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ABSTRACT

Precision agriculture is a concept of agricultural management, based on analyzing, 
measuring, and reacting to inter and intra-field variability in crops. One of the tools 
deployed for crop monitoring in precision agriculture is the use of an unmanned aerial 
vehicle, able to obtain high flexibility with fewer restrictions, and high spatial and 
spectral resolution in comparison to airborne and spaceborne system. In this paper, the 
assessment of various vegetation indices were performed for paddy stress monitoring 
using red edge band from multispectral imagery. The objective of the study was to create 
rice field maps with the use of aerial imagery and object-based image analysis technique 
to validate vegetative indices in rice field maps by using soil plant analysis development 
(SPAD) data. The result showed Normalized Difference Vegetation Index (R=0.957), 

Normalized Difference Red Edge (NDRE) 
(R=0.974), Soil Adjusted Vegetation Index 
(R=0.964), and Optimized Soil Adjusted 
Vegetation Index (R=0.966), all of which 
provided positive linear correlations with 
SPAD readings. NDRE showed higher 
correlation compared with other vegetation 
indices, exhibiting a better measure ment 
for farmers to make decisions. This paper 
has demonstrated how aerial imagery can 
be used to collect an accurate mapping in 
real time that can be analyzed to monitor 
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conditions of crop and chlorophyll content by using SPAD to enable farmers to make 
informed decisions. Further investigations need to be carried out by validating the real 
chlorophyll content to improve existing correlations.
Keywords: Multispectral imagery, object-based analysis, red edge band, vegetation index

INTRODUCTION

Rice (Oryza sativa L.) is the most important source of livelihood and income of rural 
population. Currently, the self-sufficiency level (SSL) of rice is 71.5% and SSL needs to 
be increased up to 80% to feed country’s population by 2020. However, rice productivity is 
too low due to lack of technical efficiency which can be brought to effect for agricultural 
households (Arellano & Reyes, 2019). Precision farming offer an alternative choice for the 
farming community for farm productivity improvement. Site-specific crop management is a 
technique that is designed to integrate various technologies to provide spatially referenced 
data for better decision making (Norasma et al., 2013; Mukherjee et al., 2019). Crop 
monitoring and assessment is one of the crucial problems related to yield in agricultural 
crops. Timely and accurate crop monitoring can provide early treatment to unhealthy 
crops and can maintain the amount of yield production in agriculture. Traditionally, crop 
assessment had relied on ground-based field survey and visual observation to measure 
plant status by collecting a small sample size (Sim & Gamon, 2012). Common techniques, 
including manual inspection and perimeter scouting, are inefficient methods for data 
collection and validation process (Valente et al., 2011). For instance, ground assessment is 
to ascertain crop status which involves measurement of a plant by using its leaf. However, 
the crop assessment for an agricultural field requires an up-scaled information beyond 
the canopy level. Moreover, the collection of ground samplings in the field was slow and 
costly. According to Zhang et al. (2015), implementing this type of collection for crop 
assessment in the field would be tedious. Regular remote sensing technique by placing a 
sensor on a stronghold over crop fields, as well as weather constraints, was a limitation 
for data collection (Nguy-Robertson et al., 2012). Likewise, using a satellite and piloted 
aircraft demonstrated a constraint with temporal and spatial resolution for agricultural 
assessment (Maes & Steppe, 2019). 

