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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 
of the requirement for the degree of Doctor of Philosophy 

EFFECT OF SALT-TOLERANT PLANT GROWTH-PROMOTING 
RHIZOBACTERIA INOCULATION ON CROP GROWTH, BIOCHEMICAL 

PROPERTIES AND YIELD OF RICE 

By 

RAKIBA SHULTANA 

June 2020 

Chairman :   Ali Tan Kee Zuan, PhD 
Faculty :   Agriculture 

Soil salinity causes huge negative impacts on the global agricultural sector and is 
currently a crucial issue in wetland rice production (Oryza sativa L). Due to the 
unsatisfactory results of conventional salinity mitigation practices, the use of 
indigenous salt-tolerant plant growth-promoting rhizobacteria (PGPR) on existing rice 
cultivar could be a new alternative. A series of experiments were conducted under 
laboratory and glasshouse conditions to fulfill the following objectives; i) to screen 
for potential salt-tolerant PGPR from coastal salt-affected rice cultivation areas; ii) to 
select suitable rice varieties for an optimum response towards inoculation of salt-
tolerant PGPR; iii) to elucidate the mechanism of salt-tolerant PGPR inoculation on 
improving crop growth, biochemical properties, and yield of rice. In experiment 1, a 
total of 44 strains were isolated and screened based on their qualitative salinity 
tolerance and plant growth-promoting properties. These isolates were subjected to 
quantitative screening at five levels of NaCl concentrations (0, 0.5, 1, 1.5, and 2M) 
and the results showed that three isolates labeled as UPMRB9, UPMRE6, and 
UPMRG1 were able to grow on the highest NaCl-amended media and maintained a 
relatively high bacterial population. Isolate UPMRB9 produced the highest amount of 
exopolysaccharides (31.5 g L-1) and absorb the highest amount of sodium (24.8 mg L-

1) on 1.5M of NaCl-amended media. UPMRE6 and UPMRB9 produced the highest 
floc yield (22.97 g L-1) and biofilm (OD 1.37), respectively, both on 1M of NaCl-
amended media. The characteristics of UPMRB9 as a salt-tolerant isolate were 
supported by the Scanning Electron Microscope (SEM) observation which showed 
higher EPS, floc yield, and biofilm formation when exposed to salt stress condition. 
The beneficial characterization studies also revealed UPMRB9 as the highest Indole 
Acetic Acid (IAA) producer. Besides, UPMRE6 recorded the highest phosphate and 
potassium solubilizations in all NaCl-amended media. These three potential isolates 
namely UPMRB9, UPMRE6, and UPMRG1 were identified using 16s rRNA gene 
sequence technique, and the blast results revealed 99% similarity with Bacillus
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tequilensis, Bacillus aryabhattai, and Providencia stuartii, respectively. The 
characterization of EPS extracted from the bacterial isolates showed the presence of 
hydroxyl, carboxyl, amino, sulfhydryl, and phosphate functional groups which have 
shown a strong binding affinity to toxic Na+. In experiment 2, a glasshouse study was 
conducted involving seven rice varieties that were exposed to four different levels of 
salinity (0, 4, 8, 12 dSm-1) at the seedling stage. Based on the morpho-physiological 
and biochemical respond towards salt stress, three rice varieties namely BRRI dhan67, 
Putra-1, and MR297 were identified as salt-tolerant, moderately salt-tolerant, and salt-
susceptible varieties, respectively, and were selected for further study. In experiment 
3, the selected isolates (UPMRB9, UPMRE6, and UPMRG1) were inoculated to the 
salt-responsive rice varieties (BRRI dhan67, Putra-1, and MR297) at the seedling 
stage under 8 dSm-1 of salinity. Results showed that inoculation of UPMRB9 to BRRI 
dhan67 produced significantly highest seedling dry matter (1.50 g) due to the 
increased chlorophyll and relative water content, and reduced electrolyte leakage and 
the ratio of Na/K in the inoculated plants. In experiment 4, the plant inoculation test 
was extended up to yield stage involving 2 strains of UPMRB9 and UPMRE6. Results 
showed that inoculation of UPMRB9 to the rice variety Putra-1 responded for the 
highest rate of photosynthesis (10.52 µmol CO2 s-2m-1), proline content (10.48 µmol 
g-1 FW), total soluble sugar content (6.29 mg g-1 FW), superoxide dismutase (SOD) 
production (89.70 unit mg-1 FW) and uptake of phosphorous (4.64 g/plant). The higher 
accumulation of osmoprotectants like proline and total soluble sugar in Putra-1 rice 
markedly improved the regulation of antioxidant enzymes and thus improved plant 
resistance to salinity which eventually enhanced plant photosynthesis. Besides, BRRI 
dhan67 treated with UPMRB9 highly responded towards augmenting stomatal 
conductance, malondialdehyde (MDA) content, catalase (CAT) production, higher 
uptake of K and Ca, along with increasing the yield parameters of 1000 grain weight 
(27.33g), filled grains (79%) and grains per plant (27.66g). In this case, UPMRB9 
assisted uptaking higher amounts of K and Ca, which helped towards achieving 
maximum grains of BRRI dhan67 through reducing the toxicity of Na+. Considering 
all these positive traits, it can be concluded that the locally-isolated salt-tolerant 
bacterial strains could contribute significantly towards improving the physiological 
and biochemical characters and grain yield components of rice plants under salt stress 
conditions. These promising PGPR strains can be a potential biofertilizer inoculant to 
mitigate the problems raised due to the global climate change for coastal rice 
cultivation. This study has successfully demonstrated the possible salt-tolerance 
mechanism of PGPR and response of their inoculation on different local rice varieties 
under salt stress conditions especially under the Malaysian rice cultivation scenario 
which has not been studied in detail previously. 
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TUMBESARAN TANAMAN PADA PERTUMBUHAN FISIOLOGI, SIFAT 

