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Low-Dropout Voltage Regulator (LDO) is a linear regulator which is mainly used to 

regulate noiseless supply voltage for analog and Radio Frequency (RF) circuits. Today, 

the shrinking of transistor size due to the advancement of process technology and the 

increasing interests in the Internet-of-Thing (IoT) have increased the market demand for 

portable, wearable and implantable electronic devices. This has driven the need for low 

power Silicon-on-Chip (SoC) design which includes the integration of LDO into SoC. 

 

 
Analog and RF circuits have contributed to significantly high percentage of current 

consumption in low power SoC designs, mainly during stand-by mode. The reduction of 

quiescent current in analog LDO circuits become very important in order to reduce power 

consumption and to improve the efficiency of LDO especially during low output load 

current. Quiescent current is the current needed to keep LDO’s internal circuit in vigilant. 

However, with the absent of large off-chip compensation-capacitor for LDO in SoC, an 

excessive current is required to maintain ac loop stability of LDO system, especially 

during low output load current condition.  

 

 
A self-adjustable current reduction circuit technique has been proposed in this thesis to 

reduce this unnecessary current when output load current increases from zero value. On 

top of that, a self-compensation circuit technique is also been proposed to cater the worst 

case loop stability issue when load current reducing to zero. In this technique, the UGF 

has been shifted to a lower frequency away from the second pole frequency according to 

the amount of output load current. It is done using a current feedback circuit, where the 

total gain is lowered without affecting the location of dominant pole. The self-

compensation technique further reduces the total quiescent current, and avoid the 

excessive current to be used to keep the second pole at higher frequency. 
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ii 

The proposed LDO has been designed and fabricated using 0.13μm CMOS process 

technology. The results has shown that the proposed LDO exhibits good stability with 

phase margin more than 60° for all output load condition. The LDO’s total quiescent 

current is only 7.4μA at zero output load current, and 17.7μA at maximum output load 

current of 100mA. The total quiescent current measurement result on LDO with BGR 

circuit is 33.1μA, where the BGR consumed 20μA. This LDO is functional at 1.20V 

supply voltage with 200mV dropout voltage. 
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Pengatur voltan perbezaan keluaran rendah (LDO) adalah sejenis pengatur linear yang 

digunakan terutamanya untuk mengawal voltan bekalan tanpa hingar untuk litar analog 

dan Radio Frekuensi (RF). Hari ini, pengurangan saiz transistor yang disebabkan oleh 

kemajuan teknologi proses peningkatan minat dalam Internet-of-Thing (IoT) telah 

meningkatkan permintaan pasaran untuk alat elektronik yang mudah alih, boleh pakai 

dan boleh implan. Ini telah mendorong keperluan reka bentuk Silicon-on-Chip (SoC) 

kuasa rendah yang merangkumi integrasi LDO ke dalam SoC. 

 

 

Litar Analog dan RF menyumbang kepada peratusan penggunaan arus yang ketara di 

dalam reka bentuk SoC kuasa rendah, terutamanya semasa mod standby. Pengurangan 

arus senyap dalam litar analog LDO menjadi sangat penting untuk mengurangkan 

penggunaan kuasa dan untuk meningkatkan kecekapan LDO terutama semasa arus beban 

keluaran adalah sangat rendah. Arus senyap adalah arus yang diperlukan untuk 

memastikan litar dalaman LDO dalam keadaan waspada. Walaubagaimanapun, dengan 

ketiadaan kapasitor pampasan luar cip yang besar untuk LDO di SoC, arus yang 

berlebihan diperlukan untuk mengekalkan kestabilan gelung ac sistem LDO, 

terutamanya pada keadaan arus beban keluaran rendah.  

 

 

Teknik litar pengurangan arus laras diri telah dicadangkan dalam tesis ini untuk 

mengurangkan arus yang tidak perlu semasa arus beban meningkat daripada nilai sifar. 

Di samping itu, teknik litar pampasan diri juga telah dicadangkan untuk menyelesaikan 

masalah kestabilan gelung terburuk apabila arus beban berkurangkan menjadi sifar. 

