Bioteknologi dan Sains Biomolekul 
 
 
Repeat-in-Toxin (RTX) mewakili keluarga besar protein yang dihasilkan oleh 
Gram-negatif bakteria. RTX protein terdiri daripada struktur RTX selari β-roll 
motif ulangan. Sebelum ini, AMS8 lipase daripada Antartika Pseudomonas 
fluoresens strain AMS8 dikelaskan sebagai RTX lipase. Kajian sebelumnya 
telah melaporkan bahawa ion Ca2+ berperanan dalam pembentukan struktur 
RTX selari β-roll motif ulangan dan terlibat dalam lipatan dan penstabilan 
pelbagai protein RTX. Walau bagaimanapun, sumbangan ion-ion Ca2+ 
terhadap lipatan dan penstabilan AMS8 lipase belum difahami. Ia 
dihipotesiskan bahawa ion-ion Ca2+ mengaruh struktur RTX selari β-roll motif 
ulangan dan terlibat dalam lipatan dan penstabilan AMS8 lipase. Oleh itu, 
kajian ini bertujuan untuk mengkaji pengaruh ion Ca2+ terhadap aktiviti, lipatan 
dan penstabilan AMS8 lipase melalui pendekatan in-siliko dan pelbagai 
pencirian biofizik. 
 
 
AMS8 lipase mengandungi enam ion Ca2+ (Ca1, Ca2, Ca3, Ca4, Ca5 dan Ca6) 
dan struktur RTX selari β-roll motif ulangan. Kajian in-siliko dilakukan untuk 
menganalisis perubahan konformasi struktur AMS8 lipase menggunakan 
molekular dok dan simulasi molekular dinamik (MD). Keputusannya, analisis 
dok logam ion memberikan tenaga pengikatan yang tinggi, terutama untuk Ca4 
dan Ca5. Bagi menganalisis fungsi setiap ion-ion Ca2+, simulasi MD dilakukan. 
Penyingkiran Ca3, Ca4 dan Ca5 menyebabkan struktur AMS8 lipase menjadi 
tidak stabil dan terbuka lipatan. Ini menunjukkan bahawa Ca3, Ca4 dan Ca5 
terlibat dalam penstabilan struktur RTX selari β-roll motif ulangan. 
 
 
Aktiviti AMS8 lipase meningkat dengan kehadiran CaCl2 di mana kepekatan 
CaCl2 optimum dikesan pada 80 mM. Bagi mengesahkan sumbangan Ca2+ ion, 
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pelbagai pencirian biofizik menggunakan circular dichroism (CD), fourier-
transform infrared (FTIR), intrinsic and extrinsic fluorescence, dynamic light 
scattering (DLS) dan isothermal titration calorimetry (ITC) telah dilaksanakan. 
Analisis far-UV CD dan FTIR mencadangkan bahawa kandungan struktur 
sekunder bertambah baik dengan penambahan CaCl2. Analisis intrinsic and 
extrinsic fluorescence menunjukkan bahawa kehadiran CaCl2 meningkatkan 
lipatan dan ketumpatan protein. Analisis DLS mencadangkan bahawa AMS8 
lipase menjadi agregat pada kepekatan CaCl2 yang tinggi. Nilai binding 
constant (Kd) dari analisis ITC membuktikan bahawa ion Ca2+ terikat kuat pada 
AMS8 lipase. 
 
 
Sebagai kesimpulan, pendekatan in-siliko dan pelbagai pencirian biofisik 
mendedahkan bahawa ion Ca2+ memainkan peranan penting dalam aktiviti, 
lipatan dan kestabilan AMS8 lipase. Tambahan pula, ion Ca2+ juga mendorong 
kepada pembentukan struktur RTX selari β-roll motif ulangan dan memainkan 
peranan penting dalam penglipatan dan penstabilan keseluruhan struktur 
AMS8 lipase. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background of study 
 
 
Cold-active enzymes are active at low temperature and it can sustain the 
dynamics and flexibility of their active site at low temperatures (Latip et al., 
2016). Cold-active enzymes have attracted much attention as biocatalysts due 
to their capacity to resist unfavorable reaction conditions in the industrial 
process (Hamid & Mohiddin, 2018). Cold-active enzymes including lipases are 
valuable in the biotechnology industry to reduce process times for low-
temperature processes, conserve energy costs, minimize the enzyme 
concentration needed, prevent undesired chemical transformations, and 
prevent the loss of volatile compounds (Kuddus, 2014). Even though the lipase 
group contributes less than 10 % of the global enzyme market, it assists an 
extensive range of industrial purposes including food and oil processing, 
detergents and pharmaceutical end-users (Guerrand, 2017). 
 