BIOKIMIA DAN HASIL PADI. 

Oleh 

RAKIBA SHULTANA 

Jun 2020 

Pengerusi :   Ali Tan Kee Zuan, PhD 
Faculti :   Pertanian 

Saliniti tanah menyebabkan kesan negatif yang ketara terhadap sektor 
pertanian global, dan ini merupakan isu yang penting dalam pengeluaran padi 
sawah (Oryza sativa L). Kaedah mengatasi masalah saliniti secara 
konvensional selalunya memberikan hasil yang tidak memberangsangkan, dan 
penggunaan Rizobakteria Penggalak Tumbesaran Tanaman (PGPR) yang tahan 
masin serta wujud secara semulajadi berpotensi sebagai alternatif baru. Satu 
siri kajian telah dijalankan di peringkat makmal dan rumah kaca untuk mencapai 
objektif berikut; i) untuk memilih dan mengenalpasti PGPR yang tahan masin dan 
berpotensi dari kawasan penanaman padi di pesisir pantai yang terjejas dengan 
masalah saliniti; ii) untuk memilih pelbagai padi yang sesuai dan memberikan 
respon optimum terhadap inokulasi PGPR tahan masin; dan iii) untuk 
mengenalpasi mekanisma inokulasi PGPR tahan masin dalam menggalakkan 
pertumbuhan pokok, ciri biokimia dan hasil padi. Dalam ujikaji 1, sejumlah 44 
bakteria telah diasingkan dan dipilih berdasarkan ciri-ciri tahan masin dan 
menggalakkan pertumbuhan pokok secara kualitatif. Bakteria-bakteria ini telah 
didedahkan pada lima tahap kemasinan (0, 0.5, 1, 1.5 dan 2M) menggunakan 
NaCl dan hasil menunjukkan tiga bakteria dilabel sebagai UPMRB9, 
UPMRE6 dan UPMRG1 boleh hidup pada tahap kemasinan tertinggi iaitu 2M 
NaCl disampling mengekalkan populasi bakteria yang tinggi. Bakteria UPMRB9 
menghasilkan jumlah eksopolisakarida yang tertinggi (31.5 gL-1) dan menyerap 
garam pada kadar yang tertinggi pada media yang diubah dengan 1.5 M NaCl. 
Bakteria UPMRE6 dan UPMRB9 menghasilkan flokulasi (22.9 gL-1) dan biofilm 
(OD 1.37) yang tertinggi pada kepekatan 1M NaCl. Ciri-ciri UPMRB9 sebagai 
bakteria yang tahan masin ini disokong oleh hasil pengimejan menggunakan 
Scanning Electron Microscope (SEM) yang menunjukkan penghasilan EPS, 
flokulasi dan biofilm apabila terdedah kepada keadaan tinggi garam. Kajian ciri-ciri 
berfaedah bakteria juga menunjukkan UPMRB9 sebagai penghasil Indole-3-Acetic 
Acid (IAA) yang tertinggi. Selain itu, bakteria UPMRE6 menunjukkan 
solubilisasi fosforus dan kalium yang tertinggi pada semua 
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tahap kemasinan. Tiga bakteria ini iaitu UPMRB9, UPMRE6 dan UPMRG1 telah 
dikenalpasti menggunakan teknik gene sequence 16S rRNA dan hasil menunjukkan 
99% similariti dengan Bacillus tequilensis, Bacillus aryabhattai, and Providencia 
stuartii. Kajian ciri-ciri EPS yang diekstrak daripada bakteria-bakteria ini 
menunjukkan adanya kumpulan berfungsi hidroksil, karboksil, amino, sulfhydryl dan 
fosfat, yang telah ditunjukkan mempunyai tarikan yang kuat dengan Na+ ion yang 
toksik. Dalam ujikaji 2, kajian rumah kaca telah dijalankan melibatkan tujuh variati 