Dalam teknik ini, frekuensi gandaan-uniti (UGF) telah beralih kepada frekuensi yang 

lebih rendah jauh dari frekuensi tiang kedua mengikut jumlah arus beban keluaran. Ia 

dilakukan menggunakan arus suap balik di mana jumlah gandaan diturunkan tanpa 

menjejaskan lokasi tiang dominan. Teknik pampasan diri akan terus mengurangkan 

jumlah arus senyap, dan mengelakkan arus yang berlebihan untuk digunakan untuk 

menahan tiang kedua dalam frekuensi yang lebih tinggi. 

© C
OPYRIG

HT U
PM



iv 

 

LDO yang dicadangkan telah direka dan difabrikasi menggunakan teknologi proses 

CMOS 0.13μm. Hasilnya menunjukkan bahawa LDO yang dicadangkan menunjukkan 

kestabilan yang baik dengan margin fasa lebih daripada 60° untuk semua keadaan beban 

keluaran. Arus dalaman LDO hanya 7.4μA pada arus beban sifar, dan 17.7μA pada arus 

keluaran maksimum 100mA. Jumlah hasil pengukuran arus senyap pada LDO bersama 

litar bandgap reference (BGR) adalah 33.1μA, dimana BGR menggunakan 20μA. LDO 

ini berfungsi pada voltan bekalan 1.20V dengan voltan perbezaan keluaran sebanyak 

200mV. 
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CHAPTER 1  
 

 

INTRODUCTION 

 

 

1.1    An overview of LDO in Silicon-on-Chip (SoC) 

 

In recent years, the market demand for portable and wearable electronic devices have 

been driven by the technology revolution trend such as Internet-of-Thing (IoT) and 

biomedical engineering. The IoT trend has enabled the possibility of many household 

electrical appliances and portable electronic devices to be connected through internet 

cloud (Zarate-Roldan, Carreon-Bautista, Costilla-Reyes, & Sanchez-Sinencio, 2015; 

Koay & Chan, 2017). The wireless communication integrated circuit (IC) devices such 

as the Radio Frequency integrated circuits (RF ICs) may need standalone power source 

and the devices itself are required to be low power consumption (Zeng & Tan, 2016). On 

biomedical technology trend, a convenient portable and wearable devices which is 

normally used for all hour wireless monitoring on the medical condition of patients are 

demanding (Goldstein, Kim, Xu, Vanderlick, & Culurciello, 2012; L. Y. Wang, Li, & 

Wu, 2012; Elzeftawi & Theogarajan, 2013). Long hour operation sustainability devices 

can be realized with low power consumption chips set and low count number of on board 

components which consume higher current. With the advancement of today’s 

nanotechnology and Micro-Electro-Mechanical Systems (MEMS) technology, the 

implantable IC has come into reality (Ramos, Ausin, Duque-Carrillo, & Torelli, 2011; 

Zou & Larsen, 2011; Kok, Huang, Zhu, Siek, & Lim, 2012; Jalalifar & Byun, 2013). In 

order not to generate any harmful heat on the patients’ body, a very low power 

operational implantable IC chips are therefore required (S.-Y. Lee, Yang, Hsieh, & Fang, 

2010; Narasimhan, Chiel, & Bhunia, 2011; Lotfi Navaii, Jalali, & Sadjedi, 2012). All 

these demands have driven the design trend of low power consumption IC. Furthermore, 

the shrinking of transistor size in advance process technology nowadays has enabled the 

full functional circuitry system to be built on a single chip, namely System on Chip 

(SoC). The SoC methodology not only improved the performance of the circuitry, it has 

also reduced the number of off-chip components, hence reduces the overall power 

consumption and cost (W.-M. Chen et al., 2014; L. M. Chen et al., 2015). By and large, 

these technology trends have further enhanced the demand on low power consumption 

IC chips with SoC methodology. On the end consumers’ point of concern, low power 

SoC trend is the main factor where the electronic gadgets nowadays are able to sustain 

longer hours of operation (Y. Park & Salman, 2016).  