 
Previously, cold-active RTX lipase (AMS8 lipase) belongs to the I.3 family was 
isolated from Antarctic Pseudomonas. A lipase gene named LipAMS8 was 
successfully isolated from strain AMS8, cloned, sequenced and overexpressed 
in Escherichia coli (Ali et al., 2013a). AMS8 lipase was classified as RTX 
(Repeat-in-Toxin) lipases due to the presence of RTX nanopeptide repeat 
sequence which produces the RTX parallel β-roll motif repeat structure at the 
C-terminal. These RTX nonapeptides repeat sequence form a number of 
binding sites for Ca2+ ions (Linhartova et al., 2010). In the absence of Ca2+ ion, 
these RTX parallel β-roll motif repeat structures seem to be mostly disordered 
and may disturb the entire stabilization and folding of protein structure (Gupta & 
Rathi, 2004; Sharma et al., 2001).  
 
 
AMS8 lipase predicted structure consists of metal ion including one Zn2+ and 
six Ca2+ ions. The C-terminal consists of 3 RTX parallel β-roll motif repeat and 
3 of the Ca2+ ion are bound to the RTX parallel β-roll motif repeat structure. 
Past studies have suggested that the RTX parallel β-roll motif repeat structure 
is responsible for internal chaperones, receptor binding domains and 
enhancers of the secretion process (Lilie et al., 2000). Even though the exact 
function of the RTX parallel β-roll motif repeat structure remains obscure, the 
presence of Ca2+ ion plays an essential role since it is relevant for both folding 
and stability of many protein domains (Stigler et al., 2011). 
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1.2 Problem statement  
 
 
An earlier study proposed that lipase from Antarctic Pseudomonas fluorescens 
strain AMS8 was classified as RTX lipase. AMS8 lipase consists of RTX 
parallel β-roll motif repeat structure and Ca2+ ions. A previous study has been 
reported the Ca2+ ions affect the formation and stabilization of RTX parallel β-
roll motif repeat structure and are involved in the folding and stabilization of 
many RTX proteins. However, the contributions of six Ca2+ ions toward folding 
and stabilization of AMS8 lipase not been understood. 
 

1.3 Research objectives 
 
 
Investigations were carried out with a combination of in-silico study and 
biophysical approaches to explore the effect of Ca2+ ion towards the activity, 
folding and stabilization of the cold-active RTX lipase from Pseudomonas 
fluorescens strain AMS8. Hence, the research was undertaken with the 
following sub-objectives: 
 

1. To investigate the function of Ca2+ ion towards the structural 
conformation and stabilization of the AMS8 lipase structure and the 
RTX parallel β-roll motif repeat structure via the in- silico approach.  
 

2. To characterize the role of Ca2+ ion towards the activity and folding of 
AMS8 lipase via various biophysical approaches. 

 
. 
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CHAPTER 5 

 

CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH 

 
 
5.1 Conclusion 
 

 
AMS8 lipase from P. fluorescence strain AMS8 belonged to the RTX lipases 
group since it contained RTX parallel β-roll motif repeat structures at the C-
terminal. AMS8 lipase contained six Ca2+ ions. The Ca2+ ions were bound to 
the catalytic and non-catalytic domain of the structure, including the RTX 
parallel β-roll motif repeat structures. The in-silico study showed the removal of 
Ca2+ ions caused the destabilization and unfolding of the AMS8 lipase 
structure, especially at the non-catalytic domain, including the RTX parallel β-
roll motif repeat structure. This showed that the contribution of calcium-binding 
performed a vital function in sustaining the structural integrity of AMS8 lipase. 
Besides, AMS8 lipase activity increased with the presence of Ca2+ ions. The 
evidence from lipase activity was further analyzed using various biophysical 
characterizations. The biophysical characterization analyses (Far-UV CD 
spectra, FTIR spectroscopy, fluorescence spectroscopy, DLS and ITC) 
revealed that the presence of Ca2+ ions improved the secondary structure and 
made the folding of AMS8 lipase better compared to untreated AMS8 lipase 
(without Ca2+ ion). Furthermore, Ca2+ ions also induced the folding of the RTX 
parallel β-roll motif repeat structure and played a crucial role in the AMS8 
lipase structure. 
 
 
5.2 Recommendation for future research 
 

 
Based on the current study, the RTX parallel β-roll motif repeat the structure 
involved in the stabilization of the AMS8 lipase structure. To further explore the 
specific contribution of Ca2+ ion towards the stabilization of RTX parallel β-roll 
motif repeat structure, studies on site-directed mutation on Ca4 and Ca5 by 
replacement of amino acid Asp387 and  Asp396 respectively to Ala could be 
done. Advance biophysical approach such as Small-angle X-ray scattering 
(SAXS) is recommended to further analyze the AMS8 lipase predicted structure 
since the AMS8 lipase crystal structure is not available yet. 
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