padi yang telah didedahkan pada empat tahap saliniti yang berbeza (0, 4, 8, 12 dSm-1) 
pada peringkat anak benih. Berdasarkan kepada respon morfo-fisiologi dan biokimia 
terhadap saliniti, tiga variati padi iaitu BRRI dham67, Putra-1 dan MR297 telah 
dikenalpasti sebagai varieti toleran, sederhana toleran dan tidak toleran dan telah 
dipilih untuk kajian yang selanjutnya. Dalam ujikaji 3, ketiga-tiga bakteria (UPMRB9, 
UPMRE6 dan UPMRG1) telah diinokulasi kepada tiga variati padi berbeza tahap 
toleran pada saliniti (BRRI dhan67, Putra-1, and MR297) untuk mengkaji kesan pada 
peringkat anak benih dalam keadaan bergaram (8 dSm-1). Hasil menunjukkan 
inokulasi UPMRB9 pada BRRI dhan67 telah menghasilkan berat kering anak benih 
paling tinggi (1.50 g) dan ini disebabkan kerana peningkatan kandungan klorofil dan 
kandungan relatif air dan pengurangan kebocoran elektrolit dan nisbah Na/K dalam 
tisu tumbuhan. Dalam ujikaji 4, kajian rumah kaca telah dipanjangkan sehingga tahap 
hasil padi melibatkan dua bakteria iaitu UPMRB9 dan UPMRE6. Hasil menunjukkan 
inokulasi UPMRB9 pada variati padi Putra-1 memberikan respon tertinggi melibatkan 
kadar fotosintesis (10.52 μmol CO2 s-2m-1), kandungan prolin (10.48 μmol g-1 FW), 
jumlah kandungan gula terlarut (6.29 μmol g-1 FW), penghasilan superoxide dismute 
(SOD) (88.70 unit g-1 FW) dan penyerapan fosforus (4.64 g plant-1). Pengumpulan 
osmoprotectant seperti proline dan kandungan gula terlarut dalam varieti padi Putra-
1 telah meningkatkan regulasi enzim antioksida secara ketara dan meningkatkan tahap 
ketahanan pokok pada saliniti yang seterusnya akan meningkatkan kadar fotosintesis. 
Selain itu, varieti BRRI dhan67 yang diinokulasi dengan UPMRB9 telah memberikan 
respon yang baik dalam memperbaiki stomatal conductance, kandungan 
malondialdehyde (MDA), penghasilan catalase (CAT), penyerapan K dan Ca, di 
samping meningkatkan hasil padi iaitu berat 1000 gwt (27.33g), bijian terisi (79%) 
dan bijian/pokok (27.66g). Bakteria UPMRB9 telah membantu penyerapan K dan Ca 
yang mempengaruhi pencapaian hasil bijirin paling tinggi untuk varieti BRRI dhan67 
melalui pengurangan kesan toksik Na+. Mengambilkira semua kesan dan ciri positif 
ini, boleh dirumuskan bahawa bakteria tempatan yang tahan masin boleh 
menyumbang secara signifikan untuk menambahbaik ciri fisiologi dan biokimia dan 
seterusnya meningkatkan hasil pokok padi yang ditanam pada tanah masin. Bakteria-
bakteria ini berpotensi sebagai biobaja untuk mengatasi masalah dalam penanaman 
padi yang timbul disebabkan oleh perubahan iklim global. Kajian ini telah berhasil 
menunjukkan mekanisma tahan masin oleh PGPR dan respon terhadap inokulasi ke 
atas varieti padi berbeza yang ditanam pada keadaan tinggi garam terutamanya 
terhadap senario penanaman padi di Malaysia yang masih tidak dikaji secara 
mendalam.  © C
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CHAPTER 1 