 

 

Low dropout linear regulator (LDO) is one of the most important unit of the power 

management module (Paul et al., 2016). LDO is usually used to regulate analog or RF 

circuit modules. Before the trend of SoC taken place, LDO was designed in a single 

module. The structure of a conventional LDO configuration is shown in Figure 1.1 

(Gjanci & Chowdhury, 2011; Márquez et al., 2017). An error amplifier (EA) is used to 

drive the power transistor. An off-chip capacitor that connected to the output of LDO 

which comes with its equivalent series resistance (ESR) is used for loop stability 

compensation of the LDO. With the large capacitance value of the passive component 

capacitor, the loop stability of LDO module can be easily achieved.   
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Figure 1.1: Structure of a conventional LDO 

 

In today’s low power environment IC chips, power management unit is integrated in a 

single SoC. The off-chip capacitor is removed and the LDO is integrated into the SoC. 

However, implementing a large capacitor in silicon will need a very high silicon cost. 

Therefore, this has created a problematic issue for LDO stability compensation. As such, 

the dominant pole of LDO has also been shifted to internal circuitry of LDO from its 

output node (C.-J. Park, Onabajo, & Silva-Martinez, 2014). For low power SoC design, 

the supply voltage source has decreased to 1.20V or lower for deep submicron process 

technology smaller than 0.13𝜇 m. Whereby the drop-out voltage of power PMOS 

transistor hasn’t been reduced much due to the constraint of the process technology 

which comes from the source-drain resistance, namely RON of the power transistor (W.-

C. Chen et al., 2014). Drop-out voltage is the voltage drop across the source-drain 

terminal of the large power PMOS transistor as shown in Figure 1.1. The drop-out 

voltage becomes relatively higher compare with the supply voltage, thus impact the 

efficiency of LDO (Avalur & Azeemuddin, 2016; Das et al., 2017). In order to increase 

the efficiency of the low power LDO, there are research efforts being done to reduce the 

total quiescent current. 

 
 

 

Figure 1.2: Configuration of power management unit in SoC 
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Figure 1.2 shows the configuration of power management unit in SoC (E. N. Y. Ho & 

Mok, 2011). The unregulated input supply source to the whole power management unit 

is normally full of noise signals. The switching regulator, such as DC/DC converter, 

regulates the supply source for the digital circuitry which is normally a very large circuit. 

The efficiency of switching regulator is usually very high and able to reach more than 

98% (Y. Okuma et al., 2010). But however, switching regulator is not suitable to regulate 

analog or RF circuitry due to its high switching noise. As shown in Figure 1.2, the LDO 

input is sourced from the regulated output of switching regulator, and LDO output 

supplies a clean regulated output to the sensitive analog and RF circuitries. The LDO 

output is almost noiseless because it has gone through two stages of regulation. 

 

 

1.2    Motivation 

 

From the statistical analysis, it is known that the majority operation time of most 

electronic devices are in idle mode (Luders et al., 2011). In order to effectively prolong 

the sustainability of battery life, it is critical to reduce the power consumption, especially 

during idle mode operation of the electronic devices (Paul et al., 2016). Analog circuits 

such as LDO that needs a constant drawing of current from battery will definitely 

contribute to the draining of battery. To be exact, LDO that regulates all analog and RF 

circuits are needed in large numbers, thus LDO has become the main culprit in draining 

the battery during devices idle mode. Hence the reduction of quiescent current in LDO 

is vital in today low power portable electronic devices (Kubendran et al., 2011; Saint-

Laurent et al., 2015). The reduction of quiescent current could further improve the 

efficiency of the LDO especially during idle state, where the output loading current is 

zero or very small (Pathak, Hajkazemi, Tavana, Homayoun, & Savidis, 2016). Therefore, 

designing a low power LDO with low quiescent current is the first motivation of this 

research work.  