Therefore, applying a quick, efficient, and accurate method for crop monitoring 
and assessment is crucial in increasing productivity and efficiency in the field. Remote 
sensing technology is a reliable tool to assess crop health and status, such as chlorophyll 
collection (Haboudane et al., 2002), leaf area indicator (Wang et al., 2019; Liu et al., 2017), 
and biomass (Fu et al., 2014), which can effectively be correlated with remote sensing 
information. In precision agriculture, crop condition can be monitored using remote 
sensing based on the crop parameter. In general, remote sensing is a means of obtaining 
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and interpreting information of an object from a distance, an area phenomenon by acquiring 
the data using  sensors or devices without physical touch (Johnson et al., 2003). Remote 
sensing typically uses sensors to reach aerial, satellite, and orbital observations on the 
surfaces and the targeted objects (Zulfa & Norizah, 2018; Ren et al., 2018). Satellite images 
have been used as the primary source of information for analyzing crop health in precision 
farming (Auernhammer, 2001). However, satellite and aerial remote sensing have their own 
limitations. In contrast, UAV technology can identify the details of an area because of higher 
spatial resolution and this type of imagery provides new solutions for crop management 
and monitoring in agricultural fields (Abdullah et al., 2019). High-resolution imagery and 
real-time satellite imagery are expensive. The limitation of satellite remote sensing is cloud 
cover, which contributes to low pixels resolution in unclear imagery (Verger et al., 2014). 

The Development and UAV-based Application for Crop Management and 
Monitoring 

The advanced development of UAV has provided another alternative for crop management 
and monitoring in large areas (Li et al., 2019). The application of UAV technology in 
crop assessment has functions in various crops for monitoring health status of crops. This 
would ease farmers in managing their farms and provide more accurate data regarding their 
crop conditions in the field. UAVs equipped with visible band and multispectral scanning 
sensors can provide enough information for analysing crop growth, health status, maturity, 
and morphology. Imagery from UAV, using different sensors like RGB (Red Green Blue), 
multispectral, hyperspectral, and thermal camera have been used to estimate leaf area 
indicator (LAI) (Wang et al., 2019), biomass (Bendig et al., 2015), carotenoid (Zarco-Tejada 
et al., 2012), and temperature (Tokekar et al., 2013). Shafri et al. (2006) demonstrated the 
usefulness of a multispectral camera mounted UAV to examine the emergence of wheat 
during early season from UAV imagery applying vegetation index. Louis et al. (2005) had 
proven that the use of UAV technology with a multispectral sensor provided a higher spatial 
resolution for wheat monitoring in the emergence stage. This was supported by Sullivan 
et al. (2007) who investigated hyperspectral data acquired from UAV platform to perform 
quantitative analysis for rootstock performance in walnut trees. 

The developmental progress of UAV has improved from slow-flying UAV (Berni et 
al., 2009) to fixed wing and rotary-UAV, where the advantage is that flight characteristics 
due to their natural gliding capabilities with no power. In addition, Norasma et al. (2018) 
experimented on crop status using UAV with optical sensors and had successfully identified 
stressed area using water flow analysis at the early season of rice growth. Table 1 shows 
the types of UAV application for different purposes of crop assessment. 
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Table 1 
Different types of UAV application in crop assessment

UAV type Objective Camera Crop Reference 
RCTAS/APV-3
Unmanned aircraft

Usefulness of 
UAV’s for precision 
agriculture

Hyper-spectral Grapevine Kira et al. (2015)

Unmanned 
helicopter 

Tree canopy 
conductance, crop 
water stress index

Airborne Hyper-
spectral Scanner

Corn
Olive
Peach and olive

Berni et al.  (2009)

Unmanned 
helicopter

Development small 
UAV for agriculture 
surveillance 
Assess water stress

Thermal Turf grass Xue & Su (2017)

Fixed- wing Water stress Narrow-band multi-
spectral Thermal

Grapevine Zarco-Tejada et al. 
(2012)

Multirotor UAV Weed detection MCA 6 Multi-
spectral 

Sorghum Norasma (2016)

Berni et al. (2009) found that thermal sensing could be used for irrigation management 
and the sensor can read characterization of water stress in the orchards. However, the 
sensor is expensive and needs an expert pilot to fly the UAV to collect the data. This is 
similar to Kira et al. (2015) that also used hyperspectral sensor and found that VI gave the 
highest results compared to NN and PLS model. Zarco-Tejada et al. (2012) experimented 
the effectiveness of narrow-band indices such as chlorophyll indices like fluorescence 
indices (FLD2) and xanthophyll, showed promising result than NDVI for water stress 
detection. The result indicated the spectral index that comprised the wavelength near red 
edge region such as 747nm, 762nm and 780nm were the best indicators in monitoring crop 
status. Therefore, the use of VI is important to improve the sensitivity of the greenness of 
the plants (Xue & Su, 2017) and consistently with Norasma (2016) that also used VI and 
OBIA to detect weed in sorghum crop. Norasma (2016) and Xue and Su (2017) suggested 
to develop new VIs for the broadening of the research areas. In addition, Norasma (2016) 
found that the overall accuracy for weed detection using OBIA was more than 80%. These 
results are considered high and moderate for the effectiveness in discrimination respectively 
(Norasma, 2016). Therefore, the OBIA technique was used and calculated the VIs for 
accurate rice mapping using multispectral sensor due the cost effectiveness. 