1 INTRODUCTION 

1.1 Research Background 

Rice is one of the highly consumed grain crops and it is estimated that nearly 50% of 
the global citizen depends totally or partially on it, especially in Asia (FAOSTAT, 
2017). The rice cropping systems are gradually become unprotected due to the direct 
consequences of climate change. The huge portions of rice-cultivation land are 
situated in the coastline risky regions of South and Southeast Asia, which fulfills more 
than 65% of global rice demand (Masutomi et al., 2009). Climate change leads to the 
rise of seawater level which causes flood and triggers the intrusion of saltwater into 
the inland areas. It is stated that more than 50% of arable land will be threatened by 
2050 due to the effect of soil salinization which is the consequence of climate change, 
illogical irrigation practices, excess use of chemical fertilizers, and lack of proper 
drainage systems (Ciftci et al., 2010: Djanaguiraman et al., 2013; Chandrasekaran et 
al., 2014; Rubin et al., 2017).  

In Malaysia, approximately 13% of the total landmass is occupied by the coastal areas, 
with an area of 4.43 million ha. Among the coastal areas, the west coast of Peninsular 
Malaysia is the most advanced in socioeconomically, with 57% of its coastline utilized 
for agricultural activities (Tajul Baharuddin and Mohd Masirin, 2017). However, 
salinity is the major constraints for agricultural production in coastal granary areas due 
to the seawater intrusion (Herman, et al., 2015). As a third most important crop, rice 
production in Malaysia is lower than its consumption and thus resulting in rice 
importation which gave the rice self- sufficiency level is around 75% with an average 
yield of 4.5 t ha-1 season-1. To encounter the ever-increasing demand, rice production 
in Malaysia needs to increase to approximately 7 t ha-1 season-1 (Masciarelli et al., 
2014; Tan et al., 2015). Moreover, it is also projected that around 0.1 million ha of 
Malaysian rice-growing areas would be affected by salinity by 2056 (Selamat and 
Ismail, 2008). The consequence of global warming is expected to increase the seawater 
level which may cause a dramatic effect on rice production especially in coastal areas 
(Hakim et al., 2014). Therefore, sustainable and smart approaches are needed to 
mitigate and overcome the salt-stress issues hampering the rice cultivation in coastal 
granary areas to ensure the highest food security level in Malaysia. 

1.2 Problem Statement 

In Malaysia, most of the agricultural land in the coastal plains are generally not 
suitable for plant growth due to salinity problems (Hashim, 2003). The seawater 
intrusion is the most significant factor attributing to these salinity problems. Other less 
significant factors might also cause salinity problems such as tidal inundation, 
groundwater seepage, and over-drainage of adjacent areas. Several studies have shown 
that plants such as oil palm, rice, and turfgrass were affected by salinity in coastal 
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areas of Malaysia and climate change is expected to worsen these existing 
environmental problems (Rao, 1982; Kimi, 1991; Uddin et al., 2012). Groundwater 
for agricultural use in the coastal areas can be affected by sea-level rise in the 21st 
century due to climate change (IPCC, 2001). This can possess a serious threat 
especially when considering the huge amount of water requirements for agriculture. 
Even so, there is very limited information on the effect of seawater intrusion into the 
coastal agricultural areas in Malaysia affecting rice plants and what’s more the 
possible solution for overcoming the aforementioned problems. 

Physical removal of salts or chemical amendments is not only expensive but also has 
an adverse ecological impact and it is not possible to cover massive areas for soil 
renovation purposes. The best approach is to develop salt-tolerant rice cultivars 
specifically for this region. Although several research results showed some extent of 
the salt-tolerance potentiality of some rice varieties like MR211, MR232, MR263 and 
salt-tolerant line SS1-14 (Hakim et al., 2014; Atabaki et al., 2018; Ma et al., 2018) 
but still those varieties are not recommended as salt-tolerant rice in Malaysia.   Several 
salt-resistant rice varieties have been developed in many countries through traditional 
breeding and genetic transformations, but in many cases, the field performance of 
these varieties in actual saline areas have failed to reach a satisfactory level. Thus, 
these vast areas remain fallow and unproductive year-round.  