 

 

Furthermore, stability compensation of SoC integrated LDO during low load current 

condition has always been a problematic issue. While the load current reducing to low 

level, the loop stability will continue worsen and probably collapse at the zero load 

current. More current is usually needed to sustain the stability compensation of the LDO 

when output load current is reducing (Z. Peng, Lv, & She, 2012). But the increased of 

quiescent current will worsen the efficiency. Hence another motivation in this research 

work is to take the challenge in designing a LDO circuit that is able to perform self-

compensation by its own, depending on the amount of load current, but at the same time 

preventing the usage or any increment of quiescent current. To perform both challenges 

as above which contradict each other is indeed not a direct and easy task. 

 

 

The scope of this research work mainly focus on the loop stability and the reduction of 

quiescent current of the LDO during its load current is very low. The limitation is it 

compromises on other performance of the LDO which involve higher consumption of 

current such as transient response and slew-rate.  
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1.3    Problem statements 

 

Figure 1.3 shows the LDO design for SoC application. The voltage reference, VREF is 

provided by a bandgap reference (BGR). However the low power environment SoC 

requirement with lower supply voltage which as low as 1.20V has made conventional 

1.12V output voltage of BGR not viable anymore (Jang, Park, Jeong, & Cho, 2016).   

 

 

Figure 1.3 shows no external off-chip capacitor. CL represents the load capacitance. The 

SoC requirement have put LDO circuit design into challenge when the external off-chip 

capacitor which is used for stability compensation had to be removed (Raducan & Neag, 

2015; Yun, Yun, & Kim, 2017).  

 
Figure 1.3: LDO design for SoC application 

 

The LDO is viewed as a three-stage amplifier. The first stage amplifier is a differential 

amplifier. The second stage amplifier is a gain-stage amplifier. These two stages 

amplifier formed the error amplifier for the LDO. The third stage amplifier is the power 

PMOS transistor which is used to source high output load current. The large size of 

power PMOS contributes high parasitic capacitance at its gate terminal. Therefore the 

dominant pole for LDO in SoC application has shifted to the gate terminal of power 

PMOS transistor. To maintain a robust loop stability comes into challenge when the LDO 

needed to source a wide range of output load current from zero current to hundreds of 

milliampere (mA). The wide range load current has caused large variation of output 

impedance at LDO output node. The worst case scenario happen during zero load current 

where output impedance is too large and causing second pole shifted to lower frequency, 

hence compromise the loop stability of LDO system. 

 

 

There are many reported LDO design to resolve the stability issue of SoC integrated 

LDO. There is a suggestion to use NMOS transistor instead of PMOS for the source 

follower in order to obtain low output impedance at the output of LDO (Day & Lie, 

2011). This method sustain low impedance at output node over the wide range of load 

current and keep this pole at higher frequency. However the trade-off is that NMOS pass 

transistor has higher dropout voltage, thus achieving lower efficiency. There is also 
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another reported design imposing low-impedance at the output node of LDO (S. S. 

Chong & Chan, 2011). However excessive amount of current is needed in order to sustain 

the output in low impedance, hence resulting in higher quiescent current and worse 

efficiency. 

 

 

Above issues have caused the low efficiency of SoC integrated LDO, especially during 

low load current. The efficiency equation is given in Equation (1.1) as  

𝜂 =
𝑉𝑜𝑢𝑡𝐼𝑜𝑢𝑡

𝑉𝑖𝑛(𝐼𝑞+𝐼𝑜𝑢𝑡)
             (1.1) 

 

, where 𝐼𝑞  the quiescent current is and 𝐼𝑜𝑢𝑡  is the output load current. From the equation, 

if the load current is very large comparing quiescent current, a very high efficiency can 

be achieved. In the other way, efficiency become worst if load current is low. By 

observing the total usage time of electronic devices in a day, it is known that most devices 

are under sleep-mode or stand-by mode most of the time. Therefore, improving 

efficiency at low output load current is deemed to be important in order to prolong the 

stand-by period of devices. Hence, reducing quiescent current during low output load 

current is essential.  