Chlorophylls is a major and integral part for the reaction of photosynthesis, and this 
is suitable as remote sensing could assess plant physiological development (Yongjun & 
Jingjing, 2016). The quantity of chlorophyll per unit leaf area in a plant is a key status 
of the entire plant’s health. Healthy plants with the capability of displaying growth rates 
until optimal extent is estimated to have higher amounts of chlorophyll than unhealthy 
plants. Thus, the identification and detection of chlorophyll content in a leaf can be used 
to detect and study plant stress, based on its nutritional form, contributing a crucial effect 



Rice Chlorophyll Content Monitoring using Vegetation Indices

783Pertanika J. Sci. & Technol. 28 (3): 779 - 795 (2020)

on crop status and conditions, the level of severity, and the amount of nutrients, especially 
in precision agriculture practices (Zarco-Tejada et al., 2013). Vegetation indices and red 
edge-based indices are the most general techniques that can be used in plant stress detection. 
Vegetation indices are widely used for the estimation of crop status based on the amount of 
chlorophyll content by using visible and near-infrared (NIR) regions of the electromagnetic 
spectrum. Chlorophylls have strong absorption peaks in the red region and high reflectance 
peaks in the near-infrared region (Shamshiri et al., 2017). Maximal absorbance in the red 
region occurs between 660 nm and 680 nm. This is because absorption range of 660 – 680 
nm tends to be saturated at low chlorophyll quantities and reflect in the near-infrared region, 
thus reducing the sensitivity of the spectral indices based on this wavelength, except for 
high chlorophyll content (Singh et al., 2017)

In recent years, numerous spectral indices from UAV have been proven to calculate 
plant disease detection and crop monitoring (Garcia-Ruiz et al., 2013; Hunt et al., 2018; 
Yoder & Pettigrew-Crosby, 1995). Multispectral (MS) and hyperspectral sensors mounted 
on UAVs have been extensively used to assess plant health and conditions for several 
vegetation indices, which involved integrated R515/ R570 (band ratioing) and TCARI/
OSAVI narrow-band indices for leaf chlorophyll estimation with a hyperspectral camera 
mounted on UAV (Liang  et al., 2015; Wang et al., 2019). Hunt et al. (2003) proved that 
colour-infrared film used with a low-cost automatic camera produced a Normalized 
Difference Vegetation Index (NDVI) map that can be used in crop monitoring. Table 2 
shows the sensor of different remote sensing platforms in crop disease inspection.

Ranganath et al. (2004) proved near-infrared region had shown considerable reduction 
in reflectance in differentiating diseased rubber from healthy rubber using multi-date 
satellite data of IRS-1C. This is similar to the work of Shaw and Kelly (2005), using 
multispectral satellite imagery in classifying soybean anomalies from infestation. This is 
attributed to differences in colouration of soybean plants with iron chlorosis and lack of full 
canopy coverage of stunted soybean. However, previous studies were not sufficient for crop 