Therefore, the development of an eco-friendly approach to enhance plant growth 
under abiotic stresses has received more attention in the current modern agricultural 
systems (Viscardi et al, 2016). Taking into consideration this scenario, attention 
should be given to enhance the yield of salt-affected rice cultivation areas by taking 
advantage of the salt-tolerant plant growth-promoting rhizobacteria (PGPR). A clear 
understanding of PGPR mechanisms could help towards efficient utilization of the 
beneficial microorganisms for the enhancement of plant growth under salt stress soil 
conditions (Pan et al., 2019). To date, insufficient research findings are available on 
the combined application of region-specific salt-tolerant PGPR with different salt-
responsive rice varieties under saline conditions. With the proper approach, PGPR 
could be an eco-friendly and economically viable solution to enhance rice production 
potential in the saline regions (Jha et al., 2012).  

1.3 Significance of the study 

The effective reclamation of the saline soils is difficult and complex due to frequent 
inundation and tidal flooding. The policy is to develop ecologically sound, compatible, 
and environmentally friendly measures that will be adopted in this region for 
increasing rice production. The introduction of salt-tolerant rice cultivars could be one 
of the potential approaches but without proper soil management, it will not produce 
the expected result. Hence, the utilization of osmotolerance mechanisms of salt-
tolerant PGPR can be proposed for rice plants cultivated on saline soils. Understanding 
the PGPR mechanisms of salt tolerance and the complex plant-microbe interactions 
are expected to contribute to the utilization of saline prone areas for increasing crop 
productivity.  
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PGPR could enhance plant growth by increasing the availability of major nutrients 
such as nitrogen, phosphorus, potassium, zinc and, iron, and production of plant 
growth-promoting hormones (Jha et al., 2012; Gururani et al., 2013). Moreover, to 
counter the salinity effect, PGPR has also been proven to produce various salt-tolerant 
mechanisms such as exopolysaccharide production, bacterial flocculation or 
aggregation, and biofilm formation, which enhances colonization on plant root 
surfaces (Hong et al., 2017). In addition to that, the cementing properties of EPS will 
bind with several cations such as Na+ and therefore reduces the ion accessibility to 
plants (Upadhyay et al., 2011; Qureshi and Sabri, 2012a; Chen et al., 2013). 
Previously, it was reported by several researchers that various genera of bacteria 
including Bacillus, Pseudomonas, Paenibacillus, Burkholderia, Rhizobium, 
Azospirillum, Pantoea, Microbacterium, Enterobacter, Methylobacterium, 
Variovorax, and Achromobacter have successfully increased host plants tolerance 
towards salt stress (Yang et al., 2009; Grover et al., 2011; Bharti et al.,  2013). 
Furthermore, PGPR can stimulate plant antioxidant enzyme production such as 
superoxide dismutase (SOD), peroxidase (POD), or catalase (CAT), which can 
detoxify the detrimental action of reactive oxygen species (ROS) in plants under salt 
stress (Han and Lee, 2005a). Thus, the mechanism of antioxidant enzyme in plants is 
very important as a plant's defense mechanism under salt stress conditions (Sarkar et 
al, 2018).  Besides, the production of various compatible solutes by salt-tolerant PGPR 
namely proline and total soluble sugar provides osmo-protection in plants. PGPR-
induced antioxidant enzymes and osmoprotectants help to initiate various chemical 
changes in plants such as alteration of total protein, the IAA concentration, total sugar, 
and ethylene contents (Yang et al., 2009). 

The improvement of crop salinity tolerance through genetic engineering is crucial but 
it is always a lengthy and pricey process. Alternatively, PGPR inoculation could be a 
more sustainable option that can be attained in a shorter time. Several reports showed 
the imperious role of PGPR in mitigating salinity stress on multiple crops including 
rice (Singh and Jha, 2016). Nevertheless, extensive information is still needed 
involving the native bacterial population for the dissemination of indigenous bacteria 
in the rhizosphere of specific crops (Chahboune et al., 2011). Since awareness is 
increasing extensively on sustainable agricultural practices, searching for region 
specific microbial strains is important as an eco-friendly approach towards crop 
production in targeted areas (Deepa et al., 2010). Therefore, it is hypothesized that 
with the proper practice of salt-tolerant PGPR application, it would be able to reduce 
the salt stress effect on rice plants grown on salt-affected areas. 

1.4 Objectives  

1. to screen for potential salt-tolerant PGPR from coastal salt-affected rice 
cultivation areas. 

2. to select suitable rice varieties for an optimum response towards inoculation 
of salt-tolerant PGPR  

3. to elucidate the mechanism of salt-tolerant PGPR inoculation on improving 
crop growth, biochemical properties, and yield of rice.
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