 

 

Concluded from the above problem statements, the first issue is the conventional BGR 

with 1.12V voltage output is no longer viable to provide voltage reference for low power 

LDO. Second issue is the excessive amount of current is normally required to sustain the 

loop stability of LDO during low load current. These current can be reduced when load 

current gradually increases. The third issue is the difficulty to maintain the loop stability 

of LDO during very low output load current condition. Furthermore to reduce the total 

quiescent current of the LDO that contributed to low efficiency is another challenge to 

deal with, especially during low output load current condition.  

 

 

1.4    Research objectives 

 

The proposed research work is carried out with the purpose of realizing quiescent current 

reduction of self-compensated LDO. The research objectives of this research work are: 

 

1) To design a low power bandgap reference circuit with sub-1V output stage to 

supply a stable reference voltage for the proposed LDO. 

2) To design a quiescent current self-reduction circuit on the proposed LDO which 

is able to perform current reduction during low load current. 

3) To design a self-compensation circuit for the proposed LDO, with the capability 

to self-repair the worsen loop stability during low load current. 

4) To further reduce the total quiescent current of the proposed LDO during low 

load current using circuit design technique, in order to improve the efficiency of 

the LDO. 

 

 

The circuit design of the proposed LDO is implemented using 0.13𝜇𝑚 CMOS process 

technology with 1.20V voltage supply. The proposed LDO together with bandgap 

reference are both fabricated into silicon chip and measurement is further conducted. 
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1.5    Outline of the thesis 

 

This thesis consists of six chapters. In Chapter 1, the introduction section discuss the 

current technology development trend and the current market demand for LDO, 

especially on the demand of SoC integrated LDO. The motivation of this research work 

has been validated. The problematic issues of LDO in SoC application is analyzed and 

described. And the list of research objectives for this work are being ruled out from here. 

Chapter 2 is the literature review chapter. Firstly, the performance parameters of LDO is 

being listed and explained in brief. Then the literature reviews on LDO is being discussed 

based on categories such as “low quiescent current LDO” review, “external capacitor-

less LDO” review, and “LDO with enhancement topology” review. The trade-off on the 

performance parameters between these research papers are discussed. Chapter 3 

discusses the design consideration on the circuit design of the proposed LDO that has to 

be taken into concern before any design work being carried out. The process technology 

constraint is discussed where the characteristic and limitation of transistors used in this 

work is being analyzed. Then the circuit design related constraint such as headroom and 

power transistor design are mentioned. The correlation between the LDO output load 

characteristic and its frequency response is being analyzed and discussed. Transient 

response is mentioned in the next section. In the following section, a circuit design 

methodology called inversion coefficient is introduced. Then the design trade-off that 

has to be made in this proposed LDO design is described. In Chapter 4, a sub-1V output 

stage bandgap reference (BGR) design is proposed. Firstly, the BGR design 

methodology is discussed. They are including the matching issue, VEB of the PNP 

transistor, and issue pertaining BGR integration with LDO. Secondly, the principle of 

circuit operation is explained, then the circuit design of BGR is presented and described 

in subsection such as bandgap core circuit, start-up circuit, output stage circuit and op-

amp circuit. Thirdly, the results and discussions are presented by subsection, including 

PVT impact on VREF, and start-up circuit. An overall conclusion is presented at the end 

of this chapter. In Chapter 5, a self-compensation quiescent current reduction LDO is 

suggested. Firstly, the design methodology is discussed. Secondly the proposed LDO’s 

circuit operation is described. They are including error amplifier and power PMOS, low 

impedance circuit, and sensing and control (SAC) circuit. Thirdly, analysis on the LDO 

loop stability is being discussed. The stability analysis comes with two different 

phenomenon which are high load current phenomenon and load current below 100μA 

phenomenon. Fourthly, the fabrication and measurement set-up are mentioned. The 

layout of the proposed LDO is shown in this section. Fifthly, the results and discussions 

of the proposed LDO is presented, including the measurement results. They are divided 

into three parts which are the results of stability and self-compensation, the results of 

quiescent current reduction and efficiency, and the results of DC voltage performance. 

An overall conclusion on the LDO design is made at the end of this chapter. A final 

conclusion is presented in Chapter 6. The contribution and the impact of this dissertation 

is presented, and the future research works are mentioned in this chapter. 
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