Table 2
Example of disease detection of crop by various remote sensing methods

Crop types Sensor References
Rubber plantation Indian remote sensing satellite (IRS-IC) Ranganath et al. (2004)
Soybean Multispectral sensor Shaw & Kelly (2005)
Paddy Hyperspectral radiometer (ASD fieldspec pro FR) Ren et al. (2008)
Oil palm Hyperspectral sensor, APOGEE spectroradiometer Shafri & Anuar (2008)
Wheat aphids Handheld cropscan radiometer Yang et al. (2009)
Oil palm AISA airborne hyperspectral sensor Shafri et al. (2011)
Grapevine Narrow-band multispectral thermal UAV Zarco-Tejada et al. (2013)
Onion Cultures Multispec 4C protype (Ebee) UAV Nebiker et al. (2016)
Walnut trees Hyperspectral sensor Singh et al. (2017)
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monitoring due to lack of narrower spectral bands such as hyperspectral data. Therefore, 
Ren et al. (2008) and Shafri et al. (2011) proved that hyperspectral crop reflectance data 
could be used in monitoring crop growth and development using VI and spectral signatures. 
Nebiker et al. (2016) showed that NDRE index showed an average correlation and had 
better performance than NDVI in detecting disease in onion using light-weight multispectral 
UAV sensor. Singh et al. (2017) had further proven that red-edge position index, which fell 
in the wavelength of 680-780 nm was a better preference in monitoring rootstock growth 
in walnut trees using UAV-based remote sensing. 

Singh et al. (2017) had shown how a multispectral sensor could be used to examine the 
emergence and growth stages of wheat from UAV technology using a sequence of vegetation 
indices. Andre et al. (2013), had reported a stronger relationship between vegetation and 
leaf area index (LAI). Moreover, vegetation indices made up of red edge band (720 nm) 
and near-infrared band (800 nm) were found to be more effective in estimating yield and 
amount of chlorophyll present at higher state. In this study, multispectral images in the early 
season of rice growth were obtained using UAV technology, and vegetation indices were 
correlated to SPAD chlorophyll meter readings to assess the potential of several vegetation 
indices for examining amount of chlorophyll concentration present in rice. The objective 
of this study was to examine four vegetation indices   using aerial images and object image 
analysis (OBIA), and to correlate with the vegetation indices in paddy field maps using 
the chlorophyll data from SPAD meters.

MATERIAL AND METHODS

The research was carried out at Ladang 
Merdeka, Ketereh, Kelantan, located in the 
east coast of Peninsular Malaysia (Figure 
1). The whole coverage of the study area is 
twenty acres. The coordinates of the study 
location are 6.076184°, 102.184315°. The 
plots were thoroughly prepared and levelled 
using a leveler machine. Rice variety called 
PadiU putra, which is resistant to leaf blight 
disease (S1) was used in this present study. 

This study was developed and managed 
by UPM researchers for a single season 
from January 2018 until May 2018. The 
cultivated medium of PadiU Putra (S1) 
was planted on 30th January 2018. Figure 2 Figure 1. The experimental plot in Ladang Merdeka
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shows the flow chart of this research, indicating the performance of difference vegetation 
indices at early season of rice growth.

Data Acquisition

Step 1: Collection of Ground Samples. The ground chlorophyll diagnostic tool used in 
this study was SPAD 502 chlorophyll meter (Konica Minolta Sensing, Inc., Osaka, Japan). 
Five samples from eight points within 1 m radius were scanned using SPAD chlorophyll 
meter and these samples were then recorded and averaged to obtain the accurate result. 

Image Acquisition

For image collection, a multirotor UAV and multispectral camera were used. The flight 
plan was designed prior to data acquisition by using Mission Planner software (http://
ardupilot.org/planner/index.html). Mission planner is a ground control station for ArduPilot 
created by Oborne (2019), providing setup and flying support, as well as reviewing recorder 
flights. The multispectral sensor mounted on the drone was Parrot Sequoia, which was 
manufactured in Paris, France. It was able to capture 4 types of wavebands, and they were 
green band, red band, red edge, and NIR (Markengold PR, 2016). The data collection was 
conducted at daytime under less cloudy and windy conditions, between 08:30 a.m. until 
12:00 p.m. (+8 GMT) on 10th of February 2018 on the 11th Day After Planting (DAP). 
Agisoft Photoscan software (Agisoft LLC, St. Petersburg, Russia) was used to build and 
arrange the imagery mosaic using Structure from Motion (SfM) algorithms. Table 3 shows 
specification of the multispectral camera used.

Data acquisition

Image processing

Ground truth 
(SPAD chlorophyll 

reading)
NDVI SAVI

NDRE OSAVI

Output

Vegetation indices

Step 1

Step 2

Step 3

Step 4

Figure 2. The methods steps in this study



Ang Yuhao, Nik Norasma Che’Ya, Nor Athirah Roslin and Mohd Razi Ismail

786 Pertanika J. Sci. & Technol. 28 (3): 779 - 795 (2020)

Table 3
Basic parameters for multispectral camera on UAV

Sensor Spectral bands (nm) Resolution (pixels) Weight (g)
Parrot Sequoia 530, 640,  

730, 770
1280 × 960 107g

Step 2: Image Processing. Pre-processing of raw images involved downloading them from 
the SD memory card to the computer and then further processing them in Agisoft Photoscan 
Professional software (Agisoft LLC, St. Petersburg, Russia) to produce orthophoto map. 
Then, the orthophoto map was geo-rectified using the control points at the field. The geo-
rectified process use ArcMap software to validate the orthophoto map. Subsequently, the 
orthophoto map was analysed using eCognition software. eCognition software (Definiens 
AG, Munich, Germany) is a development environment for object-based image analysis 
(Andre et al., 2013). 

Data Analysis

Step 3: Vegetation Analysis for Different Vegetation Indices. Four types of vegetation 
indices were used for monitoring the crop condition in the rice field. Normalized Difference 
Vegetation Index (NDVI), Normalized Difference Red-Edge Index (NDRE), Soil Adjusted 
Vegetation Index (SAVI), and Optimized Soil Adjusted Vegetation Index (OSAVI) indices 
were chosen for the multispectral images such as green band, red band, red edge, and NIR 
images. Vegetative maps for different vegetation indices were produced for NDVI, NDRE, 
SAVI, and OSAVI. Table 4 provides information on vegetation indices including red-edge 
indices were applied in this this UAV-imagery. This processing step was performed using 
eCognition software. 

Table 4 
Vegetation indices and red edge algorithms were applied in this UAV-imagery

Vegetative Index Algorithm formula Author
NDVI (NIR-RED) / (NIR+RED)  Rouse et al. (1974)                                   
NDRE (NIR-RED EDGE) / (NIR+RED EDGE)  Fitzgerald et al. (2006)
SAVI (1+L) * (NIR-RED) / (NIR+RED+L) Huete (1988)
OSAVI (1+l) * (NIR-RED) / (NIR+RED+L)                     

Where L= 0.16
Rondeaux et al. (1996)

Step 4: Statistical Analysis between Vegetative Indices (NDVI/ NDRE/ SAVI/ OSAVI) 
with SPAD Readings. Statistical analysis between NDVI/ NDRE/ SAVI/ and OSAVI 
values obtained from multispectral imagery were correlated with ground samples (SPAD 
chlorophyll values). Vegetative indices were correlated and validated to compare two 
different vegetative indices, such as NDVI/ NDRE/ SAVI/ OSAVI with SPAD units using 
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Pearson correlation analysis. Besides, the root mean squared error (RMSE) for each 
iteration was computed and averaged to determine coefficient of variation (CV). The lower 
the value of the CV, the more precise the estimate is. This analysis was run by Minitab® 
17 Statistical Software.

RESULT AND DISCUSSION

Vegetation Analysis

Figure 3 shows the VI map at early season of rice growth. The range of values for the 
NDVI/ NDRE/ SAVI/ OSAVI is -1 to 1 where -1.0 represents very low level of vegetation 
greenness and 1.0 represents very high level of vegetation greenness. Vegetation indices, 
such as NDVI, NDRE, SAVI, and OSAVI, usually have values closer to 0, indicating lesser 
canopy density, whereas values closer to 1 indicate more canopy density for crops (Xiang 
& Tian, 2011). Since four different VI were used, the outcomes were different because 
each indices is for different purpose. This project shows that the results were as expected 

(a) (b)

(c) (d)

Figure 3. Vegetation indices map generated during early season 
(on the 11`th Day After Planting (DAP) of rice growth: (a) NDVI 
map; (b) NDRE map; (c) SAVI map; and (d) OSAVI map

based on the literature. In the 
early phase of rice growth, the 
canopy area of the rice crop was 
small, and most of the reflectance 
were affected by soil and water 
factors, which could influence 
the result on vegetation indices 
(Garcia-Ruiz et al., 2013). Most 
rice crop in the early season fall 
in the yellow zone, with NDVI 
values ranging from 0.3 to 0.5 
because soil background effects 
during the growth stage of the 
rice plants. This is consistently 
found where NDVI is sensitive 
to the effects of soil brightness, 
soil color, atmosphere, cloud and 
cloud shadow, and leaf canopy 
shadow (Xue & Su, 2017). 
Whereas OSAVI and NDRE 
showed promising indices that 
were able to capture some smaller 
plants inside the paddy field, due 
to elimination of soil background 
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effects and larger the effect of photosynthesis even though it fell at the early season of 
growth (Li et al., 2019; Rouse et al., 1974).  

Relationship Between Vegetation Indices and SPAD Chlorophyll Readings

There was a positive linear correlation between NDVI and SPAD readings. NDVI 
shows higher correlation with SPAD readings (R = 0.957; RMSE= 0.74) (Figure 4). This 
relationship is consistent with those of other studies which also reported a positive and 
linear relationship between vegetation index (NDVI) and ground data such as SPAD 
chlorophyll readings and nutrient content. Zhou et al. (2017) suggested that vegetation 
index, such as Normalized Difference Vegetation Index (NDVI), could be used to identify 
rice crops’ characteristics. Likewise, there was a positive linear correlation between 
NDRE and SPAD readings. NDRE showed a high correlation with SPAD readings (R = 
0.974; RMSE= 0.576) (Figure 4). Additionally, the result supports the theory that green 
and red edge region are highly responsive to a broad range of chlorophyll levels in red 
region only (Carter & Knapp, 2001). Figure 3 shows NDRE values, which indicate the 
status of chlorophyll content in the early stage of the rice plants’ growth between red 
edge conversions. The normalized difference of the red edge index (NDRE) is made of 
red edge band (700-740 nm). A conversion area of rapid shift in leaf reflectance, caused 
by higher chlorophyll absorption in the red region and leaf scattering in the near-infrared 
spectrum, has been found to be related to plant health (Niinemets & Tenhunen, 1997). 
NDRE values can show the chlorophyll content in the early phase of rice growth, as the 
value range is between 0.5 and 0.8 as shown in Figure 3(b). This was because soil and 
water background factors were not considered. Furthermore, this is related to the distinct 
emission in the red edge region, which penetrates deeply into the crop canopy and plant 
leaves compared to visible light (especially blue and red radiation) because of the lower 
chlorophyll absorption in this region. This is useful in monitoring crop N status based on 
the amount of chlorophyll content but does not perform well in examining crop growth 
stage when there is less fluctuation in plant N concentration (Li et al., 2012).  Particularly, 
the sensitivity of absorbance could be linked to plant chlorophyll content that is higher than 
that of the red edge region (Niinemets & Tenhunen, 1997). The red edge band is a spectral 
reflectance feature whereby the characterization of red portion showing in red portion of 
the visible spectrum, due to the absorption by chlorophyll. In contrast, high reflectance in 
the NIR due to light scattering from refraction along interfaces between leaf cells and air 
spaces inside the leaf (Zhang et al., 2015). Also, Soil-adjusted vegetation index (SAVI) 
showed higher correlation with SPAD readings (R = 0.964; RMSE= 0.676) (Figure 4). 
Soil-adjusted vegetation index (SAVI) can be another adjusted index for NDVI, as NDVI 
has its own limitation when connections are being made across various soil types that may 
reflect different amounts of light in the red and near infrared wavelengths (Li et al., 2014). 
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Soil-adjusted vegetation index (SAVI) was developed as an improvement of the NDVI to 
reduce the influence of soil brightness when vegetative area is sparsely distributed (Huete, 
1988). In addition, soil-adjusted vegetation index SAVI (Figure 4) reduces soil background 
noise effects. This was further supported by Ren et al. (2018), showing that the negative soil 
adjustment factor was the factor of the increase of the slope of vegetation contour and the 
positive intersected points between vegetation isolines and soil. For example, it happened 
in the first quadrant of the NIR-red plane. Optimized soil adjusted vegetation index 
(OSAVI) indicates high correlation with SPAD readings (R = 0.966; RMSE= 0.664) (Figure 
4). In this analysis, the performance of OSAVI was similar to SAVI, as the standardized 
vegetation indices, to further fit the purpose of this study and to reduce the possibility of 
soil background effect; this was in agreement with other vegetation studies (Rondeaux et 
al., 1996). The validation was done using SPAD value, where it showed higher correlation 
and validated method were supported by the work of Basca et al. (2019). Table 5 shows the 

Table 5 
Relationship between NDVI, NDRE, SAVI and OSAVI 
with chlorophyll readings (SPAD) using Pearson 
correlation and RMSE

SPAD
Vegetation index R RMSE
NDVI 0.957 0.74
NDRE 0.974 0.576
SAVI 0.964 0.676
OSAVI 0.966 0.664

summary of the relationship between ground 
data (chlorophyll readings) and vegetation 
indices as well as RMSE. Spatial trend of 
SPAD chlorophyll map is shown in Figure 5. 
Bato (2018) stated that GIS-based suitability 
mapping was momentous to enable the 
creation of a spatially accurate suitability 
map like spatial distribution of nitrogen in 
this study and contributing of great moment 
in decision making process for farmers. 

Figure 4. Relationship between SPAD chlorophyll readings, NDVI, NDRE, SAVI and OSAVI using 
Pearson correlation analysis in scatter plot
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CONCLUSION 

Vegetation indices, known as NDVI, NDRE, SAVI, and OSAVI, were tested in this study to 
investigate their ability in the estimation of the amount of chlorophyll by the multispectral 
sensors, which comprised only four spectral bands (530nm, 640nm, 730nm, 770nm). The 
findings showed the strongest correlation is NDRE (R=0.974; RMSE= 0.576), followed 
by OSAVI (R=0.966; RMSE= 0.664) and SAVI (R=0.964; RMSE= 0.676). The lowest 
correlation is NDVI (R= 0.957; RMSE= 0.74).  NDRE was among the best indicators in 
estimating the status of chlorophyll content in paddy, while providing an overall map for 
farmers to calibrate their agricultural input, such as increasing the input to stressed areas 
while reducing the input to the healthy areas, where necessary. Future research needs to 
focus on sensors with lesser gap of spectral bands (hyperspectral). Namely in the red edge 
region, specifically the blue shift of the red edge, which has potential for crop monitoring 
in agriculture. By having a vegetation index map, farmers can easily track the crop growth 
and the condition of the paddy in real-time (Figure 3). However, more points should be 
added for SPAD data collection in the future to acquire good variable maps and accurate 
spatial distribution. Studies need to be done for further assessment and validation to test 
the accuracy and efficiency of this technology. With that, the goal of applying the concept 
of precision agriculture can be achieved in the operation. By that, it helps farmers in 
their management and crop condition monitoring. It fulfills the gap of crop monitoring in 
agricultural practices and sustainable production in real time.

FUTURE DIRECTION

The future potential of UAV technology can serve as a powerful tool to collect accurate 
and high-resolution images for spatial data. Meanwhile, image processing can be adopted 

Figure 5. SPAD chlorophyll map for Ladang Merdeka
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with more advanced computer vision and machine learning algorithms. Several machine 
learning algorithms can be further applied on UAV based multispectral imaging using 
programming application such as python and other related web-based programmed cloud 
processing should be applied in the near future due to the size of the data. The analysis 
output then can be transferred to the automation and robotics in real-time for decision-
making process and quick responses.
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